Multi-Target Modulation of Polyphenols in Diabetic Kidney Disease Therapeutics: A Comprehensive Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41019174
PubMed Central
PMC12464446
DOI
10.1002/fsn3.70882
PII: FSN370882
Knihovny.cz E-zdroje
- Klíčová slova
- diabetes mellitus, diabetic nephropathy, end‐stage kidney disease, kidney replacement therapy, microvascular complication, phytochemistry,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Diabetic kidney disease (DKD) is a severe complication of diabetes that presents as progressive kidney dysfunction and is the primary cause of end-stage kidney failure. Despite therapeutic advances, including the use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, sodium-glucose co-transporter-2 inhibitors, glucagon-like peptide-1 agonists, and non-steroidal mineralocorticoid receptor antagonists, managing DKD remains challenging. Current therapies mainly focus on glycemic control, hypertension management, and albumin reduction to mitigate kidney damage. Nevertheless, these approaches often fail to halt disease progression or restore renal function. There is therefore an urgent need for therapies with safer profiles that can be used singly to target the disease's underlying pathophysiology or integrated into traditional care. Polyphenols possess biological properties capable of addressing these unmet needs by targeting multiple underlying mechanisms involved in DKD pathogenesis. The literature search occurred between September 2024 and April 2025, with most articles sourced from the last 5 years. This review explores polyphenol classes that have demonstrated nephroprotective effects in vitro, in vivo, and in clinical trials. It also highlights the interconnected multi-pathways and molecular mediators potentially regulated by specific polyphenols for kidney function improvement. This multi-target therapeutic approach is especially beneficial for DKD, where several metabolic dysfunctions underlie its pathogenesis. Identifying polyphenols as a therapeutic option could lead to integrative patient care that embraces the strengths of conventional medicine and phytomedicine for better disease management and outcomes. There is therefore a need for more clinical trials to assess polyphenols' safety and efficacy in managing DKD.
Department of Biochemistry Faculty of Science Federal University of Lafia Lafia Nigeria
Department of Biochemistry Imo State University Owerri Nigeria
Department of Pediatrics Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
Faculty of Science Masaryk University Brno Czech Republic
German Research Center for Environmental Health Helmholtz Zentrum München Neuherberg Germany
Human and Animal Physiology Group Wageningen University and Research Wageningen the Netherlands
Islet Biology Laboratory Centre for Biomolecular Interactions University of Bremen Bremen Germany
Zobrazit více v PubMed
Abu‐Odeh, A. M. , and Talib W. H.. 2021. “Middle East Medicinal Plants in the Treatment of Diabetes: A Review.” Molecules 26, no. 3: 742. 10.3390/molecules26030742. PubMed DOI PMC
Adinortey, M. B. , Agbeko R., Boison D., et al. 2019. “Phytomedicines Used for Diabetes Mellitus in Ghana: A Systematic Search and Review of Preclinical and Clinical Evidence.” Evidence‐Based Complementary and Alternative Medicine 2019: 6021209. 10.1155/2019/6021209. PubMed DOI PMC
Adnan, M. , Siddiqui A. J., Jamal A., et al. 2021. “Evidence‐Based Medicinal Potential and Possible Role of Selaginella in the Prevention of Modern Chronic Diseases: Ethnopharmacological and Ethnobotanical Perspective.” Records of Natural Products 15, no. 5: 330–355. 10.25135/rnp.222.20.11.1890. DOI
Advani, A. 2020. “Acute Kidney Injury: A Bona Fide Complication of Diabetes.” Diabetes 69, no. 11: 2229–2237. 10.2337/db20-0604. PubMed DOI
Afzal, T. , Bibi Y., Mashwani Z. u. R., et al. 2023. “Potent Hypoglycemic Phytochemicals From Citrus.” DIET FACTOR (Journal of Nutritional & Food Sciences) 4, no. 3: 29–37. 10.54393/df.v4i03.78. DOI
Ahad, A. , Mujeeb M., Ahsan H., and Siddiqui W. A.. 2014. “Prophylactic Effect of Baicalein Against Renal Dysfunction in Type 2 Diabetic Rats.” Biochimie 106: 101–110. 10.1016/j.biochi.2014.08.006. PubMed DOI
Al‐Abbasi, F. A. , and Kazmi I.. 2023. “Therapeutic Role of Kaempferol and Myricetin in Streptozotocin‐Induced Diabetes Synergistically via Modulation in Pancreatic Amylase, Glycogen Storage and Insulin Secretion.” Molecular and Cellular Biochemistry 478, no. 9: 1927–1937. 10.1007/s11010-022-04629-4. PubMed DOI
Aladaileh, S. H. , Al‐Swailmi F. K., Abukhalil M. H., Ahmeda A. F., and Mahmoud A. M.. 2021. “Punicalagin Prevents Cisplatin‐Induced Nephrotoxicity by Attenuating Oxidative Stress, Inflammatory Response, and Apoptosis in Rats.” Life Sciences 286: 120071. 10.1016/j.lfs.2021.120071. PubMed DOI
Ali, M. Y. , Sina A. A., Khandker S. S., et al. 2020. “Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review.” Foods 10, no. 1: 45. 10.3390/foods10010045. PubMed DOI PMC
Almatroodi, S. A. , Alnuqaydan A. M., Babiker A. Y., Almogbel M. A., Khan A. A., and Husain Rahmani A.. 2021. “6‐Gingerol, a Bioactive Compound of Ginger Attenuates Renal Damage in Streptozotocin‐Induced Diabetic Rats by Regulating the Oxidative Stress and Inflammation.” Pharmaceutics 13, no. 3: 317. 10.3390/pharmaceutics13030317. PubMed DOI PMC
Al‐Qahtani, W. H. , Alshammari G. M., Alshuniaber M. A., et al. 2022. “The Protective Effect of Isoliquiritigenin Against Doxorubicin‐Induced Nephropathy in Rats Entails Activation of Nrf2 Signaling as One Key Mechanism.” Journal of King Saud University, Science 34, no. 6: 102165. 10.1016/j.jksus.2022.102165. DOI
ALTamimi, J. Z. , AlFaris N. A., Alshammari G. M., et al. 2021. “Ellagic Acid Protects Against Diabetic Nephropathy in Rats by Regulating the Transcription and Activity of Nrf2.” Journal of Functional Foods 79: 104397. 10.1016/j.jff.2021.104397. DOI
AlTamimi, J. Z. , AlFaris N. A., Alshammari G. M., Alagal R. I., Aljabryn D. H., and Abdo Yahya M.. 2023. “Protective Effect of Eriodictyol Against Hyperglycemia‐Induced Diabetic Nephropathy in Rats Entails Antioxidant and Anti‐Inflammatory Effects Mediated by Activating Nrf2.” Saudi Pharmaceutical Journal 31, no. 11: 101817. 10.1016/j.jsps.2023.101817. PubMed DOI PMC
Alzahrani, S. , Zaitone S. A., Said E., et al. 2020. “Protective Effect of Isoliquiritigenin on Experimental Diabetic Nephropathy in Rats: Impact on Sirt‐1/NFkappaB Balance and NLRP3 Expression.” International Immunopharmacology 87: 106813. 10.1016/j.intimp.2020.106813. PubMed DOI
Amarasiri, S. S. , Attanayake A. P., Kamani A., et al. 2020. “Traditional Medicine in Sri Lanka South Asian Medicinal Plants and Chronic Kidney Disease.” Traditional Medicine Research 5, no. 5: 389–412. 10.12032/TMR20200603189. DOI
Amor, A. J. , Gomez‐Guerrero C., Ortega E., Sala‐Vila A., and Lazaro I.. 2020. “Ellagic Acid as a Tool to Limit the Diabetes Burden: Updated Evidence.” Antioxidants (Basel) 9, no. 12: 1226. 10.3390/antiox9121226. PubMed DOI PMC
An, X. , Zhang Y., Cao Y., Chen J., Qin H., and Yang L.. 2020. “Punicalagin Protects Diabetic Nephropathy by Inhibiting Pyroptosis Based on TXNIP/NLRP3 Pathway.” Nutrients 12, no. 5: 1516. 10.3390/nu12051516. PubMed DOI PMC
Andrade‐Cetto, A. , Cruz E. C., Cabello‐Hernandez C. A., and Cardenas‐Vazquez R.. 2019. “Hypoglycemic Activity of Medicinal Plants Used Among the Cakchiquels in Guatemala for the Treatment of Type 2 Diabetes.” Evidence‐Based Complementary and Alternative Medicine 2019: 2168603. 10.1155/2019/2168603. PubMed DOI PMC
Ansari, P. , Akther S., Hannan J. M. A., Seidel V., Nujat N. J., and Abdel‐Wahab Y. H. A.. 2022. “Pharmacologically Active Phytomolecules Isolated From Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus.” Molecules 27, no. 13: 4278. 10.3390/molecules27134278. PubMed DOI PMC
Aryal, B. , Niraula P., Khadayat K., et al. 2021. “Antidiabetic, Antimicrobial, and Molecular Profiling of Selected Medicinal Plants.” Evidence‐Based Complementary and Alternative Medicine 2021: 5510099. 10.1155/2021/5510099. PubMed DOI PMC
Avila‐Carrasco, L. , Garcia‐Mayorga E. A., Diaz‐Avila D. L., Garza‐Veloz I., Martinez‐Fierro M. L., and Gonzalez‐Mateo G. T.. 2021. “Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease.” Molecules 26, no. 20: 6096. 10.3390/molecules26206096. PubMed DOI PMC
Bai, J. , Wang Y., Zhu X., and Shi J.. 2019. “Eriodictyol Inhibits High Glucose‐Induced Extracellular Matrix Accumulation, Oxidative Stress, and Inflammation in Human Glomerular Mesangial Cells.” Phytotherapy Research 33, no. 10: 2775–2782. 10.1002/ptr.6463. PubMed DOI
Basist, P. , Parveen B., Zahiruddin S., et al. 2022. “Potential Nephroprotective Phytochemicals: Mechanism and Future Prospects.” Journal of Ethnopharmacology 283: 114743. 10.1016/j.jep.2021.114743. PubMed DOI
Basu, T. , Selman A., Reddy A. P., and Reddy P. H.. 2023. “Current Status of Obesity: Protective Role of Catechins.” Antioxidants (Basel) 12, no. 2: 474. 10.3390/antiox12020474. PubMed DOI PMC
Bayne, S. , LeFevre J., Olstinske K., Ravindran S., and Munusamy S.. 2023. “Renoprotective Effects of Mineralocorticoid Receptor Antagonists Against Diabetic Kidney Disease.” Advanced Biology 8: e2300496. 10.1002/adbi.202300496. PubMed DOI
Berkoz, M. , Yigit A., and Krosniak M.. 2024. “Protective Role of Myricetin and Fisetin Against Nephrotoxicity Caused by Lead Acetate Exposure Through Up‐Regulation of Nrf2/HO‐1 Signalling Pathway.” Biological Trace Element Research 202, no. 9: 4032–4046. 10.1007/s12011-023-03977-6. PubMed DOI
Boonphang, O. , Ontawong A., Pasachan T., et al. 2021. “Antidiabetic and Renoprotective Effects of PubMed DOI PMC
Cao, Q. , Chen X. M., Huang C., and Pollock C. A.. 2019. “MicroRNA as Novel Biomarkers and Therapeutic Targets in Diabetic Kidney Disease: An Update.” FASEB Bioadvances 1, no. 6: 375–388. 10.1096/fba.2018-00064. PubMed DOI PMC
Chakraborty, R. , and Roy S.. 2021. “Angiotensin‐Converting Enzyme Inhibitors From Plants: A Review of Their Diversity, Modes of Action, Prospects, and Concerns in the Management of Diabetes‐Centric Complications.” Journal of Integrative Medicine 19, no. 6: 478–492. 10.1016/j.joim.2021.09.006. PubMed DOI
Chandak, P. G. , Gaikwad A. B., and Tikoo K.. 2009. “Gallotannin Ameliorates the Development of Streptozotocin‐Induced Diabetic Nephropathy by Preventing the Activation of PARP.” Phytotherapy Research 23, no. 1: 72–77. 10.1002/ptr.2559. PubMed DOI
Chaudhary, F. F. A. P. 2020. “A Review on Efficacy of Biomedicinal Plants as Antidiabetic Therapeutic Agents.” Chemical Science Review and Letters 9, no. 34s: 13–25. 10.37273/chesci.CS205107175. DOI
Chen, D. Q. , Wu J., and Li P.. 2022. “Therapeutic Mechanism and Clinical Application of Chinese Herbal Medicine Against Diabetic Kidney Disease.” Frontiers in Pharmacology 13: 1055296. 10.3389/fphar.2022.1055296. PubMed DOI PMC
Chen, M. , Chen Y., Zhu W., et al. 2023. “Advances in the Pharmacological Study of Chinese Herbal Medicine to Alleviate Diabetic Nephropathy by Improving Mitochondrial Oxidative Stress.” Biomedicine & Pharmacotherapy 165: 115088. 10.1016/j.biopha.2023.115088. PubMed DOI
Chen, Y. , Chen L., and Yang T.. 2021. “Silymarin Nanoliposomes Attenuate Renal Injury on Diabetic Nephropathy Rats via Co‐Suppressing TGF‐Beta/Smad and JAK2/STAT3/SOCS1 Pathway.” Life Sciences 271: 119197. 10.1016/j.lfs.2021.119197. PubMed DOI
Chen, Y. , Huang G., Qin T., et al. 2024. “Ferroptosis: A New View on the Prevention and Treatment of Diabetic Kidney Disease With Traditional Chinese Medicine.” Biomedicine & Pharmacotherapy 170: 115952. 10.1016/j.biopha.2023.115952. PubMed DOI
Chennasamudram, S. P. , Kudugunti S., Boreddy P. R., Moridani M. Y., and Vasylyeva T. L.. 2012. “Renoprotective Effects of (+)‐catechin in Streptozotocin‐Induced Diabetic Rat Model.” Nutrition Research 32, no. 5: 347–356. 10.1016/j.nutres.2012.03.015. PubMed DOI
Chukwuma, C. I. 2024. “Antioxidative, Metabolic and Vascular Medicinal Potentials of Natural Products in the Non‐Edible Wastes of Fruits Belonging to the Citrus and Prunus Genera: A Review.” Plants 13, no. 2: 191. 10.3390/plants13020191. PubMed DOI PMC
