Genetic drivers of liver cirrhosis: The role of SERPINA1 and PNPLA3 variants in disease onset and progression
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41004464
PubMed Central
PMC12469243
DOI
10.1371/journal.pone.0333051
PII: PONE-D-25-29725
Knihovny.cz E-zdroje
- MeSH
- acyltransferasy MeSH
- alely MeSH
- alfa-1-antitrypsin * genetika MeSH
- dospělí MeSH
- fosfolipasy A2 nezávislé na vápníku MeSH
- genetická predispozice k nemoci MeSH
- heterozygot MeSH
- jaterní cirhóza * genetika patologie MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipasa * genetika MeSH
- membránové proteiny * genetika MeSH
- progrese nemoci MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acyltransferasy MeSH
- alfa-1-antitrypsin * MeSH
- fosfolipasy A2 nezávislé na vápníku MeSH
- lipasa * MeSH
- membránové proteiny * MeSH
- PNPLA3 protein, human MeSH Prohlížeč
- SERPINA1 protein, human MeSH Prohlížeč
SERPINA1 Z and PNPLA3 G alleles are the most potent genetic risk modifiers in chronic liver disease (CLD) progression. We aimed to test the impact of concomitant carriage of these variants on the progression of CLDs of various aetiology. The cirrhosis cohort included 1583 individuals with CLD, evaluated as candidates for liver transplantation (LTx), with alcoholic-related liver disease (ALD), metabolic dysfunction-associated (MASLD), viral (VIR), autoimmune/cholestatic (AIH-CHOL), and metabolic conditions (MET). This cohort was compared to a control population of 3483 healthy individuals. The frequency of SERPINA1 MZ heterozygotes was significantly higher (p < 0.0001) in the entire cirrhosis group (84/1583; 5.3%) than in controls (89/3483; 2.6%), OR 2.57 (95% CI 1.92-3.44). The frequency of SERPINA1 MZ heterozygotes was significantly higher in the subgroups with ALD and MASLD (37/557; 6.4% and 23/208; 11.1%, respectively, p < 0.0001); the frequency in the subgroups VIR, AIH-CHOL and MET did not differ from controls. The frequency of the PNPLA3 G allele was significantly higher (p < 0.0001) in the entire cirrhosis group (880/1,583; 55.6%) than in controls (1418/3402; 41.6%); OR 1.48 (95% CI 1.36-1.99). The G allele frequency was significantly higher only in ALD, MASLD and VIR subgroups (392/577, 67.9%; 133/208, 63.9% and 139/264, 52.7%; p < 0.0001, 0.0001 and 0.0005, respectively). The frequency of the PNPLA3 G allele was the same in cirrhotic patients carrying SERPINA1 MM and MZ genotypes (824/1483, 55.6% vs 50/84, 59.2%, N.S.). SERPINA1 MZ heterozygotes with ALD and MASLD were significantly younger (56.9 vs 60 years, p = 0.046) and had a higher MELD score (17 vs 15 points, p = 0.0003) at waitlisting, whereas the PNPLA3 genotype had no impact on the age and MELD score at waitlisting. We conclude that both variant alleles increase the risk of liver cirrhosis in ALD and MASLD; however, SERPINA1 MZ heterozygotes have more progressive chronic liver disease and need LT at a younger age.
1st Faculty of Medicine Charles University Prague Czech Republic
3rd Faculty of Medicine Charles University Prague Czech Republic
Preventive Cardiology Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Laurell CB, Eriksson S. [Hypo-alpha-1-antitrypsinemia]. Verh Dtsch Ges Inn Med. 1964;70:537–9. PubMed
Blanco I, Bueno P, Diego I, Pérez-Holanda S, Lara B, Casas-Maldonado F, et al. Alpha-1 antitrypsin Pi*SZ genotype: estimated prevalence and number of SZ subjects worldwide. Int J Chron Obstruct Pulmon Dis. 2017;12:1683–94. doi: 10.2147/COPD.S137852 PubMed DOI PMC
Tan L, Dickens JA, Demeo DL, Miranda E, Perez J, Rashid ST, et al. Circulating polymers in α1-antitrypsin deficiency. Eur Respir J. 2014;43(5):1501–4. doi: 10.1183/09031936.00111213 PubMed DOI
Janciauskiene S, Eriksson S, Callea F, Mallya M, Zhou A, Seyama K, et al. Differential detection of PAS-positive inclusions formed by the Z, Siiyama, and Mmalton variants of alpha1-antitrypsin. Hepatology. 2004;40(5):1203–10. doi: 10.1002/hep.20451 PubMed DOI
Le A, Ferrell GA, Dishon DS, Le QQ, Sifers RN. Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. J Biol Chem. 1992;267(2):1072–80. PubMed
Fra A, Cosmi F, Ordoñez A, Berardelli R, Perez J, Guadagno NA, et al. Polymers of Z α1-antitrypsin are secreted in cell models of disease. Eur Respir J. 2016;47(3):1005–9. doi: 10.1183/13993003.00940-2015 PubMed DOI
