Characteristics of healthy sinonasal microbiome - single-centre study in the Czech Republic

. 2025 Sep ; 23 (3) : 117-125. [epub] 20250926

Jazyk angličtina Země Polsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41026946

Grantová podpora
NU22-09-00493 Czech Health Research Council

INTRODUCTION: The human nasal cavity and paranasal sinuses host a complex and dynamic microbiome which has a crucial role in mucosal immunity. A comprehensive profile of the healthy sinonasal microbiome remains limited. The purpose of our study was to characterize the healthy sinonasal microbiome in adults using 16S rRNA long-read sequencing to enable species-level resolution, and to assess its associations with demographical and clinical factors such as smoking, allergy history, and olfactory function. STUDY DESIGN: We performed a prospective, single-centre study analysing middle meatus samples from 27 healthy individuals undergoing septoplasty in the age range from 21 to 57 years, excluding those with antibiotic and corticosteroid use and those with signs of acute or chronic rhinosinusitis. RESULTS: A high interindividual variability in the composition of healthy sinonasal microbiome was observed. At the phylum level, it was dominated by Firmicutes (48.96%), Actinobacteria (34.83%), and Proteobacteria (13.85%), while Firmicutes and Actinobacteria were consistently present in all samples. At the genus level, Staphylococcus spp. (32.32%), Cutibacterium (28.04%), and Corynebacterium (4.66%) were most abundant. We observed trend level correlations between phyla and some clinical factors (e.g., smoking and olfactory dysfunction) and selected phyla. However, none remained significant after false discovery rate (FDR) correction across taxa. CONCLUSION: The study proposes Staphylococcus spp., Corynebacterium spp., and Cutibacterium spp. to be a core taxa in the healthy sinonasal microbiome. Amid the interindividual diversity in our cohort, there was evidence of a stable core microbiome potentially influenced by environmental and host factors. Our findings suggest a baseline reference for distinguishing a dysbiosis in upper respiratory disease.

Zobrazit více v PubMed

Anderson M, Stokken J, Sanford T, Aurora R, Sindwani R (2016). A systematic review of the sinonasal microbiome in chronic rhinosinusitis. Am J Rhinol Allergy 30(3): 161-166. DOI: 10.2500/ajra.2016.30.4320. PubMed DOI

Aurora R, Chatterjee D, Hentzleman J, Prasad G, Sindwani R, Sanford T (2013). Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Head Neck Surg 139(12): 1328-1338. DOI: 10.1001/jamaoto.2013.5465. PubMed DOI

Bars-Cortina D, Moratalla-Navarro F, García-Serrano A, Mach N, Riobó-Mayo L, Vea-Barbany J, et al. (2023). Improving Species Level-taxonomic Assignment from 16S rRNA Sequencing Technologies. Curr Protoc 3(11): e930. DOI8: 10.1002/cpz1.930. DOI

Bassiouni A, Paramasivan S, Shiffer A, Dillon MR, Cope EK, Cooksley C, et al. (2020). Microbiotyping the Sinonasal Microbiome. Front Cell Infect Microbiol 10: 137. DOI: 10.3389/fcimb.2020.00137. PubMed DOI

Bassis CM, Tang AL, Young VB, Pynnonen MA (2014). The nasal cavity microbiota of healthy adults. Microbiome 2: 27. DOI: 10.1186/2049-2618-2-27. PubMed DOI

Biswas K, Ramakrishnan VR, Hollemann E, Lorenz K, Wagner Mackenzie B, Frank DN, et al. (2023). Bacterial communities in the nasal passage of postviral olfactory dysfunction patients. Int Forum Allergy Rhinol 13(10): 1962-1965. DOI: 10.1002/alr.23149. PubMed DOI

Buckland JR, Thomas S, Harries PG (2003). Can the Sino-nasal Outcome Test (SNOT-22) be used as a reliable outcome measure for successful septal surgery? Clin Otolaryngol Allied Sci 28(1): 43-47. DOI: 10.1046/j.1365-2273.2003.00663.x. PubMed DOI

Casadevall A, Pirofski LA (2015). What is a host? Incorporating the microbiota into the damage-response framework. Infect Immun 83(1): 2-7. DOI: 10.1128/IAI.02627-14. PubMed DOI

Červený K, Janoušková K, Vaněčková K, Zavázalová Š, Funda D, Astl J, Holy R (2022). Olfactory Evaluation in Clinical Medical Practice. J Clin Med 11(22): 6628. DOI: 10.3390/jcm11226628. PubMed DOI

Chen M, He S, Miles P, Li C, Ge Y, Yu X, et al. (2022). Nasal Bacterial Microbiome Differs Between Healthy Controls and Those With Asthma and Allergic Rhinitis. Front Cell Infect Microbiol 12: 841995. DOI: 10.3389/fcimb.2022.841995. PubMed DOI

De Boeck I, Wittouck S, Wuyts S, Oerlemans EFM, van den Broek MFL, Vandenheuvel D, et al. (2017). Comparing the Healthy Nose and Nasopharynx Microbiota Reveals Continuity As Well As Niche-Specificity. Front Microbiol 8: 2372. DOI: 10.3389/fmicb.2017.02372. PubMed DOI

