The diverse world within: age-dependent photobiont diversity in the lichen Protoparmeliopsis muralis

. 2025 Oct 13 ; 101 (11) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41004244

Grantová podpora
GA UK 252507 Charles University Grant Agency
GA ČR 24-10510 K Czech Science Foundation

Understanding the initial formation and development of lichens is crucial for elucidating the mechanisms behind the formation of complex lichen thalli and their maintenance in long-term symbioses. These symbiotic relationships provide significant ecological advantages for both partners, expanding their ecological niches and allowing them, in many cases, to overcome extreme environmental conditions. The correct development of thalli likely relies on the selection of suitable photobionts from the environment. In this study, we focused on the impact of lichen age on the overall diversity of photobiont partners and examined how mycobiont preference toward their symbionts changes at different developmental stages. Using the lichen Protoparmeliopsis muralis as a model organism, we observed a strong correlation between the diversity of photobionts and lichen age, confirmed by both molecular data and morphological observations. Our findings indicate greater photobiont diversity in older thalli, suggesting that lichens retain the majority of algae they collect throughout their lifespan, potentially as an adaptation to changing environmental conditions. Additionally, we found that some lichen samples contained only low levels of Trebouxia algae, indicating that P. muralis does not consistently rely on this typical partner and that local environmental conditions may significantly influence its symbiotic composition.

Zobrazit více v PubMed

Ahmadjian  V.  Coevolution in lichens. Ann NY Acad Sci. 1987;503:307–15. 10.1111/j.1749-6632.1987.tb40617.x. DOI

Armstrong  RA, Upreti  D, Divakar  P  et al.  Lichen Growth and Lichenometry. Recent Advances in Lichenology. New Delhi: Springer, 2015a. 10.1007/978-81-322-2181-4_10. DOI

Armstrong  RA, Upreti  D, Divakar  P  et al.  The influence of environmental factors on the growth of lichens in the field. In: Upreti  D., Divakar  P., Shukla  V., Bajpai  R. (eds), Recent Advances in Lichenology. New Delhi: Springer, 2015b. 10.1007/978-81-322-2181-4_1. DOI

Armstrong  RA.  Growth of experimentally reconstructed thalli of the lichen DOI

Bačkor  M, Peksa  O, Škaloud  P  et al.  Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol Environ Saf. 2010;73:603–12. 10.1016/j.ecoenv.2009.11.002. PubMed DOI

Bálint  M, Schmidt  P, Sharma  R  et al.  An Illumina metabarcoding pipeline for fungi. Ecol Evol. 2014;4:2642–53. 10.1002/ece3.1107. PubMed DOI PMC

Beck  A, Friedl  T, Rambold  G.  Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol. 1998;139:709–20. 10.1046/j.1469-8137.1998.00231.x. DOI

Beck  A, Kasalicky  T, Rambold  G.  Myco-photobiontal selection in a Mediterranean cryptogam community with DOI

Beller  L, Deboutte  W, Falony  G  et al.  Successional stages in infant gut microbiota maturation. mBio. 2021;12:e01857–21. 10.1128/mbio.01857-21. PubMed DOI PMC

Blaha  J, Baloch  E, Grube  M.  High photobiont diversity associated with the euryoecious lichen-forming ascomycete DOI

Bowler  PA, Rundel  PW.  Reproductive strategies in lichens. Botan J Linnean Soc. 1975;70:325–40. 10.1111/j.1095-8339.1975.tb01653.x. DOI

Cao  S, Zhang  F, Liu  C  et al.  Distribution patterns of haplotypes for symbionts from PubMed DOI PMC

Casano  LM, Del Campo  EM, García-Breijo  FJ  et al.  Two PubMed DOI

Černajová  I, Škaloud  P.  Lessons from culturing lichen soredia. Symbiosis. 2020;82:109–22. 10.1007/s13199-020-00718-4. DOI

Chen  X, Feng  J, Yu  L  et al.  Diversity of lichen mycobionts and photobionts and their relationships in the Ny-Ålesund region (Svalbard, High Arctic). Extremophiles. 2024;28 :40. 10.1007/s00792-024-01355-1. PubMed DOI

Chiva  S, Bordenave  CD, Gázquez  A  et al. DOI

Chiva  S, Dumitru  C, Bordenave  CD  et al.  Watanabea green microalgae (Trebouxiophyceae) inhabiting lichen holobiomes: Watanabea lichenicola sp. nova. Phycological Research. 2021;69:226–236. 10.1111/pre.12463 DOI