Climie, R. E. , van Sloten T. T., Bruno R. M., et al. 2019. “Macrovasculature and Microvasculature at the Crossroads Between Type 2 Diabetes Mellitus and Hypertension.” Hypertension 73, no. 6: 1138–1149. 10.1161/HYPERTENSIONAHA.118.11769. PubMed DOI
Cox‐Georgian, D. , Ramadoss N., Dona C., and Basu C.. 2019. “Therapeutic and Medicinal Uses of Terpenes.” In Medicinal Plants, 333–359. Springer, Cham. 10.1007/978-3-030-31269-5_15. DOI
Dagar, N. , Das P., Bisht P., Taraphdar A. K., Velayutham R., and Arumugam S.. 2021. “Diabetic Nephropathy: A Twisted Thread to Unravel.” Life Sciences 278: 119635. 10.1016/j.lfs.2021.119635. PubMed DOI
Dehdashtian, E. , Pourhanifeh M. H., Hemati K., Mehrzadi S., and Hosseinzadeh A.. 2020. “Therapeutic Application of Nutraceuticals in Diabetic Nephropathy: Current Evidence and Future Implications.” Diabetes/Metabolism Research and Reviews 36, no. 8: e3336. 10.1002/dmrr.3336. PubMed DOI
Demir, S. , Nawroth P. P., Herzig S., and Ekim Ustunel B.. 2021. “Emerging Targets in Type 2 Diabetes and Diabetic Complications.” Advanced Science 8, no. 18: e2100275. 10.1002/advs.202100275. PubMed DOI PMC
Dewanjee, S. , Chakraborty P., Mukherjee B., and De Feo V.. 2020. “Plant‐Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy.” International Journal of Molecular Sciences 21, no. 6: 2217. 10.3390/ijms21062217. PubMed DOI PMC
Dirir, A. M. , Daou M., Yousef A. F., and Yousef L. F.. 2022. “A Review of Alpha‐Glucosidase Inhibitors From Plants as Potential Candidates for the Treatment of Type‐2 Diabetes.” Phytochemistry Reviews 21, no. 4: 1049–1079. 10.1007/s11101-021-09773-1. PubMed DOI PMC
Du, J. , Yang M., Zhang Z., Cao B., Wang Z., and Han J.. 2022. “The Modulation of Gut Microbiota by Herbal Medicine to Alleviate Diabetic Kidney Disease – A Review.” Frontiers in Pharmacology 13: 1032208. 10.3389/fphar.2022.1032208. PubMed DOI PMC
Efiong, E. E. 2014. “Phytochemical, Proximate, Vitamins and Minerals Composition of DOI
Efiong, E. E. , Maedler K., Effa E., et al. 2025. “Decoding Diabetic Kidney Disease: A Comprehensive Review of Interconnected Pathways, Molecular Mediators, and Therapeutic Insights.” Diabetology and Metabolic Syndrome 17, no. 1: 192. 10.1186/s13098-025-01726-4. PubMed DOI PMC
Elendu, C. , John Okah M., Fiemotongha K. D. J., et al. 2023. “Comprehensive Advancements in the Prevention and Treatment of Diabetic Nephropathy: A Narrative Review.” Medicine (Baltimore) 102, no. 40: e35397. 10.1097/MD.0000000000035397. PubMed DOI PMC
El‐Ghffar, E. A. A. 2016. “Ameliorative Effect of Glabridin, a Main Component of
Elkhalifa, A. M. E. , Nazar M., Ali S. I., et al. 2024. “Novel Therapeutic Agents for Management of Diabetes Mellitus: A Hope for Drug Designing Against Diabetes Mellitus.” Life 14, no. 1: 99. 10.3390/life14010099. PubMed DOI PMC
Entezari, M. , Hashemi D., Taheriazam A., et al. 2022. “AMPK Signaling in Diabetes Mellitus, Insulin Resistance and Diabetic Complications: A Pre‐Clinical and Clinical Investigation.” Biomedicine & Pharmacotherapy 146: 112563. 10.1016/j.biopha.2021.112563. PubMed DOI
Esienanwan Esien Efiong, H. B. , Fuchs M., Amadi P. U., Effa E., Sharma S., and Schmaderer C.. 2024. “Crosstalk of Hyperglycaemia and Cellular Mechanisms in the Pathogenesis of Diabetic Kidney Disease.” International Journal of Molecular Sciences 25: 1–15. PubMed PMC
Espinoza‐Hernandez, F. A. , and Andrade‐Cetto A.. 2022. “Chronic Antihyperglycemic Effect Exerted by Traditional Extracts of Three Mexican Medicinal Plants.” Evidence‐Based Complementary and Alternative Medicine 2022: 5970358. 10.1155/2022/5970358. PubMed DOI PMC
Gao, C. , Fei X., Wang M., Chen Q., and Zhao N.. 2022. “Cardamomin Protects From Diabetes‐Induced Kidney Damage Through Modulating PI3K/AKT and JAK/STAT Signaling Pathways in Rats.” International Immunopharmacology 107: 108610. 10.1016/j.intimp.2022.108610. PubMed DOI
Halim, M. , and Halim A.. 2019. “The Effects of Inflammation, Aging and Oxidative Stress on the Pathogenesis of Diabetes Mellitus (Type 2 Diabetes).” Diabetes and Metabolic Syndrome: Clinical Research and Reviews 13, no. 2: 1165–1172. 10.1016/j.dsx.2019.01.040. PubMed DOI
Hassan, N. H. , Yousef D. M., and Alsemeh A. E.. 2023. “Hesperidin Protects Against Aluminum‐Induced Renal Injury in Rats via Modulating MMP‐9 and Apoptosis: Biochemical, Histological, and Ultrastructural Study.” Environmental Science and Pollution Research International 30, no. 13: 36208–36227. 10.1007/s11356-022-24800-0. PubMed DOI PMC
Hattori, A. , Takemoto M., Ishikawa T., et al. 2019. “Metabolic Effects of Glabridin in Healthy Volunteers and Patients With Type 2 Diabetes: A Pilot Study.” Cogent Food & Agriculture 5, no. 1: 1–11. 10.1080/23311932.2019.1665943. DOI
Horton, W. B. , and Barrett E. J.. 2021. “Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease.” Endocrine Reviews 42, no. 1: 29–55. 10.1210/endrev/bnaa025. PubMed DOI PMC
Hu, Q. , Jiang L., Yan Q., Zeng J., Ma X., and Zhao Y.. 2023. “A Natural Products Solution to Diabetic Nephropathy Therapy.” Pharmacology & Therapeutics 241: 108314. 10.1016/j.pharmthera.2022.108314. PubMed DOI
Hu, Q. , Qu C., Xiao X., et al. 2021. “Flavonoids on Diabetic Nephropathy: Advances and Therapeutic Opportunities.” Chinese Medicine 16, no. 1: 74. 10.1186/s13020-021-00485-4. PubMed DOI PMC
Huang, D. , Shen P., Wang C., Gao J., Ye C., and Wu F.. 2022. “Calycosin Plays a Protective Role in Diabetic Kidney Disease Through the Regulation of Ferroptosis.” Pharmaceutical Biology 60, no. 1: 990–996. 10.1080/13880209.2022.2067572. PubMed DOI PMC
Huang, X. , Shi Y., Chen H., et al. 2020. “Isoliquiritigenin Prevents Hyperglycemia‐Induced Renal Injuries by Inhibiting Inflammation and Oxidative Stress via SIRT1‐Dependent Mechanism.” Cell Death & Disease 11, no. 12: 1040. 10.1038/s41419-020-03260-9. PubMed DOI PMC
Hung, T. W. , Yang M. Y., Yu M. H., et al. 2023. “Mulberry Leaf Extract and Neochlorogenic Acid Ameliorate Glucolipotoxicity‐Induced Diabetic Nephropathy in High‐Fat Diet‐Fed Db/Db Mice.” Food & Function 14, no. 19: 8975–8986. 10.1039/d3fo02640j. PubMed DOI
Hüseyin Aşkın Akpolat, N. T. , Sİlİğ Y., Demİrbaş A., et al. 2023. Medicinal Plants: Secondary Metabolities, Utilization, Human Health‐I. Iksad Publishing House.