Feldmann G, Martin JP, Sesboue R, Ropartz C, Perelman R, Nathanson M, et al. The ultrastructure of hepatocytes in alpha-1-antitrypsin deficiency with the genotype Pi--. Gut. 1975;16(10):796–9. doi: 10.1136/gut.16.10.796 PubMed DOI PMC
Curiel DT, Vogelmeier C, Hubbard RC, Stier LE, Crystal RG. Molecular basis of alpha 1-antitrypsin deficiency and emphysema associated with the alpha 1-antitrypsin Mmineral springs allele. Mol Cell Biol. 1990;10(1):47–56. doi: 10.1128/mcb.10.1.47-56.1990 PubMed DOI PMC
Eriksson S. Pulmonary emphysema and alpha1-antitrypsin deficiency. Acta Med Scand. 1964;175:197–205. doi: 10.1111/j.0954-6820.1964.tb00567.x PubMed DOI
Clark VC, Marek G, Liu C, Collinsworth A, Shuster J, Kurtz T, et al. Clinical and histologic features of adults with alpha-1 antitrypsin deficiency in a non-cirrhotic cohort. J Hepatol. 2018;69(6):1357–64. doi: 10.1016/j.jhep.2018.08.005 PubMed DOI
Hamesch K, Mandorfer M, Pereira VM, Moeller LS, Pons M, Dolman GE, et al. Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology. 2019;157(3):705-719.e18. doi: 10.1053/j.gastro.2019.05.013 PubMed DOI
Schaefer B, Mandorfer M, Viveiros A, Finkenstedt A, Ferenci P, Schneeberger S, et al. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transpl. 2018;24(6):744–51. doi: 10.1002/lt.25057 PubMed DOI PMC
Schneider CV, Hamesch K, Gross A, Mandorfer M, Moeller LS, Pereira V, et al. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi*Z Variant of AAT (Pi*MZ vs Pi*ZZ genotype) and Noncarriers. Gastroenterology. 2020;159(2):534-548.e11. doi: 10.1053/j.gastro.2020.04.058 PubMed DOI
Hakim AM. Heterozygosity of the Alpha-1-Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatol Commun. 2021. PubMed PMC
Fromme M, Schneider CV, Pereira V, Hamesch K, Pons M, Reichert MC, et al. Hepatobiliary phenotypes of adults with alpha-1 antitrypsin deficiency. Gut. 2022;71(2):415–23. doi: 10.1136/gutjnl-2020-323729 PubMed DOI
Volkert I, Fromme M, Schneider C, Candels L, Lindhauer C, Su H, et al. Impact of PNPLA3 I148M on alpha-1 antitrypsin deficiency-dependent liver disease progression. Hepatology. 2024;79(4):898–911. doi: 10.1097/HEP.0000000000000574 PubMed DOI
Rabekova Z, Frankova S, Jirsa M, Neroldova M, Lunova M, Fabian O, et al. Alpha-1 Antitrypsin and Hepatocellular Carcinoma in Liver Cirrhosis: SERPINA1 MZ or MS Genotype Carriage Decreases the Risk. Int J Mol Sci. 2021;22(19):10560. doi: 10.3390/ijms221910560 PubMed DOI PMC
Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5. doi: 10.1038/ng.257 PubMed DOI PMC
Unalp-Arida A, Ruhl CE. Patatin-Like Phospholipase Domain-Containing Protein 3 I148M and Liver Fat and Fibrosis Scores Predict Liver Disease Mortality in the U.S. Population. Hepatology. 2020;71(3):820–34. doi: 10.1002/hep.31032 PubMed DOI
Liu Y-M, Moldes M, Bastard J-P, Bruckert E, Viguerie N, Hainque B, et al. Adiponutrin: A new gene regulated by energy balance in human adipose tissue. J Clin Endocrinol Metab. 2004;89(6):2684–9. doi: 10.1210/jc.2003-031978 PubMed DOI
Moldes M, Beauregard G, Faraj M, Peretti N, Ducluzeau P-H, Laville M, et al. Adiponutrin gene is regulated by insulin and glucose in human adipose tissue. Eur J Endocrinol. 2006;155(3):461–8. doi: 10.1530/eje.1.02229 PubMed DOI
Vilar-Gomez E, Gawrieh S, Vuppalanchi R, Kettler C, Pike F, Samala N, et al. PNPLA3 rs738409, environmental factors and liver-related mortality in the US population. J Hepatol. 2025;82(4):571–81. doi: 10.1016/j.jhep.2024.09.043 PubMed DOI
Cífková R, Skodová Z, Bruthans J, Adámková V, Jozífová M, Galovcová M, et al. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/8. Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010;211(2):676–81. doi: 10.1016/j.atherosclerosis.2010.04.007 PubMed DOI
Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT. Basic statistical analysis in genetic case-control studies. Nat Protoc. 2011;6(2):121–33. doi: 10.1038/nprot.2010.182 PubMed DOI PMC
Buch S, Stickel F, Trépo E, Way M, Herrmann A, Nischalke HD, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet. 2015;47(12):1443–8. doi: 10.1038/ng.3417 PubMed DOI
Senkerikova R, de Mare-Bredemeijer E, Frankova S, Roelen D, Visseren T, Trunecka P, et al. Genetic variation in TNFA predicts protection from severe bacterial infections in patients with end-stage liver disease awaiting liver transplantation. J Hepatol. 2014;60(4):773–81. doi: 10.1016/j.jhep.2013.12.011 PubMed DOI