The diverse world within: age-dependent photobiont diversity in the lichen Protoparmeliopsis muralis
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
GA UK 252507
Charles University Grant Agency
GA ČR 24-10510 K
Czech Science Foundation
PubMed
41004244
PubMed Central
PMC12516127
DOI
10.1093/femsec/fiaf096
PII: 8266524
Knihovny.cz E-zdroje
- Klíčová slova
- Protoparmeliopsis muralis, Trebouxia, DNA metabarcoding, lichen ontogeny, photobiont diversity, selectivity,
- MeSH
- Ascomycota * fyziologie genetika MeSH
- biodiverzita * MeSH
- Chlorophyta * fyziologie genetika MeSH
- lišejníky * mikrobiologie fyziologie růst a vývoj MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
Understanding the initial formation and development of lichens is crucial for elucidating the mechanisms behind the formation of complex lichen thalli and their maintenance in long-term symbioses. These symbiotic relationships provide significant ecological advantages for both partners, expanding their ecological niches and allowing them, in many cases, to overcome extreme environmental conditions. The correct development of thalli likely relies on the selection of suitable photobionts from the environment. In this study, we focused on the impact of lichen age on the overall diversity of photobiont partners and examined how mycobiont preference toward their symbionts changes at different developmental stages. Using the lichen Protoparmeliopsis muralis as a model organism, we observed a strong correlation between the diversity of photobionts and lichen age, confirmed by both molecular data and morphological observations. Our findings indicate greater photobiont diversity in older thalli, suggesting that lichens retain the majority of algae they collect throughout their lifespan, potentially as an adaptation to changing environmental conditions. Additionally, we found that some lichen samples contained only low levels of Trebouxia algae, indicating that P. muralis does not consistently rely on this typical partner and that local environmental conditions may significantly influence its symbiotic composition.
Zobrazit více v PubMed
Ahmadjian V. Coevolution in lichens. Ann NY Acad Sci. 1987;503:307–15. 10.1111/j.1749-6632.1987.tb40617.x. DOI
Armstrong RA, Upreti D, Divakar P et al. Lichen Growth and Lichenometry. Recent Advances in Lichenology. New Delhi: Springer, 2015a. 10.1007/978-81-322-2181-4_10. DOI
Armstrong RA, Upreti D, Divakar P et al. The influence of environmental factors on the growth of lichens in the field. In: Upreti D., Divakar P., Shukla V., Bajpai R. (eds), Recent Advances in Lichenology. New Delhi: Springer, 2015b. 10.1007/978-81-322-2181-4_1. DOI
Armstrong RA. Growth of experimentally reconstructed thalli of the lichen DOI
Bačkor M, Peksa O, Škaloud P et al. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol Environ Saf. 2010;73:603–12. 10.1016/j.ecoenv.2009.11.002. PubMed DOI
Bálint M, Schmidt P, Sharma R et al. An Illumina metabarcoding pipeline for fungi. Ecol Evol. 2014;4:2642–53. 10.1002/ece3.1107. PubMed DOI PMC
Beck A, Friedl T, Rambold G. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol. 1998;139:709–20. 10.1046/j.1469-8137.1998.00231.x. DOI
Beck A, Kasalicky T, Rambold G. Myco-photobiontal selection in a Mediterranean cryptogam community with DOI
Beller L, Deboutte W, Falony G et al. Successional stages in infant gut microbiota maturation. mBio. 2021;12:e01857–21. 10.1128/mbio.01857-21. PubMed DOI PMC
Blaha J, Baloch E, Grube M. High photobiont diversity associated with the euryoecious lichen-forming ascomycete DOI
Bowler PA, Rundel PW. Reproductive strategies in lichens. Botan J Linnean Soc. 1975;70:325–40. 10.1111/j.1095-8339.1975.tb01653.x. DOI
Cao S, Zhang F, Liu C et al. Distribution patterns of haplotypes for symbionts from PubMed DOI PMC
Casano LM, Del Campo EM, García-Breijo FJ et al. Two PubMed DOI
Černajová I, Škaloud P. Lessons from culturing lichen soredia. Symbiosis. 2020;82:109–22. 10.1007/s13199-020-00718-4. DOI
Chen X, Feng J, Yu L et al. Diversity of lichen mycobionts and photobionts and their relationships in the Ny-Ålesund region (Svalbard, High Arctic). Extremophiles. 2024;28 :40. 10.1007/s00792-024-01355-1. PubMed DOI