Hussain, T. , Tan B., Murtaza G., et al. 2020. “Flavonoids and Type 2 Diabetes: Evidence of Efficacy in Clinical and Animal Studies and Delivery Strategies to Enhance Their Therapeutic Efficacy.” Pharmacological Research 152: 104629. 10.1016/j.phrs.2020.104629. PubMed DOI
Iwara, I. A. , Otu E. A., Efiong E. E., Igile G. O., Mgbeje B. A. I., and Ebong P. E.. 2013. “Evaluation of the Nephroprotective Effects of Combined Extracts of Vernonia Amygdalina and DOI
Jaafarinia, A. , Kafami B., Sahebnasagh A., and Saghafi F.. 2022. “Evaluation of Therapeutic Effects of Crocin in Attenuating the Progression of Diabetic Nephropathy: A Preliminary Randomized Triple‐Blind Placebo‐Controlled Trial.” BMC Complementary Medicine and Therapies 22, no. 1: 262. 10.1186/s12906-022-03744-5. PubMed DOI PMC
Jiang, R. , Ge J., Zhao J., and Yan X.. 2021. “The Protective Effects of Calycosin Against Diabetic Nephropathy Through Sirt3/SOD2/Caspase‐3 Signaling Pathway: In Vitro.” Arabian Journal of Chemistry 14, no. 3: 102988. 10.1016/j.arabjc.2021.102988. DOI
Jiang, T. , Bao Y., Su H., Zheng R., and Cao L.. 2022. “Mechanisms of Chinese Herbal Medicines for Diabetic Nephropathy Fibrosis Treatment.” Integrative Medicine in Nephrology and Andrology 9, no. 1: 11. 10.4103/2773-0387.353727. DOI
Jin, Q. , Liu T., Qiao Y., et al. 2023. “Oxidative Stress and Inflammation in Diabetic Nephropathy: Role of Polyphenols.” Frontiers in Immunology 14: 1185317. 10.3389/fimmu.2023.1185317. PubMed DOI PMC
Jin, Y. , and Arroo R.. 2023. “The Protective Effects of Flavonoids and Carotenoids Against Diabetic Complications – A Review of In Vivo Evidence.” Frontiers in Nutrition 10: 1020950. 10.3389/fnut.2023.1020950. PubMed DOI PMC
Jing, W. , Xiaolan C., Yu C., Feng Q., and Haifeng Y.. 2022. “Pharmacological Effects and Mechanisms of Tannic Acid.” Biomedicine & Pharmacotherapy 154: 113561. 10.1016/j.biopha.2022.113561. PubMed DOI
Kaabi, Y. A. 2022. “Potential Roles of Anti‐Inflammatory Plant‐Derived Bioactive Compounds Targeting Inflammation in Microvascular Complications of Diabetes.” Molecules 27, no. 21: 7352. 10.3390/molecules27217352. PubMed DOI PMC
Kakadiya, J. , Patel D., and Shah N.. 2010. “Effect of Hesperidin on Renal Complication in Experimentally Induced Renal Damage in Diabetic Sprague Dawley Rats.” Journal of Ecobiotechnology 2, no. 2: 45–50.
Kandemir, F. M. , Ozkaraca M., Küçükler S., Caglayan C., and Hanedan B.. 2017. “Preventive Effects of Hesperidin on Diabetic Nephropathy Induced by Streptozotocin via Modulating TGF‐β1 and Oxidative DNA Damage.” Toxin Reviews 37, no. 4: 287–293. 10.1080/15569543.2017.1364268. DOI
Kang, M. K. , Kim S. I., Oh S. Y., Na W., and Kang Y. H.. 2020. “Tangeretin Ameliorates Glucose‐Induced Podocyte Injury Through Blocking Epithelial to Mesenchymal Transition Caused by Oxidative Stress and Hypoxia.” International Journal of Molecular Sciences 21, no. 22: 8577. 10.3390/ijms21228577. PubMed DOI PMC
Karwasra, R. , Kalra P., Gupta Y. K., Saini D., Kumar A., and Singh S.. 2016. “Antioxidant and Anti‐Inflammatory Potential of Pomegranate Rind Extract to Ameliorate Cisplatin‐Induced Acute Kidney Injury.” Food & Function 7, no. 7: 3091–3101. 10.1039/c6fo00188b. PubMed DOI
Kataya, H. H. , Hamza A. A., Ramadan G. A., and Khasawneh M. A.. 2011. “Effect of Licorice Extract on the Complications of Diabetes Nephropathy in Rats.” Drug and Chemical Toxicology 34, no. 2: 101–108. 10.3109/01480545.2010.510524. PubMed DOI
Kato, M. , and Natarajan R.. 2015. “MicroRNAs in Diabetic Nephropathy: Functions, Biomarkers, and Therapeutic Targets.” Annals of the New York Academy of Sciences 1353, no. 1: 72–88. 10.1111/nyas.12758. PubMed DOI PMC
Khan, M. A. , Kassianos A. J., Hoy W. E., Alam A. K., Healy H. G., and Gobe G. C.. 2022. “Promoting Plant‐Based Therapies for Chronic Kidney Disease.” Journal of Evidence‐Based Integrative Medicine 27: 2515690X221079688. 10.1177/2515690X221079688. PubMed DOI PMC
Kong, M. , Xie K., Lv M., et al. 2021. “Anti‐Inflammatory Phytochemicals for the Treatment of Diabetes and Its Complications: Lessons Learned and Future Promise.” Biomedicine & Pharmacotherapy 133: 110975. 10.1016/j.biopha.2020.110975. PubMed DOI
Laddha, A. P. , and Kulkarni Y. A.. 2019. “Tannins and Vascular Complications of Diabetes: An Update.” Phytomedicine 56: 229–245. 10.1016/j.phymed.2018.10.026. PubMed DOI
Laha, S. , and Paul S.. 2019. “ DOI
Lankatillake, C. , Huynh T., and Dias D. A.. 2019. “Understanding Glycaemic Control and Current Approaches for Screening Antidiabetic Natural Products From Evidence‐Based Medicinal Plants.” Plant Methods 15: 105. 10.1186/s13007-019-0487-8. PubMed DOI PMC
Lei, D. , Chengcheng L., Xuan Q., et al. 2019. “Quercetin Inhibited Mesangial Cell Proliferation of Early Diabetic Nephropathy Through the Hippo Pathway.” Pharmacological Research 146: 104320. 10.1016/j.phrs.2019.104320. PubMed DOI
Li, H.‐J. , Shen H.‐R., Shao G.‐F., and Shi B.‐M.. 2017. “Tannins From Pomegranate Seeds Ameliorate Renal Injury in Streptozotocin‐Induced Diabetic Rat Through the Activation of microRNA‐495 via Regulating SMAD7.” International Journal of Clinical and Experimental Medicine 10, no. 2: 2532–2540.
Li, J. , Kang S. W., Kim J. L., Sung H. Y., Kwun I. S., and Kang Y. H.. 2010. “Isoliquiritigenin Entails Blockade of TGF‐beta1‐SMAD Signaling for Retarding High Glucose‐Induced Mesangial Matrix Accumulation.” Journal of Agricultural and Food Chemistry 58, no. 5: 3205–3212. 10.1021/jf9040723. PubMed DOI
Li, J. , Ling Y., Yin S., Yang S., Kong M., and Li Z.. 2020. “Baicalin Serves a Protective Role in Diabetic Nephropathy Through Preventing High Glucose‐Induced Podocyte Apoptosis.” Experimental and Therapeutic Medicine 20, no. 1: 367–374. 10.3892/etm.2020.8701. PubMed DOI PMC
Li, Q. , Tu J., and Zhou B.. 2019. “The Tannins From DOI
Liao, P. Y. , Lo H. Y., Liu I. C., Lo L. C., Hsiang C. Y., and Ho T. Y.. 2022. “A Gastro‐Resistant Peptide From PubMed DOI
Lin, B. , Ma Y. Y., and Wang J. W.. 2022. “Nano‐Technological Approaches for Targeting Kidney Diseases With Focus on Diabetic Nephropathy: Recent Progress, and Future Perspectives.” Frontiers in Bioengineering and Biotechnology 10: 870049. 10.3389/fbioe.2022.870049. PubMed DOI PMC
Lin, C. Y. , Lin Y. C., Paul C. R., et al. 2022. “Isoliquiritigenin Ameliorates Advanced Glycation End‐Products Toxicity on Renal Proximal Tubular Epithelial Cells.” Environmental Toxicology 37, no. 8: 2096–2102. 10.1002/tox.23553. PubMed DOI
Lin, Q. R. , Jia L. Q., Lei M., et al. 2024. “Natural Products as Pharmacological Modulators of Mitochondrial Dysfunctions for the Treatment of Diabetes and Its Complications: An Update Since 2010.” Pharmacological Research 200: 107054. 10.1016/j.phrs.2023.107054. PubMed DOI
Lin, W. , Liu G., Kang X., et al. 2021. “Ellagic Acid Inhibits High Glucose‐Induced Injury in Rat Mesangial Cells via the PI3K/Akt/FOXO3a Signaling Pathway.” Experimental and Therapeutic Medicine 22, no. 3: 1017. 10.3892/etm.2021.10449. PubMed DOI PMC
Liu, C. , Wang W., and Gu J.. 2023. “Targeting Ferroptosis: New Perspectives of Chinese Herbal Medicine in the Treatment of Diabetes and Its Complications.” Heliyon 9, no. 12: e22250. 10.1016/j.heliyon.2023.e22250. PubMed DOI PMC
Liu, L. , Sun Q., Davis F., Mao J., Zhao H., and Ma D.. 2022. “Epithelial‐Mesenchymal Transition in Organ Fibrosis Development: Current Understanding and Treatment Strategies.” Burns & Trauma 10: tkac011. 10.1093/burnst/tkac011. PubMed DOI PMC
Liu, S. , Yuan Y., Xue Y., Xing C., and Zhang B.. 2022. “Podocyte Injury in Diabetic Kidney Disease: A Focus on Mitochondrial Dysfunction.” Frontiers in Cell and Development Biology 10: 832887. 10.3389/fcell.2022.832887. PubMed DOI PMC
Liu, Y. , Wang W., Zhang J., Gao S., Xu T., and Yin Y.. 2023. “JAK/STAT Signaling in Diabetic Kidney Disease.” Frontiers in Cell and Developmental Biology 11: 1233259. 10.3389/fcell.2023.1233259. PubMed DOI PMC
Ma, L. , Wu F., Shao Q., Chen G., Xu L., and Lu F.. 2021. “Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway.” Drug Design, Development and Therapy 15: 3207–3221. 10.2147/DDDT.S319260. PubMed DOI PMC
Mallik, R. , and Chowdhury T. A.. 2022. “Pharmacotherapy to Delay the Progression of Diabetic Kidney Disease in People With Type 2 Diabetes: Past, Present and Future.” Therapeutic Advances in Endocrinology and Metabolism 13: 20420188221081601. 10.1177/20420188221081601. PubMed DOI PMC
Martin, W. P. , and Docherty N. G.. 2024. “A Systems Nephrology Approach to Diabetic Kidney Disease Research and Practice.” Nephron 148: 127–136. 10.1159/000531823. PubMed DOI PMC
Matsathit, U. , and Khimmaktong W.. 2021. “Glabridin From Licorice Alleviates Vascular Inflammation and Promotes Vascular Remodeling of the Left Anterior Descending Coronary Artery in Diabetic Rat Heart.” Archives of Medical Science: 1–12. 10.5114/aoms/136112. DOI
Maugeri, A. , Lombardo G. E., Cirmi S., et al. 2022. “Pharmacology and Toxicology of Tannins.” Archives of Toxicology 96, no. 5: 1257–1277. 10.1007/s00204-022-03250-0. PubMed DOI
Menati, L. , Meisami A., and Zarebavani M.. 2020. “The Potential Effects of Dietary Flavones on Diabetic Nephropathy; a Review of Mechanisms.” Journal of Renal Injury Prevention 9, no. 2: e09. 10.34172/jrip.2020.09. DOI
Mirzaei, A. , Mirzaei A., Najjar Khalilabad S., Askari V. R., and Baradaran Rahimi V.. 2023. “Promising Influences of Hesperidin and Hesperetin Against Diabetes and Its Complications: A Systematic Review of Molecular, Cellular, and Metabolic Effects.” EXCLI Journal 22: 1235–1263. 10.17179/excli2023-6577. PubMed DOI PMC
Modepalli Poojitha, C. R. , Lakshmi Shivani K. N., Rudra Bhavani J. S., et al. 2023. “The Multifaceted Role of Flavonoids in Mitigating Diabetic Complications: A Systematic Overview.” Pharma Innovation Journal 12, no. 12: 1426–1438.
Mohany, M. , Ahmed M. M., and Al‐Rejaie S. S.. 2021. “Molecular Mechanistic Pathways Targeted by Natural Antioxidants in the Prevention and Treatment of Chronic Kidney Disease.” Antioxidants (Basel) 11, no. 1: 15. 10.3390/antiox11010015. PubMed DOI PMC
Monalisa, M. F. , and Perbawati C.. 2022. “Relevance of WHO Traditional Medicine Strategy (2014‐2023) With Traditional Health Care Policy in the Perspective of National Law and International Law. DOI
Naz, R. , Saqib F., Awadallah S., et al. 2023. “Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms.” Molecules 28, no. 10: 3996. 10.3390/molecules28103996. PubMed DOI PMC
Niisato, N. , and Marunaka Y.. 2023. “Therapeutic Potential of Multifunctional Myricetin for Treatment of Type 2 Diabetes Mellitus.” Frontiers in Nutrition 10: 1175660. 10.3389/fnut.2023.1175660. PubMed DOI PMC
Novotna, R. , Skarupova D., Hanyk J., et al. 2023. “Hesperidin, Hesperetin, Rutinose, and Rhamnose Act as Skin Anti‐Aging Agents.” Molecules 28, no. 4: 1728. 10.3390/molecules28041728. PubMed DOI PMC
Oladele, J. O. , Ajayi E. I., Oyeleke O. M., et al. 2020. “A Systematic Review on COVID‐19 Pandemic With Special Emphasis on Curative Potentials of Nigeria Based Medicinal Plants.” Heliyon 6, no. 9: e04897. 10.1016/j.heliyon.2020.e04897. PubMed DOI PMC
Omale, S. , Amagon K. I., Johnson T. O., Bremner S. K., and Gould G. W.. 2023. “A Systematic Analysis of Anti‐Diabetic Medicinal Plants From Cells to Clinical Trials.” PeerJ 11: e14639. 10.7717/peerj.14639. PubMed DOI PMC
Pan, Y. , Liu T., Wang X., and Sun J.. 2022. “Research Progress of Coumarins and Their Derivatives in the Treatment of Diabetes.” Journal of Enzyme Inhibition and Medicinal Chemistry 37, no. 1: 616–628. 10.1080/14756366.2021.2024526. PubMed DOI PMC
Parasuraman, S. , and Thinagaran J. N. R.. 2023. “Evaluation of the Antidiabetic Activity of Hesperidin on Streptozotocin‐Induced Diabetes Mellitus in Swiss Albino Mice.” Free Radicals and Antioxidants 13, no. 1: 46–49. 10.5530/fra.2023.1.8. DOI
Parveen, A. , Jin M., and Kim S. Y.. 2018. “Bioactive Phytochemicals That Regulate the Cellular Processes Involved in Diabetic Nephropathy.” Phytomedicine 39: 146–159. 10.1016/j.phymed.2017.12.018. PubMed DOI
Patane, G. T. , Putaggio S., Tellone E., et al. 2023. “Catechins and Proanthocyanidins Involvement in Metabolic Syndrome.” International Journal of Molecular Sciences 24, no. 11: 9228. 10.3390/ijms24119228. PubMed DOI PMC
Pelle, M. C. , Provenzano M., Busutti M., et al. 2022. “Up‐Date on Diabetic Nephropathy.” Life (Basel) 12, no. 8: 1202. 10.3390/life12081202. PubMed DOI PMC
Pereira, A. S. P. , Banegas‐Luna A. J., Pena‐Garcia J., Perez‐Sanchez H., and Apostolides Z.. 2019. “Evaluation of the Anti‐Diabetic Activity of Some Common Herbs and Spices: Providing New Insights With Inverse Virtual Screening.” Molecules 24, no. 22: 4030. 10.3390/molecules24224030. PubMed DOI PMC
Prabhu, D. S. , and Rajeswari V. D.. 2020. “PPAR‐Gamma as Putative Gene Target Involved in Butein Mediated Anti‐Diabetic Effect.” Molecular Biology Reports 47, no. 7: 5273–5283. 10.1007/s11033-020-05605-1. PubMed DOI
Pradeep, S. R. , Barman S., and Srinivasan K.. 2019. “Attenuation of Diabetic Nephropathy by Dietary Fenugreek ( PubMed DOI
Prasad, M. K. , Mohandas S., and Kunka Mohanram R.. 2023. “Role of Ferroptosis Inhibitors in the Management of Diabetes.” BioFactors 49, no. 2: 270–296. 10.1002/biof.1920. PubMed DOI
Prasanna, G. , N. T. Saraswathi , and Parimala Devi B.. 2011. “Diabetes Mellitus – An Ethnomedicinal Perspective.” Journal of Pharmacy Research 4, no. 7: 2371–2376.
Putra, I. , Fakhrudin N., Nurrochmad A., and Wahyuono S.. 2023. “A Review of Medicinal Plants With Renoprotective Activity in Diabetic Nephropathy Animal Models.” Life (Basel) 13, no. 2: 1–33. 10.3390/life13020560. PubMed DOI PMC
Quan, X. X. , Huang Y. Y., Chen L., and Yuan J. Q.. 2022. “Traditional Uses, Phytochemical, Pharmacology, Quality Control and Modern Applications of Two Important Chinese Medicines From PubMed DOI PMC
Rahmadhanita, P. , Saleh M. I., and Salim E. M.. 2023. “The Effect of Ampk Signaling in Type 2 Diabetes a Literature Review.” Science Midwifery 11, no. 2: 391–397.
Rasania, N. , and Sharan D.. 2023. “A Comprehensive Review on the Anti‐Diabetic Properties of Various Flavonoids.” Advances in Traditional Medicine 24: 971–983. 10.1007/s13596-023-00725-y. DOI
Rayego‐Mateos, S. , Morgado‐Pascual J. L., Opazo‐Rios L., et al. 2020. “Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy.” International Journal of Molecular Sciences 21, no. 11: 3798. 10.3390/ijms21113798. PubMed DOI PMC
Reis, D. , Alvarenga L., Cardozo L., et al. 2024. “Can Curcumin Supplementation Break the Vicious Cycle of Inflammation, Oxidative Stress, and Uremia in Patients Undergoing Peritoneal Dialysis?” Clinical Nutrition ESPEN 59: 96–106. 10.1016/j.clnesp.2023.11.015. PubMed DOI
Rios, J. L. , Giner R. M., Marin M., and Recio M. C.. 2018. “A Pharmacological Update of Ellagic Acid.” Planta Medica 84, no. 15: 1068–1093. 10.1055/a-0633-9492. PubMed DOI
Ruviaro, A. R. , Barbosa P. d. P. M., Martins I. M., et al. 2020. “Flavanones Biotransformation of Citrus By‐Products Improves Antioxidant and ACE Inhibitory Activities In Vitro.” Food Bioscience 38: 100787. 10.1016/j.fbio.2020.100787. DOI
Saad, B. , Kmail A., and Haq S. Z. H.. 2022. “Anti‐Diabesity Middle Eastern Medicinal Plants and Their Action Mechanisms.” Evidence‐Based Complementary and Alternative Medicine 2022: 2276094. 10.1155/2022/2276094. PubMed DOI PMC
Sahakyan, G. , Vejux A., and Sahakyan N.. 2022. “The Role of Oxidative Stress‐Mediated Inflammation in the Development of T2DM‐Induced Diabetic Nephropathy: Possible Preventive Action of Tannins and Other Oligomeric Polyphenols.” Molecules 27, no. 24: 9035. 10.3390/molecules27249035. PubMed DOI PMC
Salehi, B. , Ata A., Nanjangud V. A. K., et al. 2019. “Antidiabetic Potential of Medicinal Plants and Their Active Components.” Biomolecules 9, no. 10: 1–121. 10.3390/biom9100551. PubMed DOI PMC
Salleh, N. H. , Zulkipli I. N., Mohd Yasin H., et al. 2021. “Systematic Review of Medicinal Plants Used for Treatment of Diabetes in Human Clinical Trials: An ASEAN Perspective.” Evidence‐Based Complementary and Alternative Medicine 2021: 5570939. 10.1155/2021/5570939. PubMed DOI PMC
Samsu, N. 2021. “Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment.” BioMed Research International 2021: 1497449. 10.1155/2021/1497449. PubMed DOI PMC
Sankrityayan, H. , Kulkarni Y. A., and Gaikwad A. B.. 2019. “Diabetic Nephropathy: The Regulatory Interplay Between Epigenetics and microRNAs.” Pharmacological Research 141: 574–585. 10.1016/j.phrs.2019.01.043. PubMed DOI
Saraf, B. , and Saraf M.. 2017. “Effects of Butein Against Cisplatin‐Induced Nephrotoxicity and Oxidative Stress in Mice.” Journal of Pharmacognosy and Phytochemistry 6, no. 5: 1371–1375.
SaribaŞ, G. S. , Tozak Yildiz H., and Gorgulu O.. 2022. “Ellagic Acid Inhibits TGFβ1/Smad‐Induced Renal Fibrosis in Diabetic Kidney Injury.” Düzce Tıp Fakültesi Dergisi 24, no. 3: 321–327. 10.18678/dtfd.1198021. DOI
Selby, N. M. , and Taal M. W.. 2020. “An Updated Overview of Diabetic Nephropathy: Diagnosis, Prognosis, Treatment Goals and Latest Guidelines.” Diabetes, Obesity & Metabolism 22, no. Suppl 1: 3–15. 10.1111/dom.14007. PubMed DOI
Semwal, R. B. , Semwal D. K., Combrinck S., and Viljoen A.. 2015. “Butein: From Ancient Traditional Remedy to Modern Nutraceutical.” Phytochemistry Letters 11: 188–201. 10.1016/j.phytol.2014.12.014. DOI
Shaito, A. , Thuan D. T. B., Phu H. T., et al. 2020. “Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety.” Frontiers in Pharmacology 11: 422. 10.3389/fphar.2020.00422. PubMed DOI PMC
Sharma, K. , Kumar V., Kaur J., et al. 2019. “Health Effects, Sources, Utilization and Safety of Tannins: A Critical Review.” Toxin Reviews 40, no. 4: 432–444. 10.1080/15569543.2019.1662813. DOI
Shen, Y. L. , Jiang Y. P., Li X. Q., et al. 2019. “ErHuang Formula Improves Renal Fibrosis in Diabetic Nephropathy Rats by Inhibiting CXCL6/JAK/STAT3 Signaling Pathway.” Frontiers in Pharmacology 10: 1596. 10.3389/fphar.2019.01596. PubMed DOI PMC
Shrikanth, C. B. , and Nandini C. D.. 2020. “AMPK in Microvascular Complications of Diabetes and the Beneficial Effects of AMPK Activators From Plants.” Phytomedicine 73: 152808. 10.1016/j.phymed.2018.12.031. PubMed DOI
Skalli, S. , Hassikou R., and Arahou M.. 2019. “An Ethnobotanical Survey of Medicinal Plants Used for Diabetes Treatment in Rabat, Morocco.” Heliyon 5, no. 3: e01421. 10.1016/j.heliyon.2019.e01421. PubMed DOI PMC
Song, J. , Wang H., Sheng J., et al. 2023. “Vitexin Attenuates Chronic Kidney Disease by Inhibiting Renal Tubular Epithelial Cell Ferroptosis via NRF2 Activation.” Molecular Medicine 29, no. 1: 147. 10.1186/s10020-023-00735-1. PubMed DOI PMC
Sun, Y. , Jin D., Zhang Z., et al. 2022. “The Critical Role of the Hippo Signaling Pathway in Kidney Diseases.” Frontiers in Pharmacology 13: 988175. 10.3389/fphar.2022.988175. PubMed DOI PMC
Szostak, J. , Goracy A., Durys D., Dec P., Modrzejewski A., and Pawlik A.. 2023. “The Role of MicroRNA in the Pathogenesis of Diabetic Nephropathy.” International Journal of Molecular Sciences 24, no. 7: 6214. 10.3390/ijms24076214. PubMed DOI PMC
Tan, H. , Chen J., Li Y., et al. 2022. “Glabridin, a Bioactive Component of Licorice, Ameliorates Diabetic Nephropathy by Regulating Ferroptosis and the VEGF/Akt/ERK Pathways.” Molecular Medicine 28, no. 1: 58. 10.1186/s10020-022-00481-w. PubMed DOI PMC
Tang, G. , Li S., Zhang C., Chen H., Wang N., and Feng Y.. 2021. “Clinical Efficacies, Underlying Mechanisms and Molecular Targets of Chinese Medicines for Diabetic Nephropathy Treatment and Management.” Acta Pharmaceutica Sinica B 11, no. 9: 2749–2767. 10.1016/j.apsb.2020.12.020. PubMed DOI PMC
Tang, J. , Liu F., Cooper M. E., and Chai Z.. 2022. “Renal Fibrosis as a Hallmark of Diabetic Kidney Disease: Potential Role of Targeting Transforming Growth Factor‐Beta (TGF‐Beta) and Related Molecules.” Expert Opinion on Therapeutic Targets 26, no. 8: 721–738. 10.1080/14728222.2022.2133698. PubMed DOI
Teoh, S. L. , and Das S.. 2018. “Phytochemicals and Their Effective Role in the Treatment of Diabetes Mellitus: A Short Review.” Phytochemistry Reviews 17, no. 5: 1111–1128. 10.1007/s11101-018-9575-z. DOI
Tian Li, S. L. , Abula Z., Kadier K., et al. 2022. “Mechanisms of
Tienda‐Vazquez, M. A. , Morreeuw Z. P., Sosa‐Hernandez J. E., et al. 2022. “Nephroprotective Plants: A Review on the Use in Pre‐Renal and Post‐Renal Diseases.” Plants (Basel) 11, no. 6: 818. 10.3390/plants11060818. PubMed DOI PMC
Tziastoudi, M. , Tsezou A., and Stefanidis I.. 2021. “Cadherin and Wnt Signaling Pathways as Key Regulators in Diabetic Nephropathy.” PLoS One 16, no. 8: e0255728. 10.1371/journal.pone.0255728. PubMed DOI PMC
Unuofin, J. O. , and Lebelo S. L.. 2020. “Antioxidant Effects and Mechanisms of Medicinal Plants and Their Bioactive Compounds for the Prevention and Treatment of Type 2 Diabetes: An Updated Review.” Oxidative Medicine and Cellular Longevity 2020: 1356893. 10.1155/2020/1356893. PubMed DOI PMC
Utami, A. R. , Maksum I. P., and Deawati Y.. 2023. “Berberine and Its Study as an Antidiabetic Compound.” Biology (Basel) 12, no. 7: 973. 10.3390/biology12070973. PubMed DOI PMC
Veisi, P. , Zarezade M., Rostamkhani H., and Ghoreishi Z.. 2022. “Renoprotective Effects of the Ginger ( PubMed DOI PMC
Venusova, E. , Kolesarova A., Horky P., and Slama P.. 2021. “Physiological and Immune Functions of Punicalagin.” Nutrients 13, no. 7: 2150. 10.3390/nu13072150. PubMed DOI PMC
Vinayagam, R. , and Xu B.. 2015. “Antidiabetic Properties of Dietary Flavonoids: A Cellular Mechanism Review.” Nutrition & Metabolism (London) 12: 60. 10.1186/s12986-015-0057-7. PubMed DOI PMC
Wang, E. , Wang L., Ding R., et al. 2020. “Astragaloside IV Acts Through Multi‐Scale Mechanisms to Effectively Reduce Diabetic Nephropathy.” Pharmacological Research 157: 104831. 10.1016/j.phrs.2020.104831. PubMed DOI
Wang, L. , Wang H. L., Liu T. T., and Lan H. Y.. 2021. “TGF‐Beta as a Master Regulator of Diabetic Nephropathy.” International Journal of Molecular Sciences 22, no. 15: 7881. 10.3390/ijms22157881. PubMed DOI PMC
Wang, L. , Wang H.‐l., and Lan H.‐y.. 2022. “TGF‐β Signaling in Diabetic Nephropathy: An Update.” Diabetic Nephropathy 2, no. 1: 7–16. 10.2478/dine-2022-0011. DOI
Wang, L. , Wang Z., Yang Z., Yang K., and Yang H.. 2021. “Study of the Active Components and Molecular Mechanism of Tripterygium Wilfordii in the Treatment of Diabetic Nephropathy.” Frontiers in Molecular Biosciences 8: 664416. 10.3389/fmolb.2021.664416. PubMed DOI PMC
Wasana, K. G. P. , Attanayake A. P., Jayatilaka K., and Weerarathna T. P.. 2021. “Antidiabetic Activity of Widely Used Medicinal Plants in the Sri Lankan Traditional Healthcare System: New Insight to Medicinal Flora in Sri Lanka.” Evidence‐Based Complementary and Alternative Medicine 2021: 6644004. 10.1155/2021/6644004. PubMed DOI PMC
Wei, M. , Liu X., Tan Z., Tian X., Li M., and Wei J.. 2023. “Ferroptosis: A New Strategy for Chinese Herbal Medicine Treatment of Diabetic Nephropathy.” Frontiers in Endocrinology 14: 1188003. 10.3389/fendo.2023.1188003. PubMed DOI PMC
Wickramasinghe, A. S. D. , Kalansuriya P., and Attanayake A. P.. 2021. “Herbal Medicines Targeting the Improved Beta‐Cell Functions and Beta‐Cell Regeneration for the Management of Diabetes Mellitus.” Evidence‐Based Complementary and Alternative Medicine 2021: 2920530. 10.1155/2021/2920530. PubMed DOI PMC
World Health Organization . 2013. WHO Traditional Medicine Strategy, 2014–2023. World Health Organization.
World Health Organization . 2019. WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization.
