Characteristics of healthy sinonasal microbiome - single-centre study in the Czech Republic
Jazyk angličtina Země Polsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU22-09-00493
Czech Health Research Council
PubMed
41026946
DOI
10.32725/jab.2025.012
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA sequencing, Healthy individuals, Olfactometry, Sinonasal microbiome,
- MeSH
- Bacteria genetika klasifikace MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiota * genetika MeSH
- mladý dospělý MeSH
- nosní dutina * mikrobiologie MeSH
- paranazální dutiny * mikrobiologie MeSH
- prospektivní studie MeSH
- RNA ribozomální 16S genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
INTRODUCTION: The human nasal cavity and paranasal sinuses host a complex and dynamic microbiome which has a crucial role in mucosal immunity. A comprehensive profile of the healthy sinonasal microbiome remains limited. The purpose of our study was to characterize the healthy sinonasal microbiome in adults using 16S rRNA long-read sequencing to enable species-level resolution, and to assess its associations with demographical and clinical factors such as smoking, allergy history, and olfactory function. STUDY DESIGN: We performed a prospective, single-centre study analysing middle meatus samples from 27 healthy individuals undergoing septoplasty in the age range from 21 to 57 years, excluding those with antibiotic and corticosteroid use and those with signs of acute or chronic rhinosinusitis. RESULTS: A high interindividual variability in the composition of healthy sinonasal microbiome was observed. At the phylum level, it was dominated by Firmicutes (48.96%), Actinobacteria (34.83%), and Proteobacteria (13.85%), while Firmicutes and Actinobacteria were consistently present in all samples. At the genus level, Staphylococcus spp. (32.32%), Cutibacterium (28.04%), and Corynebacterium (4.66%) were most abundant. We observed trend level correlations between phyla and some clinical factors (e.g., smoking and olfactory dysfunction) and selected phyla. However, none remained significant after false discovery rate (FDR) correction across taxa. CONCLUSION: The study proposes Staphylococcus spp., Corynebacterium spp., and Cutibacterium spp. to be a core taxa in the healthy sinonasal microbiome. Amid the interindividual diversity in our cohort, there was evidence of a stable core microbiome potentially influenced by environmental and host factors. Our findings suggest a baseline reference for distinguishing a dysbiosis in upper respiratory disease.
Zobrazit více v PubMed
Anderson M, Stokken J, Sanford T, Aurora R, Sindwani R (2016). A systematic review of the sinonasal microbiome in chronic rhinosinusitis. Am J Rhinol Allergy 30(3): 161-166. DOI: 10.2500/ajra.2016.30.4320. PubMed DOI
Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T (2013). Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Head Neck Surg 139(12): 1328-1338. DOI: 10.1001/jamaoto.2013.5465. PubMed DOI
Bars-Cortina D, Moratalla-Navarro F, García-Serrano A, Mach N, Riobó-Mayo L, Vea-Barbany J, et al. (2023). Improving Species Level-taxonomic Assignment from 16S rRNA Sequencing Technologies. Curr Protoc 3(11): e930. DOI8: 10.1002/cpz1.930. DOI
Bassiouni A, Paramasivan S, Shiffer A, Dillon MR, Cope EK, Cooksley C, et al. (2020). Microbiotyping the Sinonasal Microbiome. Front Cell Infect Microbiol 10: 137. DOI: 10.3389/fcimb.2020.00137. PubMed DOI
Bassis CM, Tang AL, Young VB, Pynnonen MA (2014). The nasal cavity microbiota of healthy adults. Microbiome 2: 27. DOI: 10.1186/2049-2618-2-27. PubMed DOI
Biswas K, Ramakrishnan VR, Hollemann E, Lorenz K, Wagner Mackenzie B, Frank DN, et al. (2023). Bacterial communities in the nasal passage of postviral olfactory dysfunction patients. Int Forum Allergy Rhinol 13(10): 1962-1965. DOI: 10.1002/alr.23149. PubMed DOI
Buckland JR, Thomas S, Harries PG (2003). Can the Sino-nasal Outcome Test (SNOT-22) be used as a reliable outcome measure for successful septal surgery? Clin Otolaryngol Allied Sci 28(1): 43-47. DOI: 10.1046/j.1365-2273.2003.00663.x. PubMed DOI
Casadevall A, Pirofski LA (2015). What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun 83(1): 2-7. DOI: 10.1128/IAI.02627-14. PubMed DOI
Červený K, Janoušková K, Vaněčková K, Zavázalová Š, Funda D, Astl J, Holy R (2022). Olfactory Evaluation in Clinical Medical Practice. J Clin Med 11(22): 6628. DOI: 10.3390/jcm11226628. PubMed DOI
Chen M, He S, Miles P, Li C, Ge Y, Yu X, et al. (2022). Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol 12: 841995. DOI: 10.3389/fcimb.2022.841995. PubMed DOI
De Boeck I, Wittouck S, Wuyts S, Oerlemans EFM, van den Broek MFL, Vandenheuvel D, et al. (2017). Comparing the Healthy Nose and Nasopharynx Microbiota Reveals Continuity As Well As Niche-Specificity. Front Microbiol 8: 2372. DOI: 10.3389/fmicb.2017.02372. PubMed DOI
Feng K, Peng X, Zhang Z, Gu S, He Q, Shen W, et al. (2022). iNAP: An integrated network analysis pipeline for microbiome studies. Imeta 1(2): e13. DOI: 10.1002/imt2.13. PubMed DOI
Fernández-Rodríguez D, Cho J, Chisari E, Citardi MJ, Parvizi J (2024). Nasal microbiome and the effect of nasal decolonization with a novel povidone-iodine antiseptic solution: a prospective and randomized clinical trial. Sci Rep 14: 16739. DOI: 10.1038/s41598-023-46792-8. PubMed DOI
Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. (2020). European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 58(Suppl S29): 1-464. DOI: 10.4193/Rhin20.600. PubMed DOI
Fuochi V, Caruso M, Emma R, Stivala A, Polosa R, Distefano A, Furneri PM (2021). Investigation on the Antibacterial Activity of Electronic Cigarette Liquids (ECLs): A Proof of Concept Study. Curr Pharm Biotechnol 22(7): 983-994. DOI: 10.2174/1389201021666200903121624. PubMed DOI
Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, et al. (2021). Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. Environ Res 202: 111633. DOI: 10.1016/j.envres.2021.111633. PubMed DOI
Han X, He X, Zhan X, Yao L, Sun Z, Gao X, et al. (2023). Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front Immunol 14: 1159112. DOI: 10.3389/fimmu.2023.1159112. PubMed DOI
Head K, Chong LY, Piromchai P, Hopkins C, Philpott C, Schilder AG, Burton MJ (2016). Systemic and topical antibiotics for chronic rhinosinusitis. Cochrane Database Syst Rev 4(4): CD011994. DOI: 10.1002/14651858.CD011994.pub2. PubMed DOI
Hopkins C, Rudmik L, Lund VJ (2015). The predictive value of the preoperative Sinonasal Outcome Test-22 score in patients undergoing endoscopic sinus surgery for chronic rhinosinusitis. Laryngoscope 125(8): 1779-1784. DOI: 10.1002/lary.25318. PubMed DOI
Huang S, Hon K, Bennett C, Hu H, Menberu M, Wormald PJ, et al. (2022). Corynebacterium accolens inhibits Staphylococcus aureus induced mucosal barrier disruption. Front Microbiol 13: 984741. DOI: 10.3389/fmicb.2022.984741. PubMed DOI
Jin XEF, Low DY, Ang L, Lu L, Yin X, Tan YQ, et al. (2023). Exposure to cooking fumes is associated with perturbations in nasal microbiota composition: A pilot study. Environ Res 234: 116392. DOI: 10.1016/j.envres.2023.116392. PubMed DOI
Kaspar U, Kriegeskorte A, Schubert T, Peters G, Rudack C, Pieper DH, et al. (2016). The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol 18(7): 2130-2142. DOI: 10.1111/1462-2920.12891. PubMed DOI
Konovalovas A, Armalyte J, Klimkaite L, Liveikis T, Jonaityte B, Danila E, et al. (2024). Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 24(1): 150. DOI: 10.1186/s12866-024-03294-5. PubMed DOI
Koskinen K, Reichert JL, Hoier S, Schachenreiter J, Duller S, Moissl-Eichinger C, Schöpf V (2018). The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep 8(1): 1296. DOI: 10.1038/s41598-018-19438-3. PubMed DOI
Krismer B, Weidenmaier C, Zipperer A, Peschel A (2017). The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15(11): 675-687. DOI: 10.1038/nrmicro.2017.104. PubMed DOI
Kumpitsch C, Koskinen K, Schopf V, Moissl-Eichinger C (2019). The microbiome of the upper respiratory tract in health and disease. BMC Biol 17: 87. DOI: 10.1186/s12915-019-0703-z. PubMed DOI
Lal D, Keim P, Delisle J, Barker B, Rank MA, Chia N, et al. (2017). Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol 7(6): 561-569. DOI: 10.1002/alr.21934. PubMed DOI
Lladó Fernández S, Větrovský T, Baldrian P (2019). The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiol 64(1): 19-23. DOI: 10.1007/s12223-018-0627-y. PubMed DOI