Feng K, Peng X, Zhang Z, Gu S, He Q, Shen W, et al. (2022). iNAP: An integrated network analysis pipeline for microbiome studies. Imeta 1(2): e13. DOI: 10.1002/imt2.13. PubMed DOI

Fernández-Rodríguez D, Cho J, Chisari E, Citardi MJ, Parvizi J (2024). Nasal microbiome and the effect of nasal decolonization with a novel povidone-iodine antiseptic solution: a prospective and randomized clinical trial. Sci Rep 14: 16739. DOI: 10.1038/s41598-023-46792-8. PubMed DOI

Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. (2020). European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 58(Suppl S29): 1-464. DOI: 10.4193/Rhin20.600. PubMed DOI

Fuochi V, Caruso M, Emma R, Stivala A, Polosa R, Distefano A, Furneri PM (2021). Investigation on the Antibacterial Activity of Electronic Cigarette Liquids (ECLs): A Proof of Concept Study. Curr Pharm Biotechnol 22(7): 983-994. DOI: 10.2174/1389201021666200903121624. PubMed DOI

Gisler A, Korten I, de Hoogh K, Vienneau D, Frey U, Decrue F, et al. (2021). Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. Environ Res 202: 111633. DOI: 10.1016/j.envres.2021.111633. PubMed DOI

Han X, He X, Zhan X, Yao L, Sun Z, Gao X, et al. (2023). Disturbed microbiota-metabolites-immune interaction network is associated with olfactory dysfunction in patients with chronic rhinosinusitis. Front Immunol 14: 1159112. DOI: 10.3389/fimmu.2023.1159112. PubMed DOI

Head K, Chong LY, Piromchai P, Hopkins C, Philpott C, Schilder AG, Burton MJ (2016). Systemic and topical antibiotics for chronic rhinosinusitis. Cochrane Database Syst Rev 4(4): CD011994. DOI: 10.1002/14651858.CD011994.pub2. PubMed DOI

Hopkins C, Rudmik L, Lund VJ (2015). The predictive value of the preoperative Sinonasal Outcome Test-22 score in patients undergoing endoscopic sinus surgery for chronic rhinosinusitis. Laryngoscope 125(8): 1779-1784. DOI: 10.1002/lary.25318. PubMed DOI

Huang S, Hon K, Bennett C, Hu H, Menberu M, Wormald PJ, et al. (2022). Corynebacterium accolens inhibits Staphylococcus aureus induced mucosal barrier disruption. Front Microbiol 13: 984741. DOI: 10.3389/fmicb.2022.984741. PubMed DOI

Jin XEF, Low DY, Ang L, Lu L, Yin X, Tan YQ, et al. (2023). Exposure to cooking fumes is associated with perturbations in nasal microbiota composition: A pilot study. Environ Res 234: 116392. DOI: 10.1016/j.envres.2023.116392. PubMed DOI

Kaspar U, Kriegeskorte A, Schubert T, Peters G, Rudack C, Pieper DH, et al. (2016). The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol 18(7): 2130-2142. DOI: 10.1111/1462-2920.12891. PubMed DOI

Konovalovas A, Armalyte J, Klimkaite L, Liveikis T, Jonaityte B, Danila E, et al. (2024). Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. BMC Microbiol 24(1): 150. DOI: 10.1186/s12866-024-03294-5. PubMed DOI

Koskinen K, Reichert JL, Hoier S, Schachenreiter J, Duller S, Moissl-Eichinger C, Schöpf V (2018). The nasal microbiome mirrors and potentially shapes olfactory function. Sci Rep 8(1): 1296. DOI: 10.1038/s41598-018-19438-3. PubMed DOI

Krismer B, Weidenmaier C, Zipperer A, Peschel A (2017). The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15(11): 675-687. DOI: 10.1038/nrmicro.2017.104. PubMed DOI

Kumpitsch C, Koskinen K, Schopf V, Moissl-Eichinger C (2019). The microbiome of the upper respiratory tract in health and disease. BMC Biol 17: 87. DOI: 10.1186/s12915-019-0703-z. PubMed DOI

Lal D, Keim P, Delisle J, Barker B, Rank MA, Chia N, et al. (2017). Mapping and comparing bacterial microbiota in the sinonasal cavity of healthy, allergic rhinitis, and chronic rhinosinusitis subjects. Int Forum Allergy Rhinol 7(6): 561-569. DOI: 10.1002/alr.21934. PubMed DOI

Lladó Fernández S, Větrovský T, Baldrian P (2019). The concept of operational taxonomic units revisited: genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiol 64(1): 19-23. DOI: 10.1007/s12223-018-0627-y. PubMed DOI

Lu YJ, Sasaki T, Kuwahara-Arai K, Uehara Y, Hiramatsu K (2018). Development of a New Application for Comprehensive Viability Analysis Based on Microbiome Analysis by Next-Generation Sequencing: Insights into Staphylococcal Carriage in Human Nasal Cavities. Appl Environ Microbiol 84(11): e00517-518. DOI: 10.1128/AEM.00517-18. PubMed DOI

