New structural insights into the control of the retinoic acid receptors RAR/RXR by DNA, ligands, and transcriptional coregulators
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Institut National du Cancer
ANR-21-CE11-0005-01
ANR
CEP - Centrální evidence projektů
APPID: 2524
ANR
CEP - Centrální evidence projektů
PID: 22 036
BioCeV CMS
EPIC-XS-0000264
EPIC-XS
MEYS LM2023042
CMS BIOCEV
CZ.02.01.01/00/23_015/0008175
CMS BIOCEV
CZ.02.01.01/00/22_008/0004597
INTER-MICRO
ANR-10-INBS-05
French National Research Agency
UAR 3518 CNRS-CEA-UGA-EMBL
Grenoble Instruct-ERIC
ANR-10-INBS-0005-02
FRISBI
GRAL
ANR-10-INBS-05
French National Research Agency
2022-A0130713813
GENCI
2022-AD010713745
GENCI
PubMed
41036627
PubMed Central
PMC12489474
DOI
10.1093/nar/gkaf967
PII: 8271007
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie metabolismus MeSH
- koaktivátor 2 jaderných receptorů chemie metabolismus genetika MeSH
- korepresor 1 jaderného receptoru chemie metabolismus genetika MeSH
- korepresor 2 jaderného receptoru chemie metabolismus genetika MeSH
- lidé MeSH
- ligandy MeSH
- maloúhlový rozptyl MeSH
- receptory kyseliny retinové * chemie metabolismus genetika MeSH
- responzivní elementy MeSH
- retinoidní X receptory * chemie metabolismus genetika MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- koaktivátor 2 jaderných receptorů MeSH
- korepresor 1 jaderného receptoru MeSH
- korepresor 2 jaderného receptoru MeSH
- ligandy MeSH
- NCOA2 protein, human MeSH Prohlížeč
- NCOR2 protein, human MeSH Prohlížeč
- receptory kyseliny retinové * MeSH
- retinoidní X receptory * MeSH
Retinoic acid receptors (RARs) are ligand-dependent transcription factors essential for various biological processes, including embryogenesis, differentiation, and apoptosis. RARs function as heterodimers with retinoid X receptors (RXRs) and regulate gene expression via retinoic acid response elements (RAREs). Their transcriptional activity is modulated by coregulators, with corepressors maintaining repression in the absence of ligand and coactivators enabling transcription upon ligand binding. Structural studies reveal that DNA binding induces conformational changes affecting coregulator interactions. However, the precise structural organization of RAR/RXR-coregulator complexes and the allosteric influence of DNA on receptor function remain incompletely understood. Our study presents an integrative analysis of the RAR/RXR heterodimer bound to four distinct and relevant RAREs (DR0, DR1, DR5, and IR0) in complex with either a corepressor (NCoR) or a coactivator (TIF-2) nuclear receptor interaction domain. By combining small-angle X-ray scattering, hydrogen/deuterium exchange mass spectrometry, and molecular dynamics simulations, we revealed that the heterodimer adopts distinct conformations depending on the DNA sequence, influencing interdomain distances and receptor interactions. Additionally, we uncovered the dynamic interplay between ligand, DNA, and coregulator binding. This study provides new insights into the structural features of coregulator proteins and highlights the allosteric influence of RAREs on receptor function.
Zobrazit více v PubMed
Di Masi A, Leboffe L, De Marinis E et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med. 2015; 41:1–115. 10.1016/j.mam.2014.12.003. PubMed DOI
Mattei MG, Rivière M, Krust A et al. Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics. 1991; 10:1061–9. 10.1016/0888-7543(91)90199-O. PubMed DOI
Bourguet W, Ruff M, Chambon P et al. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature. 1995; 375:377–82. 10.1038/375377a0. PubMed DOI
Germain P, Chambon P, Eichele G et al. International Union of Pharmacology. LX. Retinoic Acid Receptors. Pharmacol Rev. 2006; 58:712–25. 10.1124/pr.58.4.4. PubMed DOI
Rochette-Egly C, Chambon P F9 embryocarcinoma cells: a cell autonomous model to study the functional selectivity of RARs and RXRs in retinoid signaling. Histol Histopathol. 2001; 16:909–22. PubMed
Rochette-Egly C, Germain P Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal. 2009; 7:e005. 10.1621/nrs.07005. PubMed DOI PMC
Moutier E, Ye T, Choukrallah M-A et al. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem. 2012; 287:26328–41. 10.1074/jbc.M112.361790. PubMed DOI PMC
Chatagnon A, Veber P, Morin V et al. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements. Nucleic Acids Res. 2015; 43:4833–54. 10.1093/nar/gkv370. PubMed DOI PMC