Lu YJ, Sasaki T, Kuwahara-Arai K, Uehara Y, Hiramatsu K (2018). Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities. Appl Environ Microbiol 84(11): e00517-518. DOI: 10.1128/AEM.00517-18. PubMed DOI
Ludwig W (2007). Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol 120(3): 225-236. DOI: 10.1016/j.ijfoodmicro.2007.06.023. PubMed DOI
Mahdavinia M, Engen PA, LoSavio PS, Naqib A, Khan RJ, Tobin MC, et al. (2018). The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients. J Allergy Clin Immunol 142(1): 287-290.e4. DOI: 10.1016/j.jaci.2018.01.033. PubMed DOI
Mamiňák K, Funda D, Zavázalová Š, Filipovský T, Kovář D, Janoušková K, et al. (2024). The microbiome and chronic rhinosinusitis. Otorhinolaryngol Phoniatr 73(3): 182-190. DOI: 10.48095/ccorl2024182. DOI
Marchesi JR, Ravel J (2015). The vocabulary of microbiome research: a proposal. Microbiome 3: 31. DOI: 10.1186/s40168-015-0094-5. PubMed DOI
Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, et al. (2016). International Consensus Statement on Allergy And Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol 6 Suppl 1: S22-S209. DOI: 10.1002/alr.21695. PubMed DOI
Paramasivan S, Bassiouni A, Shiffer A, Dillon MR, Cope EK, Cooksley C, et al. (2020). The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy 75(8): 2037-2049. DOI: 10.1111/all.14276. PubMed DOI
Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017). Oral and nasal microbiota in Parkinson's disease. Parkinsonism Relat Disord 38: 61-67. DOI: 10.1016/j.parkreldis.2017.02.026. PubMed DOI
Pfeiffer S, Herzmann C, Gaede KI, Kovacevic D, Krauss-Etschmann S, Schloter M (2022). Different responses of the oral, nasal and lung microbiomes to cigarette smoke. Thorax 77(2): 191-195. DOI: 10.1136/thoraxjnl-2020-216153. PubMed DOI
Pu Y, Zhou X, Cai H, Lou T, Liu C, Kong M, et al. (2025). Impact of DNA Extraction Methods on Gut Microbiome Profiles: A Comparative Metagenomic Study. Phenomics 5(1): 76-90. DOI: 10.1007/s43657-025-00232-x. PubMed DOI
Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, et al. (2008). A large genome center's improvements to the Illumina sequencing system. Nat Methods 5(12): 1005-1010. DOI: 10.1038/nmeth.1270. PubMed DOI
Raita Y, Toivonen L, Schuez-Havupalo L, Karppinen S, Waris M, Hoffman KL, et al. (2021). Maturation of nasal microbiota and antibiotic exposures during early childhood: a population-based cohort study. Clin Microbiol Infect 27(2): 283.e1-283.e7. DOI: 10.1016/j.cmi.2020.05.033. PubMed DOI
Ramakrishnan VR, Holt J, Nelson LF, Ir D, Robertson CE, Frank DN (2018). Determinants of the Nasal Microbiome: Pilot Study of Effects of Intranasal Medication Use. Allergy Rhinol 9: 2152656718789519. DOI: 10.1177/2152656718789519. PubMed DOI
Rasmussen TT, Kirkeby LP, Poulsen K, Reinholdt J, Kilian M (2000). Resident aerobic microbiota of the adult human nasal cavity. APMIS 108(10): 663-675. DOI: 10.1034/j.1600-0463.2000.d01-13.x. PubMed DOI
Sheka D, Alabi N, Gordon PMK (2021). Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief Bioinform 22(5): bbaa403. DOI: 10.1093/bib/bbaa403. PubMed DOI
Song H, Zou J, Sun Z, Pu Y, Qi W, Sun L, et al. (2025). Nasal microbiome in relation to olfactory dysfunction and cognitive decline in older adults. Transl Psychiatry 15(1): 122. DOI: 10.1038/s41398-025-03346-y. PubMed DOI
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C (2022). Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging - A Review. Microorganisms 10(7): 1405. DOI: 10.3390/microorganisms10071405. PubMed DOI
Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, et al. (2023). Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 11(7): 1635. DOI: 10.3390/microorganisms11071635. PubMed DOI
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2): 697-703. DOI: 10.1128/jb.173.2.697-703.1991. PubMed DOI
Wolfensberger M, Schnieper I, Welge-Lussen A (2000). Sniffin' Sticks: a new olfactory test battery. Acta Otolaryngol 120(2): 303-306. DOI: 10.1080/000164800750001134. PubMed DOI
Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, Relman DA (2013). Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 14(6): 631-640. DOI: 10.1016/j.chom.2013.11.005. PubMed DOI