Chiva  S, Moya  P, Barreno  E.  Lichen phycobiomes as source of biodiversity for microalgae of the DOI

Connor  EF, McCoy  ED.  The statistics and biology of the species-area relationship. Am Nat. 1979;113:791–833. 10.1086/283438. DOI

Cordeiro  LMC, Reis  RA, Cruz  LM  et al.  Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol Ecol. 2005;54:381–90. 10.1016/j.femsec.2005.05.003. PubMed DOI

Cubero  OF, Crespo  A, Fatehi  J  et al.  DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst Evol. 1999;216:243–9. 10.1007/BF01084401. DOI

Dal Forno  M, Lawrey  JD, Sikaroodi  M  et al.  Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol Ecol. 2021;30:1755–76. 10.1111/mec.15700. PubMed DOI

Davis  NM, Proctor  DM, Holmes  SP  et al.  Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226. 10.1186/s40168-018-0605-2. PubMed DOI PMC

Dědková  K, Vančurová  L, Muggia  L  et al.  The plurality of photobionts within single lichen thalli. Symbiosis. 2025;95:35–63. 10.1007/s13199-025-01036-3. DOI

Dreyling  L, Schmitt  I, Dal Grande  F. Tree size drives diversity and community structure of microbial communities on the bark of beech (Fagus sylvatica). Frontiers in Forests and Global Change. 2022;5:858382. 10.3389/ffgc.2022.858382 DOI

Elshobary  ME, Osman  MEH, Abushady  AM  et al.  Comparison of lichen-forming cyanobacterial and green algal photobionts with free-living algae. Cryptogamie Algologie. 2015;36:81–100. 10.7872/crya.v36.iss1.2015.81. DOI

Ertz  D, Guzow-Krzemińska  B, Thor  G  et al.  Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the arthoniomycetes. Sci Rep. 2018;8:4952. 10.1038/s41598-018-23219-3. PubMed DOI PMC

Ettl  H, Gärtner  G.  Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer Verlag, 1995.

Fałtynowicz  W.  The lichens of Western Pomerania (NW Poland). An ecogeographical study. Pol Botan Stud. 1992;4:1–182.

Fasolo  A, Deb  S, Stevanato  P  et al.  ASV vs OTUs clustering: effects on alpha, beta, and gamma diversities in microbiome metabarcoding studies. PLoS One. 2024;19:e0309065. 10.1371/journal.pone.0309065. PubMed DOI PMC

Fernández-Mendoza  F, Domaschke  S, García  MA  et al.  Population structure of mycobionts and photobionts of the widespread lichen PubMed DOI

Friedl  T.  Thallus development and phycobionts of the parasitic Lichen DOI

García  RA, Rosato  VG.  Observations of the development of PubMed DOI PMC

Gardes  M, Bruns  TD.  ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8. 10.1111/j.1365-294X.1993.tb00005.x. PubMed DOI

Gaßmann  A, Ott  S.  Growth strategy and the gradual symbiotic interactions of the Lichen DOI

Gheza  G, Di Nuzzo  L, Giordani  P  et al.  Species–area relationship in lichens tested in protected areas across Italy. The Lichenologist. 2023;55:431–6. 10.1017/s0024282923000488. DOI

Grenié  M, Denelle  P, Tucker  CM  et al.  Funrar: an R package to characterize functional rarity. Diver Distrib. 2017;23:1365–71. 10.1111/ddi.12629. DOI

Guzow-Krzeminska  B, Stocker-Wörgötter  E. Development of microsatellite markers in Protoparmeliopsis muralis (lichenized Ascomycete)–a common lichen species. The Lichenologist. 2013;45:791–798. 10.1017/S002428291300042X DOI

Guzow-Krzemińska  B.  Photobiont flexibility in the lichen DOI

Helms  G, Friedl  T, Rambold  G  et al.  Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. The Lichenologist. 2001;33:73–86. 10.1006/lich.2000.0298. DOI

Hortal  J, Triantis  KA, Meiri  S  et al.  Island species richness increases with habitat diversity. Am Nat. 2009;174:E205–17. 10.1086/645085. PubMed DOI

Ismaiel  MM, Piercey-Normore  MD, Rampitsch  C.  Biochemical and proteomic response of the freshwater green alga PubMed DOI PMC

Kalyaanamoorthy  S, Minh  BQ, Wong  TKF  et al.  ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. 10.1038/nmeth.4285. PubMed DOI PMC

Katoh  K, Standley  DM.  MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. 10.1093/molbev/mst010. PubMed DOI PMC

Kim  JI, Kim  YJ, Nam  SW  et al.  Taxonomic study of three new Antarctic DOI

Kim  JI, Shin  W, Choi  HG  et al. DOI

Leavitt  SD, Kraichak  E, Nelsen  MP  et al.  Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol. 2015;24:3779–97. 10.1111/mec.13271. PubMed DOI

Leavitt  SD, Kraichak  E, Vondrak  J  et al.  Cryptic diversity and symbiont interactions in rock-posy lichens. Mol Phylogenet Evol. 2016;99 :261–74. 10.1016/j.ympev.2016.03.030. PubMed DOI

Lindgren  H, Moncada  B, Lücking  R  et al.  Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus PubMed DOI

Magain  N, Goffinet  B, Sérusiaux  E.  Further photomorphs in the lichen family Lobariaceae from Reunion (Mascarene archipelago) with notes on the phylogeny of DOI

Mahé  F, Rognes  T, Quince  C  et al.  Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ. 2015;3:e1420. 10.7717/peerj.1420. PubMed DOI PMC

Mamut  R, Adil  G, Liu  S  et al.  The chloroplast genome of the PubMed DOI PMC

Mansournia  MR, Bingyun  WU, Matsushita  N  et al.  Genotypic analysis of the foliose lichen DOI

Marini  L, Nascimbene  J, Nimis  PL.  Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure. Sci Total Environ. 2011;409:4381–6. 10.1016/j.scitotenv.2011.07.010. PubMed DOI

Marton  K, Galun  M.  In vitro dissociation and reassociation of the symbionts of the lichen DOI

McMurdie  PJ, Holmes  S.  phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. 10.1371/journal.pone.0061217. PubMed DOI PMC

Meyer  AR, Valentin  M, Liulevicius  L  et al.  Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen. Am J Bot. 2023;110:e16114. 10.1002/ajb2.16114. PubMed DOI

Minh  BQ, Schmidt  HA, Chernomor  O  et al.  IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. 10.1093/molbev/msaa015. PubMed DOI PMC

Molins  A, Moya  P, García-Breijo  FJ, et al.  Molecular and morphological diversity of Trebouxia microalgae in sphaerothallioid Circinaria spp. lichens1. Journal of Phycology. 2018;54:494–504. 10.1111/jpy.12751 PubMed DOI

Molins  A, Moya  P, Muggia  L  et al.  Thallus growth stage and geographic origin shape microalgal diversity in PubMed DOI

Moya  P, Chiva  S, Molins  A  et al.  Unravelling the symbiotic microalgal diversity in DOI

Moya  P, Molins  A, Chiva  S  et al.  Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Scientific Reports. 2020;10:14060. 10.1038/s41598-020-71046-2 PubMed DOI PMC

Moya  P, Molins  A, Martínez-Alberola  F  et al.  Unexpected associated microalgal diversity in the lichen PubMed DOI PMC

Muggia  L, Grube  M, Tretiach  M.  Genetic diversity and photobiont associations in selected taxa of the DOI

Muggia  L, Nelsen  MP, Kirika  PM  et al.  Formally described species woefully underrepresent phylogenetic diversity in the common lichen photobiont genus PubMed DOI

Muggia  L, Pérez-Ortega  S, Kopun  T  et al.  Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann Bot. 2014;114:463–75. 10.1093/aob/mcu146. PubMed DOI PMC

Muggia  L, Vancurova  L, Škaloud  P  et al.  The symbiotic playground of lichen thalli—a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol Ecol. 2013;85:313–23. 10.1111/1574-6941.12120. PubMed DOI

Nelsen  MP, Leavitt  SD, Heller  K  et al.  Macroecological diversification and convergence in a clade of keystone symbionts. FEMS Microbiol Ecol. 2021;97:fiab072. 10.1093/femsec/fiab072. PubMed DOI

Noh  HJ, Lee  YM, Park  CH  et al.  Microbiome in PubMed DOI PMC

Ohmura  Y, Kawachi  M, Kasai  F  et al.  Genetic combinations of symbionts in a vegetatively reproducing lichen DOI

Ott  S, Treiber  K, Jahns  HM.  The development of regenerative thallus structures in lichens. Botan J Linnean Soc. 1993;113:61–76. 10.1111/j.1095-8339.1993.tb00329.x. DOI

Ott  S.  Sexual reproduction and developmental adaptations in DOI

Peay  KG.  The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64. 10.1146/annurev-ecolsys-121415-032100. DOI

Peksa  O, Škaloud  P.  Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga PubMed DOI

Piercey-Normore  MD, DePriest  PT.  Algal switching among lichen symbioses. Am J Bot. 2001;88:1490–8. 10.2307/3558457. PubMed DOI

Piercey-Normore  MD.  Selection of algal genotypes by three species of lichen fungi in the genus DOI

Piercey-Normore  MD.  The lichen-forming ascomycete PubMed DOI

Pino-Bodas  R, Stenroos  S.  Global biodiversity patterns of the photobionts associated with the Genus PubMed DOI PMC

Pyatt  FB.  Lichen propagules. In: The Lichens. Amsterdam: Elsevier, 1973, 117–45. 10.1016/B978-0-12-044950-7.50009-X. DOI

R Core Team  R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, https://www.R-project.org/](0) (27 July 2023, date last accessed).

