DigDig: A Software for In-Depth Analysis and Comparison of Proteolytic Digestion
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
PubMed
40998310
PubMed Central
PMC12509190
DOI
10.1021/acs.analchem.5c04217
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- peptidy * analýza metabolismus chemie MeSH
- proteasy metabolismus MeSH
- proteolýza * MeSH
- proteomika metody MeSH
- software * MeSH
- vodík/deuteriová výměna a hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- peptidy * MeSH
- proteasy MeSH
Proteolysis is a crucial step in both bottom-up and structural proteomics workflows, directly influencing peptide identification and sequence coverage in mass spectrometry-based analyses. While classical proteomics typically relies on highly specific enzymes with well-defined cleavage patterns, structural MS approaches such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) often employ nonspecific or semispecific proteases, producing complex peptide mixtures that require more detailed digestion analysis. To address these needs and streamline the entire process, we developed DigDig, a standalone, Java-based software tool for evaluating and comparing proteolytic digestion across diverse experimental conditions. DigDig processes output files from common search engines and provides customizable visualizations of key digestion metrics, including sequence coverage, reproducibility, peptide redundancy, cleavage site preferences, and peptide length distributions. A distinguishing feature is its ability to detect and report repetitive peptide sequences, which are frequently missed by standard tools. We demonstrate its capabilities using data sets from both specific and nonspecific digestions, highlighting its utility in digestion quality control, protease characterization, and method development, particularly in HDX-MS workflows. DigDig is freely available at https://peterslab.org/DigDig/.
Zobrazit více v PubMed
De Godoy L. M. F., Olsen J. V., Cox J., Nielsen M. L., Hubner N. C., Frohlich F., Walther T. C., Mann M.. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455:1251–1254. doi: 10.1038/nature07341. PubMed DOI
Jiang Y., Rex D. A., Schuster D., Neely B. A., Rosano G. L., Volkmar N., Momenzadeh A., Peters-Clarke T. M., Egbert S. B., Kreimer S.. et al. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS Meas. Sci. Au. 2024;4:338–417. doi: 10.1021/acsmeasuresciau.3c00068. PubMed DOI PMC
Aebersold R., Mann M.. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–355. doi: 10.1038/nature19949. PubMed DOI
Olsen J. V., Ong S.-E., Mann M.. Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Mol. Cell. Proteomics. 2004;3:608–614. doi: 10.1074/mcp.T400003-MCP200. PubMed DOI
Hamuro Y., Coales S. J., Molnar K. S., Tuske S. J., Morrow J. A.. Specificity of immobilized porcine pepsin in H/D exchange compatible conditions. Rapid Commun. Mass Spectrom. 2008;22:1041–1046. doi: 10.1002/rcm.3467. PubMed DOI
Rey M., Yang M., Burns K. M., Yu Y., Lees-Miller S. P., Schriemer D. C.. Nepenthesin from Monkey Cups for Hydrogen/Deuterium Exchange Mass Spectrometry. Mol. Cell. Proteomics. 2013;12:464–472. doi: 10.1074/mcp.M112.025221. PubMed DOI PMC
Hamuro Y., Zhang T.. High-Resolution HDX-MS of Cytochrome c Using Pepsin/Fungal Protease Type XIII Mixed Bed Column. J. Am. Soc. Mass Spectrom. 2019;30:227–234. doi: 10.1007/s13361-018-2087-7. PubMed DOI
Tsiatsiani L., Akeroyd M., Olsthoorn M., Heck A. J. R.. Aspergillus niger Prolyl Endoprotease for Hydrogen–Deuterium Exchange Mass Spectrometry and Protein Structural Studies. Anal. Chem. 2017;89:7966–7973. doi: 10.1021/acs.analchem.7b01161. PubMed DOI PMC
Kadek A., Mrazek H., Halada P., Rey M., Schriemer D. C., Man P.. Aspartic Protease Nepenthesin-1 as a Tool for Digestion in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2014;86:4287–4294. doi: 10.1021/ac404076j. PubMed DOI
Yang M., Hoeppner M., Rey M., Kadek A., Man P., Schriemer D. C.. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry. Anal. Chem. 2015;87:6681–6687. doi: 10.1021/acs.analchem.5b00831. PubMed DOI
Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S.. Probability-based protein identification by searching sequence databases using mass spectrometry data. ELECTROPHORESIS. 1999;20:3551–3567. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI
Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G.. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. RCM. 2003;17:2337–2342. doi: 10.1002/rcm.1196. PubMed DOI
Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., Nesvizhskii A. I.. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods. 2017;14:513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC
Cox J., Mann M.. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Maddelein D., Colaert N., Buchanan I., Hulstaert N., Gevaert K., Martens L.. The iceLogo web server and SOAP service for determining protein consensus sequences. Nucleic Acids Res. 2015;43:W543–W546. doi: 10.1093/nar/gkv385. PubMed DOI PMC
Colaert N., Helsens K., Martens L., Vandekerckhove J., Gevaert K.. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods. 2009;6:786–787. doi: 10.1038/nmeth1109-786. PubMed DOI
Kailash V., Mendoza L., Moritz R. L., Hoopmann M. R.. SPACEPro: A Software Tool for Analysis of Protein Sample Cleavage for Tandem Mass Spectrometry. J. Proteome Res. 2021;20:1911–1917. doi: 10.1021/acs.jproteome.0c00928. PubMed DOI PMC
Keil, B. In Specificity of Proteolysis; Springer, Berlin, Heidelberg, 1992. 10.1007/978-3-642-48380-6. DOI
Kalaninova Z., Portasikova J. M., Jireckova B., Polak M., Novakova J., Kavan D., Novak P., Man P.. Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine. Anal. Chem. 2024;96:19084–19092. doi: 10.1021/acs.analchem.4c04277. PubMed DOI PMC
Picotti P., Aebersold R., Domon B.. The Implications of Proteolytic Background for Shotgun Proteomics. Mol. Cell. Proteomics. 2007;6:1589–1598. doi: 10.1074/mcp.M700029-MCP200. PubMed DOI
Polticelli F., Bocedi A., Minervini G., Ascenzi P.. Human haptoglobin structure and function – a molecular modelling study. FEBS J. 2008;275:5648–5656. doi: 10.1111/j.1742-4658.2008.06690.x. PubMed DOI
Langlois M. R., Delanghe J. R.. Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem. 1996;42:1589–1600. doi: 10.1093/clinchem/42.10.1589. PubMed DOI
Xin L., Qiao R., Chen X., Tran H., Pan S., Rabinoviz S., Bian H., He X., Morse B., Shan B., Li M.. A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics. Nat. Commun. 2022;13:3108. doi: 10.1038/s41467-022-30867-7. PubMed DOI PMC
Bern M., Kil Y. J., Becker C.. Byonic: Advanced Peptide and Protein Identification Software. Curr. Protoc. Bioinforma. 2012;40(1):13–20. doi: 10.1002/0471250953.bi1320s40. PubMed DOI PMC
Xu T., Park S. K., Venable J. D., Wohlschlegel J. A., Diedrich J. K., Cociorva D., Lu B., Liao L., Hewel J., Han X.. et al. ProLuCID: An improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics. 2015;129:16–24. doi: 10.1016/j.jprot.2015.07.001. PubMed DOI PMC
Ma B.. Novor: Real-Time Peptide de Novo Sequencing Software. J. Am. Soc. Mass Spectrom. 2015;26:1885–1894. doi: 10.1007/s13361-015-1204-0. PubMed DOI PMC