Xing, Y. , Liu H., Zhang D., Jiang H., Xiu Z., and Dong Y.. 2024. “Baicalein, a Dietary Flavonoid, Enhances the Insulin‐Sensitizing Effect of Metformin to Prevent Type 2 Diabetes via the Regulation of Lipid Metabolism and Gut Microenvironment.” Food Frontiers 5: 668–690. 10.1002/fft2.348. DOI
Xu, W.‐L. , Zhou P.‐P., Yu X., et al. 2024. “Myricetin Induces M2 Macrophage Polarization to Alleviate Renal Tubulointerstitial Fibrosis in Diabetic Nephropathy via PI3K/Akt Pathway.” World Journal of Diabetes 15, no. 1: 105–125. 10.4239/wjd.v15.i1.105. PubMed DOI PMC
Yamazaki, T. , Mimura I., Tanaka T., and Nangaku M.. 2021. “Treatment of Diabetic Kidney Disease: Current and Future.” Diabetes and Metabolism Journal 45, no. 1: 11–26. 10.4093/dmj.2020.0217. PubMed DOI PMC
Yang, A. Y. , Choi H. J., Kim K., and Leem J.. 2023. “Antioxidant, Antiapoptotic, and Anti‐Inflammatory Effects of Hesperetin in a Mouse Model of Lipopolysaccharide‐Induced Acute Kidney Injury.” Molecules 28, no. 6: 2759. 10.3390/molecules28062759. PubMed DOI PMC
Yang, L. , Xue J., Meng X., et al. 2019. “Effects of Total Flavonoids From Oxytropis Falcata Bunge on the SOCS/JAK/STAT Inflammatory Signaling Pathway in the Kidneys of Diabetic Nephropathy Model Mice.” European Journal of Inflammation 17: 2058739219861877. 10.1177/2058739219861877. DOI
Yang, M. , Kan L., Wu L., Zhu Y., and Wang Q.. 2019. “Effect of Baicalin on Renal Function in Patients With Diabetic Nephropathy and Its Therapeutic Mechanism.” Experimental and Therapeutic Medicine 17, no. 3: 2071–2076. 10.3892/etm.2019.7181. PubMed DOI PMC
Yang, S. C. , Hsu C. Y., Chou W. L., Fang J. Y., and Chuang S. Y.. 2020. “Bioactive Agent Discovery From the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model.” Molecules 25, no. 23: 5713. 10.3390/molecules25235713. PubMed DOI PMC
Yang, Z. J. , Wang H. R., Wang Y. I., et al. 2019. “Myricetin Attenuated Diabetes‐Associated Kidney Injuries and Dysfunction via Regulating Nuclear Factor (Erythroid Derived 2)‐Like 2 and Nuclear Factor‐kappaB Signaling.” Frontiers in Pharmacology 10: 647. 10.3389/fphar.2019.00647. PubMed DOI PMC
Yikna, B. B. , and Yehualashet A. S.. 2021. “Medicinal Plant Extracts Evaluated in Vitro and in Vivo for Antidiabetic Activities in Ethiopia: Bases for Future Clinical Trials and Related Investigations.” Evidence‐Based Complementary and Alternative Medicine 2021: 9108499. 10.1155/2021/9108499. PubMed DOI PMC
Yosri, H. , El‐Kashef D. H., El‐Sherbiny M., Said E., and Salem H. A.. 2022. “Calycosin Modulates NLRP3 and TXNIP‐Mediated Pyroptotic Signaling and Attenuates Diabetic Nephropathy Progression in Diabetic Rats; An Insight.” Biomedicine & Pharmacotherapy 155: 113758. 10.1016/j.biopha.2022.113758. PubMed DOI
Zaghloul, R. A. , Abdelghany A. M., and Samra Y. A.. 2022. “Rutin and Selenium Nanoparticles Protected Against STZ‐Induced Diabetic Nephropathy in Rats Through Downregulating Jak‐2/Stat3 Pathway and Upregulating Nrf‐2/HO‐1 Pathway.” European Journal of Pharmacology 933: 175289. 10.1016/j.ejphar.2022.175289. PubMed DOI
Zahari Sham, S. Y. , Abdullah M., Osman M., and Seow H. F.. 2022. “An Insight of Dysregulation of microRNAs in the Pathogenesis of Diabetic Kidney Disease.” Malaysian Journal of Pathology 44, no. 2: 187–201. PubMed
Zaid, H. , Tamrakar A. K., Razzaque M. S., and Efferth T.. 2018. “Diabetes and Metabolism Disorders Medicinal Plants: A Glance at the Past and a Look to the Future 2018.” Evidence‐Based Complementary and Alternative Medicine 2018: 5843298. 10.1155/2018/5843298. PubMed DOI PMC
Zanzabil, K. Z. , Hossain M. S., and Hasan M. K.. 2023. “Diabetes Mellitus Management: An Extensive Review of 37 Medicinal Plants.” Diabetology 4, no. 2: 186–234. 10.3390/diabetology4020019. DOI
Zhang, H. Y. , Cheng M., Zhang L., and Wang Y. P.. 2023. “Ferroptosis and Renal Fibrosis: A New Target for the Future (Review).” Experimental and Therapeutic Medicine 25, no. 1: 13. 10.3892/etm.2022.11712. PubMed DOI PMC
Zhang, J. , Wu X., Zhong B., et al. 2023. “Review on the Diverse Biological Effects of Glabridin.” Drug Design, Development and Therapy 17: 15–37. 10.2147/DDDT.S385981. PubMed DOI PMC
Zhang, K. , Fan C., Cai D., et al. 2020. “Contribution of TGF‐Beta‐Mediated NLRP3‐HMGB1 Activation to Tubulointerstitial Fibrosis in Rat With Angiotensin II‐Induced Chronic Kidney Disease.” Frontiers in Cell and Developmental Biology 8: 1. 10.3389/fcell.2020.00001. PubMed DOI PMC
Zhang, N. , Guan C., Liu Z., et al. 2022. “Calycosin Attenuates Renal Ischemia/Reperfusion Injury by Suppressing NF‐kappaB Mediated Inflammation via PPARgamma/EGR1 Pathway.” Frontiers in Pharmacology 13: 970616. 10.3389/fphar.2022.970616. PubMed DOI PMC
Zhang, Y. Y. , Tan R. Z., Zhang X. Q., Yu Y., and Yu C.. 2019. “Calycosin Ameliorates Diabetes‐Induced Renal Inflammation via the NF‐kappaB Pathway in Vitro and in Vivo.” Medical Science Monitor 25: 1671–1678. 10.12659/MSM.915242. PubMed DOI PMC
Zhao, Z. , Chen Y., Li X., et al. 2022. “Myricetin Relieves the Symptoms of Type 2 Diabetes Mice and Regulates Intestinal Microflora.” Biomedicine & Pharmacotherapy 153: 113530. 10.1016/j.biopha.2022.113530. PubMed DOI
Zheng, Z. C. , Zhu W., Lei L., Liu X. Q., and Wu Y. G.. 2020. “Wogonin Ameliorates Renal Inflammation and Fibrosis by Inhibiting NF‐KappaB and TGF‐Beta1/Smad3 Signaling Pathways in Diabetic Nephropathy.” Drug Design, Development and Therapy 14: 4135–4148. 10.2147/DDDT.S274256. PubMed DOI PMC
Zhu, D. , Wang L., Zhou Q., et al. 2014. “(+)‐catechin Ameliorates Diabetic Nephropathy by Trapping Methylglyoxal in Type 2 Diabetic Mice.” Molecular Nutrition & Food Research 58, no. 12: 2249–2260. 10.1002/mnfr.201400533. PubMed DOI