Rikkinen  J, Oksanen  I, Lohtander  K.  Lichen guilds share related cyanobacterial PubMed DOI

Rotimi  VO, Duerden  BI.  The development of the bacterial flora in normal neonates. J Med Microbiol. 1981;14:51–62. 10.1099/00222615-14-1-51. PubMed DOI

Sanders  WB, Lücking  R.  Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol. 2002;155:425–35. 10.1046/j.1469-8137.2002.00472.x. PubMed DOI

Sanders  WB.  Observing microscopic phases of lichen life cycles on transparent substrata placed in situ. The Lichenologist. 2005;37:373–82. 10.1017/S0024282905015070. DOI

Satyanarayana  T, Das  S, Johri  B.  Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Singapore: Springer, 2019. 10.1007/978-981-13-8487-5_13. DOI

Schaper  T, Ott  S.  Photobiont selectivity and interspecific interactions in Lichen Communities. I. Culture Experiments with the Mycobiont DOI

Seminara  A, Fritz  J, Brenner  MP  et al.  A universal growth limit for circular lichens. J R Soc Interface. 2018;15:20180063. 10.1098/rsif.2018.0063. PubMed DOI PMC

Skaloud  P, Peksa  O.  Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga PubMed DOI

Slocum  RD, Ahmadjian  V, Hildreth  KC.  Zoosporogenesis in DOI

Steinová  J, Holien  H, Košuthová  A  et al.  An exception to the rule? Could photobiont identity be a better predictor of lichen phenotype than mycobiont identity?. J Fungi. 2022;8:275. 10.3390/jof8030275. PubMed DOI PMC

Steinová  J, Škaloud  P, Yahr  R  et al.  Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in PubMed DOI

Tamura  K, Stecher  G, Peterson  D  et al.  MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. 10.1093/molbev/mst197. PubMed DOI PMC

Vančurová  L, Kalníková  V, Peksa  O  et al.  Symbiosis between river and dry lands: phycobiont dynamics on river gravel bars. Algal Res. 2020;51 :102062. 10.1016/j.algal.2020.102062. DOI

Vančurová  L, Muggia  L, Peksa  O  et al.  The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in PubMed DOI

Veselá  V, Malavasi  V, Škaloud  P.  A synopsis of green-algal lichen symbionts with an emphasis on their free-living lifestyle. Phycologia. 2024;63:1–22. 10.1080/00318884.2024.2325329. DOI

Větrovský  T, Baldrian  P, Morais  D.  SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–4. 10.1093/bioinformatics/bty071. PubMed DOI PMC

Werth  S, Scheidegger  C.  Congruent genetic structure in the lichen-forming fungus PubMed DOI

White  TJ, Bruns  T, Lee  SJWT  et al.  Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, 1990, 315–322.

Wickham  H.  ggplot2: elegant Graphics for Data Analysis. New York, NY: Springer, 2016. 10.1007/978-3-319-24277-4_12. DOI

Wickham  H.  Reshaping data with the reshape package. J Stat Softw. 2007;21:1–20. 10.18637/jss.v021.i12. DOI

Widmer  I, Dal Grande  F, Excoffier  L  et al.  European phylogeography of the epiphytic lichen fungus PubMed DOI

Xu  M, De Boer  H, Olafsdottir  ES  et al.  Phylogenetic diversity of the lichenized algal genus DOI

Yahr  R, Vilgalys  R, DePriest  PT.  Geographic variation in algal partners of PubMed DOI

Yahr  R, Vilgalys  R, Depriest  PT.  Strong fungal specificity and selectivity for algal symbionts in Florida scrub PubMed DOI

Zhu  Y, Yu  L, Zhang  T.  Diversity and interactions of lichen mycobionts and photobionts in the Fildes Region, King George Island, maritime Antarctica. Adv Pol Sci. 2024;35 :385–99. 10.12429/j.advps.2024.0004. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...