DigDig: A Software for In-Depth Analysis and Comparison of Proteolytic Digestion

. 2025 Oct 07 ; 97 (39) : 21205-21210. [epub] 20250925

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid40998310

Proteolysis is a crucial step in both bottom-up and structural proteomics workflows, directly influencing peptide identification and sequence coverage in mass spectrometry-based analyses. While classical proteomics typically relies on highly specific enzymes with well-defined cleavage patterns, structural MS approaches such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) often employ nonspecific or semispecific proteases, producing complex peptide mixtures that require more detailed digestion analysis. To address these needs and streamline the entire process, we developed DigDig, a standalone, Java-based software tool for evaluating and comparing proteolytic digestion across diverse experimental conditions. DigDig processes output files from common search engines and provides customizable visualizations of key digestion metrics, including sequence coverage, reproducibility, peptide redundancy, cleavage site preferences, and peptide length distributions. A distinguishing feature is its ability to detect and report repetitive peptide sequences, which are frequently missed by standard tools. We demonstrate its capabilities using data sets from both specific and nonspecific digestions, highlighting its utility in digestion quality control, protease characterization, and method development, particularly in HDX-MS workflows. DigDig is freely available at https://peterslab.org/DigDig/.

Zobrazit více v PubMed

De Godoy L. M. F., Olsen J. V., Cox J., Nielsen M. L., Hubner N. C., Frohlich F., Walther T. C., Mann M.. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455:1251–1254. doi: 10.1038/nature07341. PubMed DOI

Jiang Y., Rex D. A., Schuster D., Neely B. A., Rosano G. L., Volkmar N., Momenzadeh A., Peters-Clarke T. M., Egbert S. B., Kreimer S.. et al. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS Meas. Sci. Au. 2024;4:338–417. doi: 10.1021/acsmeasuresciau.3c00068. PubMed DOI PMC

Aebersold R., Mann M.. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–355. doi: 10.1038/nature19949. PubMed DOI

Olsen J. V., Ong S.-E., Mann M.. Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Mol. Cell. Proteomics. 2004;3:608–614. doi: 10.1074/mcp.T400003-MCP200. PubMed DOI

Hamuro Y., Coales S. J., Molnar K. S., Tuske S. J., Morrow J. A.. Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun. Mass Spectrom. 2008;22:1041–1046. doi: 10.1002/rcm.3467. PubMed DOI

Rey M., Yang M., Burns K. M., Yu Y., Lees-Miller S. P., Schriemer D. C.. Nepenthesin from Monkey Cups for Hydrogen/Deuterium Exchange Mass Spectrometry. Mol. Cell. Proteomics. 2013;12:464–472. doi: 10.1074/mcp.M112.025221. PubMed DOI PMC

Hamuro Y., Zhang T.. High-Resolution HDX-MS of Cytochrome c Using Pepsin/Fungal Protease Type XIII Mixed Bed Column. J. Am. Soc. Mass Spectrom. 2019;30:227–234. doi: 10.1007/s13361-018-2087-7. PubMed DOI

Tsiatsiani L., Akeroyd M., Olsthoorn M., Heck A. J. R.. Aspergillus niger Prolyl Endoprotease for Hydrogen–Deuterium Exchange Mass Spectrometry and Protein Structural Studies. Anal. Chem. 2017;89:7966–7973. doi: 10.1021/acs.analchem.7b01161. PubMed DOI PMC

Kadek A., Mrazek H., Halada P., Rey M., Schriemer D. C., Man P.. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014;86:4287–4294. doi: 10.1021/ac404076j. PubMed DOI

Yang M., Hoeppner M., Rey M., Kadek A., Man P., Schriemer D. C.. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2015;87:6681–6687. doi: 10.1021/acs.analchem.5b00831. PubMed DOI

Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S.. Probability-based protein identification by searching sequence databases using mass spectrometry data. ELECTROPHORESIS. 1999;20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI

Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G.. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. RCM. 2003;17:2337–2342. doi: 10.1002/rcm.1196. PubMed DOI

Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., Nesvizhskii A. I.. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods. 2017;14:513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC

Cox J., Mann M.. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Maddelein D., Colaert N., Buchanan I., Hulstaert N., Gevaert K., Martens L.. The iceLogo web server and SOAP service for determining protein consensus sequences. Nucleic Acids Res. 2015;43:W543–W546. doi: 10.1093/nar/gkv385. PubMed DOI PMC

Colaert N., Helsens K., Martens L., Vandekerckhove J., Gevaert K.. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods. 2009;6:786–787. doi: 10.1038/nmeth1109-786. PubMed DOI

Kailash V., Mendoza L., Moritz R. L., Hoopmann M. R.. SPACEPro: A Software Tool for Analysis of Protein Sample Cleavage for Tandem Mass Spectrometry. J. Proteome Res. 2021;20:1911–1917. doi: 10.1021/acs.jproteome.0c00928. PubMed DOI PMC

Keil, B. In Specificity of Proteolysis; Springer, Berlin, Heidelberg, 1992. 10.1007/978-3-642-48380-6. DOI

Kalaninova Z., Portasikova J. M., Jireckova B., Polak M., Novakova J., Kavan D., Novak P., Man P.. Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine. Anal. Chem. 2024;96:19084–19092. doi: 10.1021/acs.analchem.4c04277. PubMed DOI PMC

Picotti P., Aebersold R., Domon B.. The Implications of Proteolytic Background for Shotgun Proteomics. Mol. Cell. Proteomics. 2007;6:1589–1598. doi: 10.1074/mcp.M700029-MCP200. PubMed DOI

Polticelli F., Bocedi A., Minervini G., Ascenzi P.. Human haptoglobin structure and function – a molecular modelling study. FEBS J. 2008;275:5648–5656. doi: 10.1111/j.1742-4658.2008.06690.x. PubMed DOI

Langlois M. R., Delanghe J. R.. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 1996;42:1589–1600. doi: 10.1093/clinchem/42.10.1589. PubMed DOI

Xin L., Qiao R., Chen X., Tran H., Pan S., Rabinoviz S., Bian H., He X., Morse B., Shan B., Li M.. A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics. Nat. Commun. 2022;13:3108. doi: 10.1038/s41467-022-30867-7. PubMed DOI PMC

Bern M., Kil Y. J., Becker C.. Byonic: Advanced Peptide and Protein Identification Software. Curr. Protoc. Bioinforma. 2012;40(1):13–20. doi: 10.1002/0471250953.bi1320s40. PubMed DOI PMC

Xu T., Park S. K., Venable J. D., Wohlschlegel J. A., Diedrich J. K., Cociorva D., Lu B., Liao L., Hewel J., Han X.. et al. ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics. 2015;129:16–24. doi: 10.1016/j.jprot.2015.07.001. PubMed DOI PMC

Ma B.. Novor: Real-Time Peptide de Novo Sequencing Software. J. Am. Soc. Mass Spectrom. 2015;26:1885–1894. doi: 10.1007/s13361-015-1204-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...