Bhimsaria D, Rodríguez-Martínez JA, Mendez-Johnson JL et al. Hidden modes of DNA binding by human nuclear receptors. Nat Commun. 2023; 14:4179. 10.1038/s41467-023-39577-0. PubMed DOI PMC
Ross-Innes CS, Stark R, Holmes KA et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 2010; 24:171–82. 10.1101/gad.552910. PubMed DOI PMC
le Maire A, Bourguet W Retinoic acid receptors: structural basis for coregulator interaction and exchange. Subcell Biochem. 2014; 70:37–54. PubMed
Hörlein AJ, Näär AM, Heinzel T et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature. 1995; 377:397–404. PubMed
Chen JD, Evans RM A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995; 377:454–7. 10.1038/377454a0. PubMed DOI
Perissi V, Rosenfeld MG Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol. 2005; 6:542–54. 10.1038/nrm1680. PubMed DOI
Hu X, Lazar MA The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature. 1999; 402:93–6. 10.1038/47069. PubMed DOI
Hu X, Li Y, Lazar MA Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol Cell Biol. 2001; 21:1747–58. 10.1128/MCB.21.5.1747-1758.2001. PubMed DOI PMC
le Maire A, Teyssier C, Erb C et al. A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol. 2010; 17:801–7. 10.1038/nsmb.1855. PubMed DOI
Ghosh JC, Yang X, Zhang A et al. Interactions that determine the assembly of a retinoid X receptor/corepressor complex. Proc Natl Acad Sci USA. 2002; 99:5842–7. 10.1073/pnas.092043399. PubMed DOI PMC
Oñate SA, Tsai SY, Tsai M-J et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995; 270:1354–7. PubMed
Voegel JJ, Heine MJS, Zechel C et al. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 1996; 15:3667–75. 10.1002/j.1460-2075.1996.tb00736.x. PubMed DOI PMC
McInerney EM, Rose DW, Flynn SE et al. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 1998; 12:3357–68. 10.1101/gad.12.21.3357. PubMed DOI PMC
Lou X, Toresson G, Benod C et al. Structure of the retinoid X receptor α–liver X receptor β (RXRα–LXRβ) heterodimer on DNA. Nat Struct Mol Biol. 2014; 21:277–81. 10.1038/nsmb.2778. PubMed DOI
Chandra V, Huang P, Hamuro Y et al. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature. 2008; 456:350–6. 10.1038/nature07413. PubMed DOI PMC
Chandra V, Wu D, Li S et al. The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission. Nat Commun. 2017; 8:868. 10.1038/s41467-017-00981-y. PubMed DOI PMC
Orlov I, Rochel N, Moras D et al. Structure of the full human RXR/VDR nuclear receptor heterodimer complex with its DR3 target DNA. EMBO J. 2012; 31:291–300. 10.1038/emboj.2011.445. PubMed DOI PMC
Chandra V, Huang P, Potluri N et al. Multidomain integration in the structure of the HNF-4α nuclear receptor complex. Nature. 2013; 495:394–8. 10.1038/nature11966. PubMed DOI PMC
Huang W, Peng Y, Kiselar J et al. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat Commun. 2018; 9:3520. 10.1038/s41467-018-06034-2. PubMed DOI PMC
Maletta M, Orlov I, Roblin P et al. The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning. Nat Commun. 2014; 5:4139. 10.1038/ncomms5139. PubMed DOI
Seacrist CD, Kuenze G, Hoffmann RM et al. Integrated structural modeling of full-length LRH-1 reveals inter-domain interactions contribute to receptor structure and function. Structure. 2020; 28:830–46. 10.1016/j.str.2020.04.020. PubMed DOI PMC
Meijsing SH, Pufall MA, So AY et al. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science. 2009; 324:407–10. 10.1126/science.1164265. PubMed DOI PMC
de Vera IMS, Zheng J, Novick S et al. Synergistic regulation of coregulator/nuclear receptor interaction by ligand and DNA. Structure. 2017; 25:1506–18. 10.1016/j.str.2017.07.019. PubMed DOI PMC
Zhang J, Chalmers MJ, Stayrook KR et al. DNA binding alters coactivator interaction surfaces of the intact VDR–RXR complex. Nat Struct Mol Biol. 2011; 18:556–63. 10.1038/nsmb.2046. PubMed DOI PMC
Watson LC, Kuchenbecker KM, Schiller BJ et al. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol. 2013; 20:876–83. 10.1038/nsmb.2595. PubMed DOI PMC
Schöne S, Jurk M, Helabad MB et al. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity. Nat Commun. 2016; 7:12621. PubMed PMC
Bernardes A, Batista FAH, de Oliveira Neto M et al. Low-resolution molecular models reveal the oligomeric state of the PPAR and the conformational organization of its domains in solution. PLoS One. 2012; 7:e31852. 10.1371/journal.pone.0031852. PubMed DOI PMC
Zheng J, