Alpha-1 Antitrypsin and Hepatocellular Carcinoma in Liver Cirrhosis: SERPINA1 MZ or MS Genotype Carriage Decreases the Risk
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
00023001
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34638908
PubMed Central
PMC8509047
DOI
10.3390/ijms221910560
PII: ijms221910560
Knihovny.cz E-zdroje
- Klíčová slova
- S allele, SERPINA1 gene, Z allele, alpha-1-antitrypsin, cirrhosis, hepatocellular carcinoma,
- MeSH
- alely MeSH
- alfa-1-antitrypsin krev genetika MeSH
- frekvence genu MeSH
- genotyp MeSH
- hepatocelulární karcinom komplikace genetika MeSH
- index tělesné hmotnosti MeSH
- jaterní cirhóza komplikace genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- multivariační analýza MeSH
- nádory jater komplikace genetika MeSH
- rizikové faktory MeSH
- sexuální faktory MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa-1-antitrypsin MeSH
- SERPINA1 protein, human MeSH Prohlížeč
Heterozygotes for Z or S alleles of alpha-1-antrypsin (AAT) have low serum AAT levels. Our aim was to compare the risk of hepatocellular carcinoma (HCC) in patients with liver cirrhosis carrying the SERPINA1 MM, MZ and MS genotypes. The study groups consisted of 1119 patients with liver cirrhosis of various aetiologies, and 3240 healthy individuals served as population controls. The MZ genotype was significantly more frequent in the study group (55/1119 vs. 87/3240, p < 0.0001). The MS genotype frequency was comparable in controls (32/119 vs. 101/3240, p = 0.84). MZ and MS heterozygotes had lower serum AAT level than MM homozygotes (medians: 0.90 g/L; 1.40 g/L and 1.67 g/L; p < 0.001 for both). There were significantly fewer patients with HCC in the cirrhosis group among MZ and MS heterozygotes than in MM homozygotes (5/55 and 1/32 respectively, vs. 243/1022, p < 0.01 for both). The risk of HCC was lower in MZ and MS heterozygotes than in MM homozygotes (OR 0.3202; 95% CI 0.1361-0.7719 and OR 0.1522; 95% CI 0.02941-0.7882, respectively). Multivariate analysis of HCC risk factors identified MZ or MS genotype carriage as a protective factor, whereas age, male sex, BMI and viral aetiology of cirrhosis increased HCC risk.
Zobrazit více v PubMed
Laurell C.B., Eriksson S. [HYPO-ALPHA-1-ANTITRYPSINEMIA] Verh. Dtsch. Ges. Inn. Med. 1964;70:537–539. PubMed
Corley M., Solem A., Phillips G., Lackey L., Ziehr B., Vincent H.A., Mustoe A.M., Ramos S.B.V., Weeks K.M., Moorman N.J., et al. An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression. Proc. Natl. Acad. Sci. USA. 2017;114:E10244–E10253. doi: 10.1073/pnas.1706539114. PubMed DOI PMC
Lackey L., McArthur E., Laederach A. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS ONE. 2015;10:e0140885. doi: 10.1371/journal.pone.0140885. PubMed DOI PMC
Rotondo J.C., Oton-Gonzalez L., Selvatici R., Rizzo P., Pavasini R., Campo G.C., Lanzillotti C., Mazziotta C., De Mattei M., Tognon M., et al. SERPINA1 Gene Promoter Is Differentially Methylated in Peripheral Blood Mononuclear Cells of Pregnant Women. Front. Cell Dev. Biol. 2020;8:550543. doi: 10.3389/fcell.2020.550543. PubMed DOI PMC
