New structural insights into the control of the retinoic acid receptors RAR/RXR by DNA, ligands, and transcriptional coregulators

. 2025 Sep 23 ; 53 (18) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41036627

Grantová podpora
Institut National du Cancer
ANR-21-CE11-0005-01 ANR CEP - Centrální evidence projektů
APPID: 2524 ANR CEP - Centrální evidence projektů
PID: 22 036 BioCeV CMS
EPIC-XS-0000264 EPIC-XS
MEYS LM2023042 CMS BIOCEV
CZ.02.01.01/00/23_015/0008175 CMS BIOCEV
CZ.02.01.01/00/22_008/0004597 INTER-MICRO
ANR-10-INBS-05 French National Research Agency
UAR 3518 CNRS-CEA-UGA-EMBL Grenoble Instruct-ERIC
ANR-10-INBS-0005-02 FRISBI
GRAL
ANR-10-INBS-05 French National Research Agency
2022-A0130713813 GENCI
2022-AD010713745 GENCI

Retinoic acid receptors (RARs) are ligand-dependent transcription factors essential for various biological processes, including embryogenesis, differentiation, and apoptosis. RARs function as heterodimers with retinoid X receptors (RXRs) and regulate gene expression via retinoic acid response elements (RAREs). Their transcriptional activity is modulated by coregulators, with corepressors maintaining repression in the absence of ligand and coactivators enabling transcription upon ligand binding. Structural studies reveal that DNA binding induces conformational changes affecting coregulator interactions. However, the precise structural organization of RAR/RXR-coregulator complexes and the allosteric influence of DNA on receptor function remain incompletely understood. Our study presents an integrative analysis of the RAR/RXR heterodimer bound to four distinct and relevant RAREs (DR0, DR1, DR5, and IR0) in complex with either a corepressor (NCoR) or a coactivator (TIF-2) nuclear receptor interaction domain. By combining small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we revealed that the heterodimer adopts distinct conformations depending on the DNA sequence, influencing interdomain distances and receptor interactions. Additionally, we uncovered the dynamic interplay between ligand, DNA, and coregulator binding. This study provides new insights into the structural features of coregulator proteins and highlights the allosteric influence of RAREs on receptor function.

Zobrazit více v PubMed

Di  Masi A, Leboffe  L, De  Marinis E  et al.  Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med. 2015; 41:1–115. 10.1016/j.mam.2014.12.003. PubMed DOI

Mattei  MG, Rivière  M, Krust  A  et al.  Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics. 1991; 10:1061–9. 10.1016/0888-7543(91)90199-O. PubMed DOI

Bourguet  W, Ruff  M, Chambon  P  et al.  Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature. 1995; 375:377–82. 10.1038/375377a0. PubMed DOI

Germain  P, Chambon  P, Eichele  G  et al.  International Union of Pharmacology. LX. Retinoic Acid Receptors. Pharmacol Rev. 2006; 58:712–25. 10.1124/pr.58.4.4. PubMed DOI

Rochette-Egly  C, Chambon  P  F9 embryocarcinoma cells: a cell autonomous model to study the functional selectivity of RARs and RXRs in retinoid signaling. Histol Histopathol. 2001; 16:909–22. PubMed

Rochette-Egly  C, Germain  P  Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal. 2009; 7:e005. 10.1621/nrs.07005. PubMed DOI PMC

Moutier  E, Ye  T, Choukrallah  M-A  et al.  Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem. 2012; 287:26328–41. 10.1074/jbc.M112.361790. PubMed DOI PMC

Chatagnon  A, Veber  P, Morin  V  et al.  RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Res. 2015; 43:4833–54. 10.1093/nar/gkv370. PubMed DOI PMC

Bhimsaria  D, Rodríguez-Martínez  JA, Mendez-Johnson  JL  et al.  Hidden modes of DNA binding by human nuclear receptors. Nat Commun. 2023; 14:4179. 10.1038/s41467-023-39577-0. PubMed DOI PMC

Ross-Innes  CS, Stark  R, Holmes  KA  et al.  Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 2010; 24:171–82. 10.1101/gad.552910. PubMed DOI PMC

le Maire  A, Bourguet  W  Retinoic acid receptors: structural basis for coregulator interaction and exchange. Subcell Biochem. 2014; 70:37–54. PubMed

Hörlein  AJ, Näär  AM, Heinzel  T  et al.  Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995; 377:397–404. PubMed