Chiva S, Bordenave CD, Gázquez A et al. DOI
Chiva S, Dumitru C, Bordenave CD et al. Watanabea green microalgae (Trebouxiophyceae) inhabiting lichen holobiomes: Watanabea lichenicola sp. nova. Phycological Research. 2021;69:226–236. 10.1111/pre.12463 DOI
Chiva S, Moya P, Barreno E. Lichen phycobiomes as source of biodiversity for microalgae of the DOI
Connor EF, McCoy ED. The statistics and biology of the species-area relationship. Am Nat. 1979;113:791–833. 10.1086/283438. DOI
Cordeiro LMC, Reis RA, Cruz LM et al. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol Ecol. 2005;54:381–90. 10.1016/j.femsec.2005.05.003. PubMed DOI
Cubero OF, Crespo A, Fatehi J et al. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst Evol. 1999;216:243–9. 10.1007/BF01084401. DOI
Dal Forno M, Lawrey JD, Sikaroodi M et al. Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol Ecol. 2021;30:1755–76. 10.1111/mec.15700. PubMed DOI
Davis NM, Proctor DM, Holmes SP et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226. 10.1186/s40168-018-0605-2. PubMed DOI PMC
Dědková K, Vančurová L, Muggia L et al. The plurality of photobionts within single lichen thalli. Symbiosis. 2025;95:35–63. 10.1007/s13199-025-01036-3. DOI
Dreyling L, Schmitt I, Dal Grande F. Tree size drives diversity and community structure of microbial communities on the bark of beech (Fagus sylvatica). Frontiers in Forests and Global Change. 2022;5:858382. 10.3389/ffgc.2022.858382 DOI
Elshobary ME, Osman MEH, Abushady AM et al. Comparison of lichen-forming cyanobacterial and green algal photobionts with free-living algae. Cryptogamie Algologie. 2015;36:81–100. 10.7872/crya.v36.iss1.2015.81. DOI
Ertz D, Guzow-Krzemińska B, Thor G et al. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the arthoniomycetes. Sci Rep. 2018;8:4952. 10.1038/s41598-018-23219-3. PubMed DOI PMC
Ettl H, Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer Verlag, 1995.
Fałtynowicz W. The lichens of Western Pomerania (NW Poland). An ecogeographical study. Pol Botan Stud. 1992;4:1–182.
Fasolo A, Deb S, Stevanato P et al. ASV vs OTUs clustering: effects on alpha, beta, and gamma diversities in microbiome metabarcoding studies. PLoS One. 2024;19:e0309065. 10.1371/journal.pone.0309065. PubMed DOI PMC
Fernández-Mendoza F, Domaschke S, García MA et al. Population structure of mycobionts and photobionts of the widespread lichen PubMed DOI
Friedl T. Thallus development and phycobionts of the parasitic Lichen DOI
García RA, Rosato VG. Observations of the development of PubMed DOI PMC
Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8. 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI
Gaßmann A, Ott S. Growth strategy and the gradual symbiotic interactions of the Lichen DOI
Gheza G, Di Nuzzo L, Giordani P et al. Species–area relationship in lichens tested in protected areas across Italy. The Lichenologist. 2023;55:431–6. 10.1017/s0024282923000488. DOI
Grenié M, Denelle P, Tucker CM et al. Funrar: an R package to characterize functional rarity. Diver Distrib. 2017;23:1365–71. 10.1111/ddi.12629. DOI
Guzow-Krzeminska B, Stocker-Wörgötter E. Development of microsatellite markers in Protoparmeliopsis muralis (lichenized Ascomycete)–a common lichen species. The Lichenologist. 2013;45:791–798. 10.1017/S002428291300042X DOI
Guzow-Krzemińska B. Photobiont flexibility in the lichen DOI
Helms G, Friedl T, Rambold G et al. Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. The Lichenologist. 2001;33:73–86. 10.1006/lich.2000.0298. DOI
Hortal J, Triantis KA, Meiri S et al. Island species richness increases with habitat diversity. Am Nat. 2009;174:E205–17. 10.1086/645085. PubMed DOI
Ismaiel MM, Piercey-Normore MD, Rampitsch C. Biochemical and proteomic response of the freshwater green alga PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. 10.1038/nmeth.4285. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. 10.1093/molbev/mst010. PubMed DOI PMC
Kim JI, Kim YJ, Nam SW et al. Taxonomic study of three new Antarctic DOI
Kim JI, Shin W, Choi HG et al. DOI
Leavitt SD, Kraichak E, Nelsen MP et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol. 2015;24:3779–97. 10.1111/mec.13271. PubMed DOI
Leavitt SD, Kraichak E, Vondrak J et al. Cryptic diversity and symbiont interactions in rock-posy lichens. Mol Phylogenet Evol. 2016;99 :261–74. 10.1016/j.ympev.2016.03.030. PubMed DOI
Lindgren H, Moncada B, Lücking R et al. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus PubMed DOI
Magain N, Goffinet B, Sérusiaux E. Further photomorphs in the lichen family Lobariaceae from Reunion (Mascarene archipelago) with notes on the phylogeny of DOI
Mahé F, Rognes T, Quince C et al. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:e1420. 10.7717/peerj.1420. PubMed DOI PMC
Mamut R, Adil G, Liu S et al. The chloroplast genome of the PubMed DOI PMC
Mansournia MR, Bingyun WU, Matsushita N et al. Genotypic analysis of the foliose lichen DOI
Marini L, Nascimbene J, Nimis PL. Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ. 2011;409:4381–6. 10.1016/j.scitotenv.2011.07.010. PubMed DOI
Marton K, Galun M. In vitro dissociation and reassociation of the symbionts of the lichen DOI
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. 10.1371/journal.pone.0061217. PubMed DOI PMC
Meyer AR, Valentin M, Liulevicius L et al. Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen. Am J Bot. 2023;110:e16114. 10.1002/ajb2.16114. PubMed DOI
Minh BQ, Schmidt HA, Chernomor O et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. 10.1093/molbev/msaa015. PubMed DOI PMC
Molins A, Moya P, García-Breijo FJ, et al. Molecular and morphological diversity of Trebouxia microalgae in sphaerothallioid Circinaria spp. lichens1. Journal of Phycology. 2018;54:494–504. 10.1111/jpy.12751 PubMed DOI
Molins A, Moya P, Muggia L et al. Thallus growth stage and geographic origin shape microalgal diversity in PubMed DOI
Moya P, Chiva S, Molins A et al. Unravelling the symbiotic microalgal diversity in DOI
Moya P, Molins A, Chiva S et al. Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Scientific Reports. 2020;10:14060. 10.1038/s41598-020-71046-2 PubMed DOI PMC
Moya P, Molins A, Martínez-Alberola F et al. Unexpected associated microalgal diversity in the lichen PubMed DOI PMC
Muggia L, Grube M, Tretiach M. Genetic diversity and photobiont associations in selected taxa of the DOI
Muggia L, Nelsen MP, Kirika PM et al. Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus PubMed DOI
Muggia L, Pérez-Ortega S, Kopun T et al. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot. 2014;114:463–75. 10.1093/aob/mcu146. PubMed DOI PMC
Muggia L, Vancurova L, Škaloud P et al. The symbiotic playground of lichen thalli—a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol. 2013;85:313–23. 10.1111/1574-6941.12120. PubMed DOI
Nelsen MP, Leavitt SD, Heller K et al. Macroecological diversification and convergence in a clade of keystone symbionts. FEMS Microbiol Ecol. 2021;97:fiab072. 10.1093/femsec/fiab072. PubMed DOI
Noh HJ, Lee YM, Park CH et al. Microbiome in PubMed DOI PMC
Ohmura Y, Kawachi M, Kasai F et al. Genetic combinations of symbionts in a vegetatively reproducing lichen DOI
Ott S, Treiber K, Jahns HM. The development of regenerative thallus structures in lichens. Botan J Linnean Soc. 1993;113:61–76. 10.1111/j.1095-8339.1993.tb00329.x. DOI
Ott S. Sexual reproduction and developmental adaptations in DOI
Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64. 10.1146/annurev-ecolsys-121415-032100. DOI
Peksa O, Škaloud P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga PubMed DOI
Piercey-Normore MD, DePriest PT. Algal switching among lichen symbioses. Am J Bot. 2001;88:1490–8. 10.2307/3558457. PubMed DOI
Piercey-Normore MD. Selection of algal genotypes by three species of lichen fungi in the genus DOI
Piercey-Normore MD. The lichen-forming ascomycete PubMed DOI
Pino-Bodas R, Stenroos S. Global biodiversity patterns of the photobionts associated with the Genus PubMed DOI PMC
Pyatt FB. Lichen propagules. In: The Lichens. Amsterdam: Elsevier, 1973, 117–45. 10.1016/B978-0-12-044950-7.50009-X. DOI
R Core Team R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, https://www.R-project.org/](0) (27 July 2023, date last accessed).
Rikkinen J, Oksanen I, Lohtander K. Lichen guilds share related cyanobacterial PubMed DOI
Rotimi VO, Duerden BI. The development of the bacterial flora in normal neonates. J Med Microbiol. 1981;14:51–62. 10.1099/00222615-14-1-51. PubMed DOI
Sanders WB, Lücking R. Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol. 2002;155:425–35. 10.1046/j.1469-8137.2002.00472.x. PubMed DOI
Sanders WB. Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. The Lichenologist. 2005;37:373–82. 10.1017/S0024282905015070. DOI
Satyanarayana T, Das S, Johri B. Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Singapore: Springer, 2019. 10.1007/978-981-13-8487-5_13. DOI
Schaper T, Ott S. Photobiont selectivity and interspecific interactions in Lichen Communities. I. Culture Experiments with the Mycobiont DOI
Seminara A, Fritz J, Brenner MP et al. A universal growth limit for circular lichens. J R Soc Interface. 2018;15:20180063. 10.1098/rsif.2018.0063. PubMed DOI PMC
Skaloud P, Peksa O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga PubMed DOI
Slocum RD, Ahmadjian V, Hildreth KC. Zoosporogenesis in DOI
Steinová J, Holien H, Košuthová A et al. An exception to the rule? Could photobiont identity be a better predictor of lichen phenotype than mycobiont identity?. J Fungi. 2022;8:275. 10.3390/jof8030275. PubMed DOI PMC
Steinová J, Škaloud P, Yahr R et al. Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in PubMed DOI
Tamura K, Stecher G, Peterson D et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. 10.1093/molbev/mst197. PubMed DOI PMC
Vančurová L, Kalníková V, Peksa O et al. Symbiosis between river and dry lands: phycobiont dynamics on river gravel bars. Algal Res. 2020;51 :102062. 10.1016/j.algal.2020.102062. DOI
Vančurová L, Muggia L, Peksa O et al. The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in PubMed DOI
Veselá V, Malavasi V, Škaloud P. A synopsis of green-algal lichen symbionts with an emphasis on their free-living lifestyle. Phycologia. 2024;63:1–22. 10.1080/00318884.2024.2325329. DOI
Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–4. 10.1093/bioinformatics/bty071. PubMed DOI PMC
Werth S, Scheidegger C. Congruent genetic structure in the lichen-forming fungus PubMed DOI
White TJ, Bruns T, Lee SJWT et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, 1990, 315–322.
Wickham H. ggplot2: elegant Graphics for Data Analysis. New York, NY: Springer, 2016. 10.1007/978-3-319-24277-4_12. DOI
Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;21:1–20. 10.18637/jss.v021.i12. DOI
Widmer I, Dal Grande F, Excoffier L et al. European phylogeography of the epiphytic lichen fungus PubMed DOI
Xu M, De Boer H, Olafsdottir ES et al. Phylogenetic diversity of the lichenized algal genus DOI
Yahr R, Vilgalys R, DePriest PT. Geographic variation in algal partners of PubMed DOI
Yahr R, Vilgalys R, Depriest PT. Strong fungal specificity and selectivity for algal symbionts in Florida scrub PubMed DOI
Zhu Y, Yu L, Zhang T. Diversity and interactions of lichen mycobionts and photobionts in the Fildes Region, King George Island, maritime Antarctica. Adv Pol Sci. 2024;35 :385–99. 10.12429/j.advps.2024.0004. DOI