Blanco I., Bueno P., Diego I., Pérez-Holanda S., Casas F., Esquinas C., Miravitlles M. Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: An update. Int. J. Chronic Obstr. Pulm. Dis. 2017;12:561–569. doi: 10.2147/COPD.S125389. PubMed DOI PMC
Janciauskiene S., Eriksson S., Callea F., Mallya M., Zhou A., Seyama K., Hata S., Lomas D.A. Differential detection of PAS-positive inclusions formed by the Z, Siiyama, and Mmalton variants of alpha1-antitrypsin. Hepatology. 2004;40:1203–1210. doi: 10.1002/hep.20451. PubMed DOI
Le A., Ferrell G.A., Dishon D.S., Le Q.Q., Sifers R.N. Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. J. Biol. Chem. 1992;267:1072–1080. doi: 10.1016/S0021-9258(18)48397-4. PubMed DOI
Fra A., Cosmi F., Ordoñez A., Berardelli R., Perez J., Guadagno N.A., Corda L., Marciniak S., Lomas D.A., Miranda E. Polymers of Z α1-antitrypsin are secreted in cell models of disease. Eur. Respir. J. 2016;47:1005–1009. doi: 10.1183/13993003.00940-2015. PubMed DOI
Tan L., Dickens J.A., DeMeo D.L., Miranda E., Perez J., Rashid S.T., Day J., Ordóñez A., Marciniak S.J., Haq I., et al. Circulating polymers in 1-antitrypsin deficiency. Eur. Respir. J. 2014;43:1501–1504. doi: 10.1183/09031936.00111213. PubMed DOI
Lomas D.A., Li-Evans D., Finch J.T., Carrell R.W. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature. 1992;357:605–607. doi: 10.1038/357605a0. PubMed DOI
Feldmann G., Martin J.P., Sesboue R., Ropartz C., Perelman R., Nathanson M., Seringe P., Benhamou J.P. The ultrastructure of hepatocytes in alpha-1-antitrypsin deficiency with the genotype Pi. Gut. 1975;16:796–799. doi: 10.1136/gut.16.10.796. PubMed DOI PMC
Silva D., Oliveira M.J., Guimarães M., Lima R., Gomes S., Seixas S. Alpha-1-antitrypsin (SERPINA1) mutation spectrum: Three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir. Med. 2016;116:8–18. doi: 10.1016/j.rmed.2016.05.002. PubMed DOI
The 1000 Genomes Project Consortium. Auton A., Abecasis G.R., Altshuler D.M., Durbin R.M., Bentley D.R., Chakravarti A., Clark A.G., Donnelly P., Eichler E.E., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC
Tennessen J.A., Bigham A.W., O’Connor T.D., Fu W., Kenny E.E., Gravel S., McGee S., Do R., Liu X., Jun G., et al. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science. 2012;337:64–69. doi: 10.1126/science.1219240. PubMed DOI PMC
Eriksson S. Pulmonary Emphysema and Alpha1-Antitrypsin Deficiency. Acta Medica Scand. 1964;175:197–205. doi: 10.1111/j.0954-6820.1964.tb00567.x. PubMed DOI
Clark V.C., Marek G., Liu C., Collinsworth A., Shuster J., Kurtz T., Nolte J., Brantly M. Clinical and histologic features of adults with alpha-1 antitrypsin deficiency in a non-cirrhotic cohort. J. Hepatol. 2018;69:1357–1364. doi: 10.1016/j.jhep.2018.08.005. PubMed DOI
Hamesch K., Mandorfer M., Pereira V.M., Moeller L.S., Pons M., Dolman G.E., Reichert M.C., Schneider C.V., Woditsch V., Voss J., et al. Liver Fibrosis and Metabolic Alterations in Adults with alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology. 2019;157:705–719. doi: 10.1053/j.gastro.2019.05.013. PubMed DOI
Abul-Husn N.S., Cheng X., Li A.H., Xin Y., Schurmann C., Stevis P., Liu Y., Kozlitina J., Stender S., Wood G.C., et al. A Protein-Truncating HSD17B13 Variant and Protection from Chronic Liver Disease. N. Engl. J. Med. 2018;378:1096–1106. doi: 10.1056/NEJMoa1712191. PubMed DOI PMC
Strnad P., Buch S., Hamesch K., Fischer J., Rosendahl J., Schmelz R., Brueckner S., Brosch M., Heimes C.V., Woditsch V., et al. Heterozygous carriage of the alpha1-antitrypsin Pi*Z variant increases the risk to develop liver cirrhosis. Gut. 2018;68:1099–1107. doi: 10.1136/gutjnl-2018-316228. PubMed DOI
Cacciottolo T.M., Gelson W.T., Maguire G., Davies S.E., Griffiths W.J. Pi*Z heterozygous alpha-1 antitrypsin states accelerate parenchymal but not biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 2014;26:412–417. doi: 10.1097/MEG.0000000000000061. PubMed DOI
Hurley K., Reeves E.P., Carroll T.P., McElvaney N.G. Tumor necrosis factor-α driven inflammation in alpha-1 antitrypsin deficiency: A new model of pathogenesis and treatment. Expert Rev. Respir. Med. 2015;10:207–222. doi: 10.1586/17476348.2016.1127759. PubMed DOI
Subramaniyam D., Virtala R., Pawłowski K., Clausen I.G., Warkentin S., Stevens T., Janciauskiene S. TNF-α-induced self expression in human lung endothelial cells is inhibited by native and oxidized α1-antitrypsin. Int. J. Biochem. Cell Biol. 2008;40:258–271. doi: 10.1016/j.biocel.2007.07.016. PubMed DOI
Hurley K., Lacey N., O’Dwyer C.A., Bergin D.A., McElvaney O.J., O’Brien M.E., McElvaney O.F., Reeves E.P., McElvaney N.G. Alpha-1 Antitrypsin Augmentation Therapy Corrects Accelerated Neutrophil Apoptosis in Deficient Individuals. J. Immunol. 2014;193:3978–3991. doi: 10.4049/jimmunol.1400132. PubMed DOI
Eagan T.M.L., Ueland T., Wagner P.D., Hardie J.A., Mollnes T.E., Damas J.K., Aukrust P., Bakke P.S. Systemic inflammatory markers in COPD: Results from the Bergen COPD Cohort Study. Eur. Respir. J. 2009;35:540–548. doi: 10.1183/09031936.00088209. PubMed DOI
Petrache I., Fijalkowska I., Medler T.R., Skirball J., Cruz P., Zhen L., Petrache H.I., Flotte T.R., Tuder R.M. α-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis. Am. J. Pathol. 2006;169:1155–1166. doi: 10.2353/ajpath.2006.060058. PubMed DOI PMC
Lockett A.D., Van Demark M., Gu Y., Schweitzer K.S., Sigua N., Kamocki K., Fijalkowska I., Garrison J., Fisher A.J., Serban K., et al. Effect of Cigarette Smoke Exposure and Structural Modifications on the α-1 Antitrypsin Interaction with Caspases. Mol. Med. 2012;18:445–454. doi: 10.2119/molmed.2011.00207. PubMed DOI PMC
Aldonytė R., Hutchinson E.T., Jin B., Brantly M., Block E., Patel J., Zhang J. Endothelial Alpha-1-Antitrypsin Attenuates Cigarette Smoke Induced Apoptosis In Vitro. COPD J. Chronic Obstr. Pulm. Dis. 2008;5:153–162. doi: 10.1080/15412550802092936. PubMed DOI
Lomas D.A. The Selective Advantage of α1-Antitrypsin Deficiency. Am. J. Respir. Crit. Care Med. 2006;173:1072–1077. doi: 10.1164/rccm.200511-1797PP. PubMed DOI
Greulich T., Nell C., Hohmann D., Grebe M., Janciauskiene S., Koczulla A.R., Vogelmeier C.F. The prevalence of diagnosed α1-antitrypsin deficiency and its comorbidities: Results from a large population-based database. Eur. Respir. J. 2016;49:1600154. doi: 10.1183/13993003.00154-2016. PubMed DOI
Merkel P.A., Xie G., Monach P.A., Ji X., Ciavatta D.J., Byun J., Pinder B.D., Zhao A., Zhang J., Tadesse Y., et al. Identification of Functional and Expression Polymorphisms Associated with Risk for Antineutrophil Cytoplasmic Autoantibody–Associated Vasculitis. Arthritis Rheumatol. 2017;69:1054–1066. doi: 10.1002/art.40034. PubMed DOI PMC
Rahmattulla C., Mooyaart A., Van Hooven D., Schoones J.W., Bruijn J.A., Dekkers O., Bajema I.M., European Vasculitis Genetics Consortium Genetic variants in ANCA-associated vasculitis: A meta-analysis. Ann. Rheum. Dis. 2015;75:1687–1692. doi: 10.1136/annrheumdis-2015-207601. PubMed DOI
Callea F. Natural history of hepatocellular carcinoma as viewed by the pathologist. Appl. Pathol. 1988;6:105–116. PubMed
Giovannoni I., Callea F., Stefanelli M., Mariani R., Santorelli F.M., Francalanci P. Alpha-1-antitrypsin deficiency: From genoma to liver disease. PiZ mouse as model for the development of liver pathology in human. Liver Int. 2014;35:198–206. doi: 10.1111/liv.12504. PubMed DOI
Antoury C. Alpha-1 antitrypsin deficiency and the risk of hepatocellular carcinoma in end-stage liver disease. World J. Hepatol. 2015;7:1427–1432. doi: 10.4254/wjh.v7.i10.1427. PubMed DOI PMC
Schaefer B., Mandorfer M., Viveiros A., Finkenstedt A., Ferenci P., Schneeberger S., Tilg H., Zoller H. Heterozygosity for the alpha-1-antitrypsin Z allele in cirrhosis is associated with more advanced disease. Liver Transplant. 2018;24:744–751. doi: 10.1002/lt.25057. PubMed DOI PMC
Schneider C.V., Hamesch K., Gross A., Mandorfer M., Moeller L.S., Pereira V., Pons M., Kuca P., Reichert M.C., Benini F., et al. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi*Z Variant of AAT (Pi*MZ vs Pi*ZZ genotype) and Noncarriers. Gastroenterology. 2020;159:534–548. doi: 10.1053/j.gastro.2020.04.058. PubMed DOI
Hakim A., Moll M., Qiao D., Liu J., Lasky-Su J.A., Silverman E.K., Vilarinho S., Jiang Z.G., Hobbs B.D., Cho M.H. Heterozygosity of the Alpha-1-Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatol. Commun. 2021;5:1348–1361. doi: 10.1002/hep4.1718. PubMed DOI PMC
Guillaud O., Jacquemin E., Couchonnal E., Vanlemmens C., Francoz C., Chouik Y., Conti F., Duvoux C., Hilleret M.-N., Kamar N., et al. Long term results of liver transplantation for alpha-1 antitrypsin deficiency. Dig. Liver Dis. 2020;53:606–611. doi: 10.1016/j.dld.2020.10.016. PubMed DOI
Shahaf G., Moser H., Ozeri E., Mizrahi M., Abecassis A., Lewis E.C. α-1-Antitrypsin Gene Delivery Reduces Inflammation, Increases T-Regulatory Cell Population Size and Prevents Islet Allograft Rejection. Mol. Med. 2011;17:1000–1011. doi: 10.2119/molmed.2011.00145. PubMed DOI PMC
Guttman O., Baranovski B.M., Schuster R., Kaner Z., Freixo-Lima G.S., Bahar N., Kalay N., Mizrahi M.I., Brami I., Ochayon D.E., et al. Acute-phase protein α1-anti-trypsin: Diverting injurious innate and adaptive immune responses from non-authentic threats. Clin. Exp. Immunol. 2015;179:161–172. doi: 10.1111/cei.12476. PubMed DOI PMC
Nita I.M., Serapinas D., Janciauskiene S.M. α1-Antitrypsin regulates CD14 expression and soluble CD14 levels in human monocytes in vitro. Int. J. Biochem. Cell Biol. 2007;39:1165–1176. doi: 10.1016/j.biocel.2007.02.017. PubMed DOI
Lewis E.C., Mizrahi M., Toledano M., DeFelice N., Wright J.L., Churg A., Shapiro L., Dinarello C.A. 1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc. Natl. Acad. Sci. USA. 2008;105:16236–16241. doi: 10.1073/pnas.0807627105. PubMed DOI PMC
Bergin D.A., Reeves E.P., Meleady P., Henry M., McElvaney O.J., Carroll T., Condron C., Chotirmall S.H., Clynes M., O’Neill S.J., et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Investig. 2010;120:4236–4250. doi: 10.1172/JCI41196. PubMed DOI PMC
Bergin D.A., Reeves E.P., Hurley K., Wolfe R., Jameel R., Fitzgerald S., McElvaney N.G. The Circulating Proteinase Inhibitor α-1 Antitrypsin Regulates Neutrophil Degranulation and Autoimmunity. Sci. Transl. Med. 2014;6:217ra1. doi: 10.1126/scitranslmed.3007116. PubMed DOI
Ozeri E., Mizrahi M., Shahaf G., Lewis E.C. α-1 Antitrypsin Promotes Semimature, IL-10–Producing and Readily Migrating Tolerogenic Dendritic Cells. J. Immunol. 2012;189:146–153. doi: 10.4049/jimmunol.1101340. PubMed DOI
O’Dwyer C.A., O’Brien M.E., Wormald M.R., White M., Banville N., Hurley K., McCarthy C., McElvaney N.G., Reeves E.P. The BLT1 Inhibitory Function of α-1 Antitrypsin Augmentation Therapy Disrupts Leukotriene B4Neutrophil Signaling. J. Immunol. 2015;195:3628–3641. doi: 10.4049/jimmunol.1500038. PubMed DOI
Mizrahi M., Cal P., Rosenthal M., Ochayon D., Shahaf G., Kaner Z., Kachker P., Lewis E.C. Human Alpha-1-Antitrypsin Modifies B Lymphocyte Responses During Allograft Transplantation. Immunology. 2013;140:362–373. doi: 10.1111/imm.12149. PubMed DOI PMC
Bergin D.A., Hurley K., McElvaney N.G., Reeves E.P. Alpha-1 Antitrypsin: A Potent Anti-Inflammatory and Potential Novel Therapeutic Agent. Arch. Immunol. Ther. Exp. 2012;60:81–97. doi: 10.1007/s00005-012-0162-5. PubMed DOI
Petrache I., Fijalkowska I., Zhen L., Medler T.R., Brown E., Cruz P., Choe K.-H., Taraseviciene-Stewart L., Scerbavicius R., Shapiro L., et al. A Novel Antiapoptotic Role for α1-Antitrypsin in the Prevention of Pulmonary Emphysema. Am. J. Respir. Crit. Care Med. 2006;173:1222–1228. doi: 10.1164/rccm.200512-1842OC. PubMed DOI PMC
Kalis M., Kumar R., Janciauskiene S., Salehi A., Cilio C.M. α 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic β-cells. Islets. 2010;2:185–189. doi: 10.4161/isl.2.3.11654. PubMed DOI
Garten A., Grohmann T., Kluckova K., Lavery G., Kiess W., Penke M. Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1. Int. J. Mol. Sci. 2019;20:4048. doi: 10.3390/ijms20164048. PubMed DOI PMC
Wang W., Zhu M., Xu Z., Li W., Dong X., Chen Y., Lin B., Li M. Ropivacaine promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria and activating caspase-3 activity. Biol. Res. 2019;52:36. doi: 10.1186/s40659-019-0242-7. PubMed DOI PMC
Cífková R., Škodová Z., Bruthans J., Adámková V., Jozífová M., Galovcová M., Wohlfahrt P., Krajčoviechová A., Poledne R., Stávek P., et al. Longitudinal trends in major cardiovascular risk factors in the Czech population between 1985 and 2007/Czech MONICA and Czech post-MONICA. Atherosclerosis. 2010;211:676–681. doi: 10.1016/j.atherosclerosis.2010.04.007. PubMed DOI
Clarke G.M., Anderson C.A., Pettersson F.H., Cardon L.R., Morris A.P., Zondervan K. Basic statistical analysis in genetic case-control studies. Nat. Protoc. 2011;6:121–133. doi: 10.1038/nprot.2010.182. PubMed DOI PMC