Ludwig W (2007). Nucleic acid techniques in bacterial systematics and identification. Int J Food Microbiol 120(3): 225-236. DOI: 10.1016/j.ijfoodmicro.2007.06.023. PubMed DOI

Mahdavinia M, Engen PA, LoSavio PS, Naqib A, Khan RJ, Tobin MC, et al. (2018). The nasal microbiome in patients with chronic rhinosinusitis: Analyzing the effects of atopy and bacterial functional pathways in 111 patients. J Allergy Clin Immunol 142(1): 287-290.e4. DOI: 10.1016/j.jaci.2018.01.033. PubMed DOI

Mamiňák K, Funda D, Zavázalová Š, Filipovský T, Kovář D, Janoušková K, et al. (2024). The microbiome and chronic rhinosinusitis. Otorhinolaryngol Phoniatr 73(3): 182-190. DOI: 10.48095/ccorl2024182. DOI

Marchesi JR, Ravel J (2015). The vocabulary of microbiome research: a proposal. Microbiome 3: 31. DOI: 10.1186/s40168-015-0094-5. PubMed DOI

Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, et al. (2016). International Consensus Statement on Allergy And Rhinology: Rhinosinusitis. Int Forum Allergy Rhinol 6 Suppl 1: S22-S209. DOI: 10.1002/alr.21695. PubMed DOI

Paramasivan S, Bassiouni A, Shiffer A, Dillon MR, Cope EK, Cooksley C, et al. (2020). The international sinonasal microbiome study: A multicentre, multinational characterization of sinonasal bacterial ecology. Allergy 75(8): 2037-2049. DOI: 10.1111/all.14276. PubMed DOI

Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017). Oral and nasal microbiota in Parkinson's disease. Parkinsonism Relat Disord 38: 61-67. DOI: 10.1016/j.parkreldis.2017.02.026. PubMed DOI

Pfeiffer S, Herzmann C, Gaede KI, Kovacevic D, Krauss-Etschmann S, Schloter M (2022). Different responses of the oral, nasal and lung microbiomes to cigarette smoke. Thorax 77(2): 191-195. DOI: 10.1136/thoraxjnl-2020-216153. PubMed DOI

Pu Y, Zhou X, Cai H, Lou T, Liu C, Kong M, et al. (2025). Impact of DNA Extraction Methods on Gut Microbiome Profiles: A Comparative Metagenomic Study. Phenomics 5(1): 76-90. DOI: 10.1007/s43657-025-00232-x. PubMed DOI

Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, et al. (2008). A large genome center's improvements to the Illumina sequencing system. Nat Methods 5(12): 1005-1010. DOI: 10.1038/nmeth.1270. PubMed DOI

Raita Y, Toivonen L, Schuez-Havupalo L, Karppinen S, Waris M, Hoffman KL, et al. (2021). Maturation of nasal microbiota and antibiotic exposures during early childhood: a population-based cohort study. Clin Microbiol Infect 27(2): 283.e1-283.e7. DOI: 10.1016/j.cmi.2020.05.033. PubMed DOI

Ramakrishnan VR, Holt J, Nelson LF, Ir D, Robertson CE, Frank DN (2018). Determinants of the Nasal Microbiome: Pilot Study of Effects of Intranasal Medication Use. Allergy Rhinol 9: 2152656718789519. DOI: 10.1177/2152656718789519. PubMed DOI

Rasmussen TT, Kirkeby LP, Poulsen K, Reinholdt J, Kilian M (2000). Resident aerobic microbiota of the adult human nasal cavity. APMIS 108(10): 663-675. DOI: 10.1034/j.1600-0463.2000.d01-13.x. PubMed DOI

Sheka D, Alabi N, Gordon PMK (2021). Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief Bioinform 22(5): bbaa403. DOI: 10.1093/bib/bbaa403. PubMed DOI

Song H, Zou J, Sun Z, Pu Y, Qi W, Sun L, et al. (2025). Nasal microbiome in relation to olfactory dysfunction and cognitive decline in older adults. Transl Psychiatry 15(1): 122. DOI: 10.1038/s41398-025-03346-y. PubMed DOI

Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C (2022). Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging - A Review. Microorganisms 10(7): 1405. DOI: 10.3390/microorganisms10071405. PubMed DOI

Toro-Ascuy D, Cárdenas JP, Zorondo-Rodríguez F, González D, Silva-Moreno E, Puebla C, et al. (2023). Microbiota Profile of the Nasal Cavity According to Lifestyles in Healthy Adults in Santiago, Chile. Microorganisms 11(7): 1635. DOI: 10.3390/microorganisms11071635. PubMed DOI

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2): 697-703. DOI: 10.1128/jb.173.2.697-703.1991. PubMed DOI

Wolfensberger M, Schnieper I, Welge-Lussen A (2000). Sniffin' Sticks: a new olfactory test battery. Acta Otolaryngol 120(2): 303-306. DOI: 10.1080/000164800750001134. PubMed DOI

Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, Relman DA (2013). Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 14(6): 631-640. DOI: 10.1016/j.chom.2013.11.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...