Alpha-1 Antitrypsin and Hepatocellular Carcinoma in Liver Cirrhosis: SERPINA1 MZ or MS Genotype Carriage Decreases the Risk

. 2021 Sep 29 ; 22 (19) : . [epub] 20210929

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34638908

Grantová podpora
00023001 Ministerstvo Zdravotnictví Ceské Republiky

Heterozygotes for Z or S alleles of alpha-1-antrypsin (AAT) have low serum AAT levels. Our aim was to compare the risk of hepatocellular carcinoma (HCC) in patients with liver cirrhosis carrying the SERPINA1 MM, MZ and MS genotypes. The study groups consisted of 1119 patients with liver cirrhosis of various aetiologies, and 3240 healthy individuals served as population controls. The MZ genotype was significantly more frequent in the study group (55/1119 vs. 87/3240, p < 0.0001). The MS genotype frequency was comparable in controls (32/119 vs. 101/3240, p = 0.84). MZ and MS heterozygotes had lower serum AAT level than MM homozygotes (medians: 0.90 g/L; 1.40 g/L and 1.67 g/L; p < 0.001 for both). There were significantly fewer patients with HCC in the cirrhosis group among MZ and MS heterozygotes than in MM homozygotes (5/55 and 1/32 respectively, vs. 243/1022, p < 0.01 for both). The risk of HCC was lower in MZ and MS heterozygotes than in MM homozygotes (OR 0.3202; 95% CI 0.1361-0.7719 and OR 0.1522; 95% CI 0.02941-0.7882, respectively). Multivariate analysis of HCC risk factors identified MZ or MS genotype carriage as a protective factor, whereas age, male sex, BMI and viral aetiology of cirrhosis increased HCC risk.

Zobrazit více v PubMed

Laurell C.B., Eriksson S. [HYPO-ALPHA-1-ANTITRYPSINEMIA] Verh. Dtsch. Ges. Inn. Med. 1964;70:537–539. PubMed

Corley M., Solem A., Phillips G., Lackey L., Ziehr B., Vincent H.A., Mustoe A.M., Ramos S.B.V., Weeks K.M., Moorman N.J., et al. An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression. Proc. Natl. Acad. Sci. USA. 2017;114:E10244–E10253. doi: 10.1073/pnas.1706539114. PubMed DOI PMC

Lackey L., McArthur E., Laederach A. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2015;10:e0140885. doi: 10.1371/journal.pone.0140885. PubMed DOI PMC

Rotondo J.C., Oton-Gonzalez L., Selvatici R., Rizzo P., Pavasini R., Campo G.C., Lanzillotti C., Mazziotta C., De Mattei M., Tognon M., et al. SERPINA1 Gene Promoter Is Differentially Methylated in Peripheral Blood Mononuclear Cells of Pregnant Women. Front. Cell Dev. Biol. 2020;8:550543. doi: 10.3389/fcell.2020.550543. PubMed DOI PMC

Blanco I., Bueno P., Diego I., Pérez-Holanda S., Casas F., Esquinas C., Miravitlles M. Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: An update. Int. J. Chronic Obstr. Pulm. Dis. 2017;12:561–569. doi: 10.2147/COPD.S125389. PubMed DOI PMC

Janciauskiene S., Eriksson S., Callea F., Mallya M., Zhou A., Seyama K., Hata S., Lomas D.A. Differential detection of PAS-positive inclusions formed by the Z, Siiyama, and Mmalton variants of alpha1-antitrypsin. Hepatology. 2004;40:1203–1210. doi: 10.1002/hep.20451. PubMed DOI

Le A., Ferrell G.A., Dishon D.S., Le Q.Q., Sifers R.N. Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. J. Biol. Chem. 1992;267:1072–1080. doi: 10.1016/S0021-9258(18)48397-4. PubMed DOI

Fra A., Cosmi F., Ordoñez A., Berardelli R., Perez J., Guadagno N.A., Corda L., Marciniak S., Lomas D.A., Miranda E. Polymers of Z α1-antitrypsin are secreted in cell models of disease. Eur. Respir. J. 2016;47:1005–1009. doi: 10.1183/13993003.00940-2015. PubMed DOI

Tan L., Dickens J.A., DeMeo D.L., Miranda E., Perez J., Rashid S.T., Day J., Ordóñez A., Marciniak S.J., Haq I., et al. Circulating polymers in 1-antitrypsin deficiency. Eur. Respir. J. 2014;43:1501–1504. doi: 10.1183/09031936.00111213. PubMed DOI

Lomas D.A., Li-Evans D., Finch J.T., Carrell R.W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature. 1992;357:605–607. doi: 10.1038/357605a0. PubMed DOI