Chen  JD, Evans  RM  A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995; 377:454–7. 10.1038/377454a0. PubMed DOI

Perissi  V, Rosenfeld  MG  Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol. 2005; 6:542–54. 10.1038/nrm1680. PubMed DOI

Hu  X, Lazar  MA  The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature. 1999; 402:93–6. 10.1038/47069. PubMed DOI

Hu  X, Li  Y, Lazar  MA  Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol Cell Biol. 2001; 21:1747–58. 10.1128/MCB.21.5.1747-1758.2001. PubMed DOI PMC

le Maire  A, Teyssier  C, Erb  C  et al.  A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol. 2010; 17:801–7. 10.1038/nsmb.1855. PubMed DOI

Ghosh  JC, Yang  X, Zhang  A  et al.  Interactions that determine the assembly of a retinoid X receptor/corepressor complex. Proc Natl Acad Sci USA. 2002; 99:5842–7. 10.1073/pnas.092043399. PubMed DOI PMC

Oñate  SA, Tsai  SY, Tsai  M-J  et al.  Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995; 270:1354–7. PubMed

Voegel  JJ, Heine  MJS, Zechel  C  et al.  TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 1996; 15:3667–75. 10.1002/j.1460-2075.1996.tb00736.x. PubMed DOI PMC

McInerney  EM, Rose  DW, Flynn  SE  et al.  Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 1998; 12:3357–68. 10.1101/gad.12.21.3357. PubMed DOI PMC

Lou  X, Toresson  G, Benod  C  et al.  Structure of the retinoid X receptor α–liver X receptor β (RXRα–LXRβ) heterodimer on DNA. Nat Struct Mol Biol. 2014; 21:277–81. 10.1038/nsmb.2778. PubMed DOI

Chandra  V, Huang  P, Hamuro  Y  et al.  Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature. 2008; 456:350–6. 10.1038/nature07413. PubMed DOI PMC

Chandra  V, Wu  D, Li  S  et al.  The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission. Nat Commun. 2017; 8:868. 10.1038/s41467-017-00981-y. PubMed DOI PMC

Orlov  I, Rochel  N, Moras  D  et al.  Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J. 2012; 31:291–300. 10.1038/emboj.2011.445. PubMed DOI PMC

Chandra  V, Huang  P, Potluri  N  et al.  Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature. 2013; 495:394–8. 10.1038/nature11966. PubMed DOI PMC

Huang  W, Peng  Y, Kiselar  J  et al.  Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat Commun. 2018; 9:3520. 10.1038/s41467-018-06034-2. PubMed DOI PMC

Maletta  M, Orlov  I, Roblin  P  et al.  The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat Commun. 2014; 5:4139. 10.1038/ncomms5139. PubMed DOI

Seacrist  CD, Kuenze  G, Hoffmann  RM  et al.  Integrated structural modeling of full-length LRH-1 reveals inter-domain interactions contribute to receptor structure and function. Structure. 2020; 28:830–46. 10.1016/j.str.2020.04.020. PubMed DOI PMC

Meijsing  SH, Pufall  MA, So  AY  et al.  DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009; 324:407–10. 10.1126/science.1164265. PubMed DOI PMC

de Vera  IMS, Zheng  J, Novick  S  et al.  Synergistic regulation of coregulator/nuclear receptor interaction by ligand and DNA. Structure. 2017; 25:1506–18. 10.1016/j.str.2017.07.019. PubMed DOI PMC

Zhang  J, Chalmers  MJ, Stayrook  KR  et al.  DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat Struct Mol Biol. 2011; 18:556–63. 10.1038/nsmb.2046. PubMed DOI PMC

Watson  LC, Kuchenbecker  KM, Schiller  BJ  et al.  The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol. 2013; 20:876–83. 10.1038/nsmb.2595. PubMed DOI PMC

Schöne  S, Jurk  M, Helabad  MB  et al.  Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity. Nat Commun. 2016; 7:12621. PubMed PMC

Bernardes  A, Batista  FAH, de  Oliveira Neto M  et al.  Low-resolution molecular models reveal the oligomeric state of the PPAR and the conformational organization of its domains in solution. PLoS One. 2012; 7:e31852. 10.1371/journal.pone.0031852. PubMed DOI PMC

Zheng  J, Chang  MR, Stites  RE  et al.  HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Nat Commun. 2017; 8:923. 10.1038/s41467-017-00978-7. PubMed DOI PMC

Gronemeyer  H, Bourguet  W  Allosteric effects govern nuclear receptor action: DNA appears as a player. Sci Signal. 2009; 2:pe34. 10.1126/scisignal.273pe34. PubMed DOI

Rochel  N, Ciesielski  F, Godet  J  et al.  Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol. 2011; 18:564–70. 10.1038/nsmb.2054. PubMed DOI

Osz  J, McEwen  AG, Bourguet  M  et al.  Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR. Nucleic Acids Res. 2020; 48:9969–85. 10.1093/nar/gkaa697. PubMed DOI PMC

Kersten  S, Kelleher  D, Chambon  P  et al.  Retinoid X receptor α forms tetramers in solution. Proc Natl Acad Sci USA. 1995; 92:8645–9. 10.1073/pnas.92.19.8645. PubMed DOI PMC

Dong  D, Noy  N  Heterodimer formation by retinoid X receptor: regulation by ligands and by the receptor's self-association properties. Biochemistry. 1998; 37:10691–700. 10.1021/bi980561r. PubMed DOI

Senicourt  L, le Maire  A, Allemand  F  et al.  Structural insights into the interaction of the intrinsically disordered co-activator TIF2 with retinoic acid receptor heterodimer (RXR/RAR). J Mol Biol. 2021; 433:166899. 10.1016/j.jmb.2021.166899. PubMed DOI

Cordeiro  TN, Sibille  N, Germain  P  et al.  Interplay of protein disorder in retinoic acid receptor heterodimer and its corepressor regulates gene expression. Structure. 2019; 27:1270–85. 10.1016/j.str.2019.05.001. PubMed DOI

Rosales  T, Royer  CA  A graphical user interface for BIOEQS: a program for simulating and analyzing complex biomolecular interactions. Anal Biochem. 2008; 381:270–2. 10.1016/j.ab.2008.05.056. PubMed DOI PMC

Royer  CA, Beechem  JM  Numerical analysis of binding data: advantages, practical aspects, and implications. Methods Enzymol. 1992; 210:481–505. PubMed

Royer  CA, Smith  WR, Beechem  JM  Analysis of binding in macromolecular complexes: a generalized numerical approach. Anal Biochem. 1990; 191:287–94. 10.1016/0003-2697(90)90221-T. PubMed DOI

Yang  M, Hoeppner  M, Rey  M  et al.  Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2015; 87:6681–7. 10.1021/acs.analchem.5b00831. PubMed DOI

Trcka  F, Durech  M, Vankova  P  et al.  Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol Cell Proteomics. 2019; 18:320–37. 10.1074/mcp.RA118.001044. PubMed DOI PMC

Kavan  D, Man  P  MSTools—web based application for visualization and presentation of HXMS data. Int J Mass Spectrom. 2011; 302:53–8. 10.1016/j.ijms.2010.07.030. DOI

Thureau  A, Roblin  P, Pérez  J  BioSAXS on the SWING beamline at synchrotron SOLEIL. J Appl Crystallogr. 2021; 54:1698–710. 10.1107/S1600576721008736. DOI

Blanchet  CE, Svergun  DI  Small-angle X-Ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem. 2013; 64:37–54. 10.1146/annurev-physchem-040412-110132. PubMed DOI

Panjkovich  A, Svergun  DI  CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics. 2018; 34:1944–6. 10.1093/bioinformatics/btx846. PubMed DOI PMC

Manalastas-Cantos  K, Konarev  PV, Hajizadeh  NR  et al.  ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr. 2021; 54:343–55. 10.1107/S1600576720013412. PubMed DOI PMC

Konarev  PV, Volkov  VV, Sokolova  AV  et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003; 36:1277–82. 10.1107/S0021889803012779. DOI

Hajizadeh  NR, Franke  D, Jeffries  CM  et al.  Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Sci Rep. 2018; 8:7204. 10.1038/s41598-018-25355-2. PubMed DOI PMC

Svergun  DI  Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr. 1992; 25:495–503. 10.1107/S0021889892001663. DOI

Barozet  A, Molloy  K, Vaisset  M  et al.  MoMA-LoopSampler: a web server to exhaustively sample protein loop conformations. Bioinformatics. 2022; 38:552–3. 10.1093/bioinformatics/btab584. PubMed DOI

Bernadó  P, Mylonas  E, Petoukhov  MV  et al.  Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc. 2007; 129:5656–64. 10.1021/ja069124n. PubMed DOI