Feldmann G., Martin J.P., Sesboue R., Ropartz C., Perelman R., Nathanson M., Seringe P., Benhamou J.P. The ultrastructure of hepatocytes in alpha-1-antitrypsin deficiency with the genotype Pi. Gut. 1975;16:796–799. doi: 10.1136/gut.16.10.796. PubMed DOI PMC

Silva D., Oliveira M.J., Guimarães M., Lima R., Gomes S., Seixas S. Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir. Med. 2016;116:8–18. doi: 10.1016/j.rmed.2016.05.002. PubMed DOI

The 1000 Genomes Project Consortium. Auton A., Abecasis G.R., Altshuler D.M., Durbin R.M., Bentley D.R., Chakravarti A., Clark A.G., Donnelly P., Eichler E.E., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC

Tennessen J.A., Bigham A.W., O’Connor T.D., Fu W., Kenny E.E., Gravel S., McGee S., Do R., Liu X., Jun G., et al. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science. 2012;337:64–69. doi: 10.1126/science.1219240. PubMed DOI PMC

Eriksson S. Pulmonary Emphysema and Alpha1-Antitrypsin Deficiency. Acta Medica Scand. 1964;175:197–205. doi: 10.1111/j.0954-6820.1964.tb00567.x. PubMed DOI

Clark V.C., Marek G., Liu C., Collinsworth A., Shuster J., Kurtz T., Nolte J., Brantly M. Clinical and histologic features of adults with alpha-1 antitrypsin deficiency in a non-cirrhotic cohort. J. Hepatol. 2018;69:1357–1364. doi: 10.1016/j.jhep.2018.08.005. PubMed DOI

Hamesch K., Mandorfer M., Pereira V.M., Moeller L.S., Pons M., Dolman G.E., Reichert M.C., Schneider C.V., Woditsch V., Voss J., et al. Liver Fibrosis and Metabolic Alterations in Adults with alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology. 2019;157:705–719. doi: 10.1053/j.gastro.2019.05.013. PubMed DOI

Abul-Husn N.S., Cheng X., Li A.H., Xin Y., Schurmann C., Stevis P., Liu Y., Kozlitina J., Stender S., Wood G.C., et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N. Engl. J. Med. 2018;378:1096–1106. doi: 10.1056/NEJMoa1712191. PubMed DOI PMC

Strnad P., Buch S., Hamesch K., Fischer J., Rosendahl J., Schmelz R., Brueckner S., Brosch M., Heimes C.V., Woditsch V., et al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant increases the risk to develop liver cirrhosis. Gut. 2018;68:1099–1107. doi: 10.1136/gutjnl-2018-316228. PubMed DOI

Cacciottolo T.M., Gelson W.T., Maguire G., Davies S.E., Griffiths W.J. Pi*Z heterozygous alpha-1 antitrypsin states accelerate parenchymal but not biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 2014;26:412–417. doi: 10.1097/MEG.0000000000000061. PubMed DOI

Hurley K., Reeves E.P., Carroll T.P., McElvaney N.G. Tumor necrosis factor-α driven inflammation in alpha-1 antitrypsin deficiency: A new model of pathogenesis and treatment. Expert Rev. Respir. Med. 2015;10:207–222. doi: 10.1586/17476348.2016.1127759. PubMed DOI

Subramaniyam D., Virtala R., Pawłowski K., Clausen I.G., Warkentin S., Stevens T., Janciauskiene S. TNF-α-induced self expression in human lung endothelial cells is inhibited by native and oxidized α1-antitrypsin. Int. J. Biochem. Cell Biol. 2008;40:258–271. doi: 10.1016/j.biocel.2007.07.016. PubMed DOI

Hurley K., Lacey N., O’Dwyer C.A., Bergin D.A., McElvaney O.J., O’Brien M.E., McElvaney O.F., Reeves E.P., McElvaney N.G. Alpha-1 Antitrypsin Augmentation Therapy Corrects Accelerated Neutrophil Apoptosis in Deficient Individuals. J. Immunol. 2014;193:3978–3991. doi: 10.4049/jimmunol.1400132. PubMed DOI

Eagan T.M.L., Ueland T., Wagner P.D., Hardie J.A., Mollnes T.E., Damas J.K., Aukrust P., Bakke P.S. Systemic inflammatory markers in COPD: Results from the Bergen COPD Cohort Study. Eur. Respir. J. 2009;35:540–548. doi: 10.1183/09031936.00088209. PubMed DOI

Petrache I., Fijalkowska I., Medler T.R., Skirball J., Cruz P., Zhen L., Petrache H.I., Flotte T.R., Tuder R.M. α-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis. Am. J. Pathol. 2006;169:1155–1166. doi: 10.2353/ajpath.2006.060058. PubMed DOI PMC

Lockett A.D., Van Demark M., Gu Y., Schweitzer K.S., Sigua N., Kamocki K., Fijalkowska I., Garrison J., Fisher A.J., Serban K., et al. Effect of Cigarette Smoke Exposure and Structural Modifications on the α-1 Antitrypsin Interaction with Caspases. Mol. Med. 2012;18:445–454. doi: 10.2119/molmed.2011.00207. PubMed DOI PMC

Aldonytė R., Hutchinson E.T., Jin B., Brantly M., Block E., Patel J., Zhang J. Endothelial Alpha-1-Antitrypsin Attenuates Cigarette Smoke Induced Apoptosis In Vitro. COPD J. Chronic Obstr. Pulm. Dis. 2008;5:153–162. doi: 10.1080/15412550802092936. PubMed DOI

Lomas D.A. The Selective Advantage of α1-Antitrypsin Deficiency. Am. J. Respir. Crit. Care Med. 2006;173:1072–1077. doi: 10.1164/rccm.200511-1797PP. PubMed DOI

Greulich T., Nell C., Hohmann D., Grebe M., Janciauskiene S., Koczulla A.R., Vogelmeier C.F. The prevalence of diagnosed α1-antitrypsin deficiency and its comorbidities: Results from a large population-based database. Eur. Respir. J. 2016;49:1600154. doi: 10.1183/13993003.00154-2016. PubMed DOI

Merkel P.A., Xie G., Monach P.A., Ji X., Ciavatta D.J., Byun J., Pinder B.D., Zhao A., Zhang J., Tadesse Y., et al. Identification of Functional and Expression Polymorphisms Associated with Risk for Antineutrophil Cytoplasmic Autoantibody–Associated Vasculitis. Arthritis Rheumatol. 2017;69:1054–1066. doi: 10.1002/art.40034. PubMed DOI PMC

Rahmattulla C., Mooyaart A., Van Hooven D., Schoones J.W., Bruijn J.A., Dekkers O., Bajema I.M., European Vasculitis Genetics Consortium Genetic variants in ANCA-associated vasculitis: A meta-analysis. Ann. Rheum. Dis. 2015;75:1687–1692. doi: 10.1136/annrheumdis-2015-207601. PubMed DOI

Callea F. Natural history of hepatocellular carcinoma as viewed by the pathologist. Appl. Pathol. 1988;6:105–116. PubMed

Giovannoni I., Callea F., Stefanelli M., Mariani R., Santorelli F.M., Francalanci P. Alpha-1-antitrypsin deficiency: From genoma to liver disease. PiZ mouse as model for the development of liver pathology in human. Liver Int. 2014;35:198–206. doi: 10.1111/liv.12504. PubMed DOI

Antoury C. Alpha-1 antitrypsin deficiency and the risk of hepatocellular carcinoma in end-stage liver disease. World J. Hepatol. 2015;7:1427–1432. doi: 10.4254/wjh.v7.i10.1427. PubMed DOI PMC

Schaefer B., Mandorfer M., Viveiros A., Finkenstedt A., Ferenci P., Schneeberger S., Tilg H., Zoller H. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transplant. 2018;24:744–751. doi: 10.1002/lt.25057. PubMed DOI PMC

Schneider C.V., Hamesch K., Gross A., Mandorfer M., Moeller L.S., Pereira V., Pons M., Kuca P., Reichert M.C., Benini F., et al. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi*Z Variant of AAT (Pi*MZ vs Pi*ZZ genotype) and Noncarriers. Gastroenterology. 2020;159:534–548. doi: 10.1053/j.gastro.2020.04.058. PubMed DOI

Hakim A., Moll M., Qiao D., Liu J., Lasky-Su J.A., Silverman E.K., Vilarinho S., Jiang Z.G., Hobbs B.D., Cho M.H. Heterozygosity of the Alpha-1-Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatol. Commun. 2021;5:1348–1361. doi: 10.1002/hep4.1718. PubMed DOI PMC

Guillaud O., Jacquemin E., Couchonnal E., Vanlemmens C., Francoz C., Chouik Y., Conti F., Duvoux C., Hilleret M.-N., Kamar N., et al. Long term results of liver transplantation for alpha-1 antitrypsin deficiency. Dig. Liver Dis. 2020;53:606–611. doi: 10.1016/j.dld.2020.10.016. PubMed DOI

Shahaf G., Moser H., Ozeri E., Mizrahi M., Abecassis A., Lewis E.C. α-1-Antitrypsin Gene Delivery Reduces Inflammation, Increases T-Regulatory Cell Population Size and Prevents Islet Allograft Rejection. Mol. Med. 2011;17:1000–1011. doi: 10.2119/molmed.2011.00145. PubMed DOI PMC

Guttman O., Baranovski B.M., Schuster R., Kaner Z., Freixo-Lima G.S., Bahar N., Kalay N., Mizrahi M.I., Brami I., Ochayon D.E., et al. Acute-phase protein α1-anti-trypsin: Diverting injurious innate and adaptive immune responses from non-authentic threats. Clin. Exp. Immunol. 2015;179:161–172. doi: 10.1111/cei.12476. PubMed DOI PMC

Nita I.M., Serapinas D., Janciauskiene S.M. α1-Antitrypsin regulates CD14 expression and soluble CD14 levels in human monocytes in vitro. Int. J. Biochem. Cell Biol. 2007;39:1165–1176. doi: 10.1016/j.biocel.2007.02.017. PubMed DOI

Lewis E.C., Mizrahi M., Toledano M., DeFelice N., Wright J.L., Churg A., Shapiro L., Dinarello C.A. 1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc. Natl. Acad. Sci. USA. 2008;105:16236–16241. doi: 10.1073/pnas.0807627105. PubMed DOI PMC

Bergin D.A., Reeves E.P., Meleady P., Henry M., McElvaney O.J., Carroll T., Condron C., Chotirmall S.H., Clynes M., O’Neill S.J., et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Investig. 2010;120:4236–4250. doi: 10.1172/JCI41196. PubMed DOI PMC

Bergin D.A., Reeves E.P., Hurley K., Wolfe R., Jameel R., Fitzgerald S., McElvaney N.G. The Circulating Proteinase Inhibitor α-1 Antitrypsin Regulates Neutrophil Degranulation and Autoimmunity. Sci. Transl. Med. 2014;6:217ra1. doi: 10.1126/scitranslmed.3007116. PubMed DOI

Ozeri E., Mizrahi M., Shahaf G., Lewis E.C. α-1 Antitrypsin Promotes Semimature, IL-10–Producing and Readily Migrating Tolerogenic Dendritic Cells. J. Immunol. 2012;189:146–153. doi: 10.4049/jimmunol.1101340. PubMed DOI

O’Dwyer C.A., O’Brien M.E., Wormald M.R., White M., Banville N., Hurley K., McCarthy C., McElvaney N.G., Reeves E.P. The BLT1 Inhibitory Function of α-1 Antitrypsin Augmentation Therapy Disrupts Leukotriene B4Neutrophil Signaling. J. Immunol. 2015;195:3628–3641. doi: 10.4049/jimmunol.1500038. PubMed DOI

Mizrahi M., Cal P., Rosenthal M., Ochayon D., Shahaf G., Kaner Z., Kachker P., Lewis E.C. Human Alpha-1-Antitrypsin Modifies B Lymphocyte Responses During Allograft Transplantation. Immunology. 2013;140:362–373. doi: 10.1111/imm.12149. PubMed DOI PMC

Bergin D.A., Hurley K., McElvaney N.G., Reeves E.P. Alpha-1 Antitrypsin: A Potent Anti-Inflammatory and Potential Novel Therapeutic Agent. Arch. Immunol. Ther. Exp. 2012;60:81–97. doi: 10.1007/s00005-012-0162-5. PubMed DOI

Petrache I., Fijalkowska I., Zhen L., Medler T.R., Brown E., Cruz P., Choe K.-H., Taraseviciene-Stewart L., Scerbavicius R., Shapiro L., et al. A Novel Antiapoptotic Role for α1-Antitrypsin in the Prevention of Pulmonary Emphysema. Am. J. Respir. Crit. Care Med. 2006;173:1222–1228. doi: 10.1164/rccm.200512-1842OC. PubMed DOI PMC

Kalis M., Kumar R., Janciauskiene S., Salehi A., Cilio C.M. α 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells. Islets. 2010;2:185–189. doi: 10.4161/isl.2.3.11654. PubMed DOI

Garten A., Grohmann T., Kluckova K., Lavery G., Kiess W., Penke M. Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1. Int. J. Mol. Sci. 2019;20:4048. doi: 10.3390/ijms20164048. PubMed DOI PMC

Wang W., Zhu M., Xu Z., Li W., Dong X., Chen Y., Lin B., Li M. Ropivacaine promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria and activating caspase-3 activity. Biol. Res. 2019;52:36. doi: 10.1186/s40659-019-0242-7. PubMed DOI PMC

Cífková R., Škodová Z., Bruthans J., Adámková V., Jozífová M., Galovcová M., Wohlfahrt P., Krajčoviechová A., Poledne R., Stávek P., et al. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010;211:676–681. doi: 10.1016/j.atherosclerosis.2010.04.007. PubMed DOI

Clarke G.M., Anderson C.A., Pettersson F.H., Cardon L.R., Morris A.P., Zondervan K. Basic statistical analysis in genetic case-control studies. Nat. Protoc. 2011;6:121–133. doi: 10.1038/nprot.2010.182. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...