Tucker  MR, Piana  S, Tan  D  et al.  Development of force field parameters for the simulation of single- and double-stranded DNA molecules and DNA–protein complexes. J Phys Chem B. 2022; 126:4442–57. 10.1021/acs.jpcb.1c10971. PubMed DOI PMC

Shirts  MR, Klein  C, Swails  JM  et al.  Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. J Comput Aided Mol Des. 2017; 31:147–61. 10.1007/s10822-016-9977-1. PubMed DOI PMC

Case  DA, Aktulga  HM, Belfon  K  et al.  AmberTools. J Chem Inf Model. 2023; 63:6183–91. 10.1021/acs.jcim.3c01153. PubMed DOI PMC

Gowers  R, Linke  M, Barnoud  J  et al.  MDAnalysis: a Python Package for the Rapid Analysis of Molecular Dynamics Simulations. 2016; 98–105.

Manalastas-Cantos  K, Konarev  PV, Hajizadeh  NR  et al.  ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr. 54:343–55. 10.1107/S1600576720013412. PubMed DOI PMC

Köfinger  J, Hummer  G  Empirical optimization of molecular simulation force fields by Bayesian inference. Europ Phys J B. 2021; 94:245.

Penvose  A, Keenan  JL, Bray  D  et al.  Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun. 2019; 10:2514. 10.1038/s41467-019-10264-3. PubMed DOI PMC

Koch  MHJ, Vachette  P, Svergun  DI  Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quart Rev Biophys. 2003; 36:147–227. 10.1017/S0033583503003871. PubMed DOI

Tucker  MR, Piana  S, Tan  D  et al.  Development of force field parameters for the simulation of single- and double-stranded DNA molecules and DNA–protein complexes. J Phys Chem B. 2022; 126:4442–57. 10.1021/acs.jpcb.1c10971. PubMed DOI PMC

Abramson  J, Adler  J, Dunger  J  et al.  Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024; 630:493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC

Rastinejad  F  Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol. 2022; 69:T25–36. 10.1530/JME-22-0113. PubMed DOI PMC

Rastinejad  F  Allosteric communications between domains of nuclear receptors. Steroids. 2025; 214:109551. 10.1016/j.steroids.2024.109551. PubMed DOI

Rastinejad  F, Wagner  T, Zhao  Q  et al.  Structure of the RXR–RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 2000; 19:1045–54. 10.1093/emboj/19.5.1045. PubMed DOI PMC

Sheng  Y, Guo  Y, Zhao  B  et al.  Structural basis for the asymmetric binding of coactivator SRC1 to FXR-RXRα and allosteric communication within the complex. Commun Biol. 2025; 8:425. 10.1038/s42003-025-07854-x. PubMed DOI PMC

Germain  P, Iyer  J, Zechel  C  et al.  Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature. 2002; 415:187–92. 10.1038/415187a. PubMed DOI

Pogenberg  V, Guichoul  JF, Vivat-Hannah  V  et al.  Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem. 2005; 280:1625–33. 10.1074/jbc.M409302200. PubMed DOI

Hazarika  S, Yu  T, Biswas  A  et al.  Nuclear receptor interdomain communication is mediated by the hinge with ligand specificity. J Mol Biol. 2024; 436:168805. 10.1016/j.jmb.2024.168805. PubMed DOI

Chebaro  Y, Sirigu  S, Amal  I  et al.  Allosteric regulation in the ligand binding domain of retinoic acid receptorγ. PLoS One. 2017; 12:e0171043. 10.1371/journal.pone.0171043. PubMed DOI PMC

Guillien  M, le Maire  A, Mouhand  A  et al.  IDPs and their complexes in GPCR and nuclear receptor signaling. Prog Mol Biol Transl Sci. 2020; 174:105–55. PubMed

Brodie  J, McEwan  IJ  Intra-domain communication between the N-terminal and DNA-binding domains of the androgen receptor: modulation of androgen response element DNA binding. J Mol Endocrinol. 2005; 34:603–15. 10.1677/jme.1.01723. PubMed DOI

Katsu  Y, Oka  K, Baker  ME  Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: allosteric influence on steroid specificity. Sci Signal. 2018; 11:eaao1520. 10.1126/scisignal.aao1520. PubMed DOI

Perez-Riverol  Y, Bandla  C, Kundu  DJ  et al.  The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025; 53:D543–53. 10.1093/nar/gkae1011. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...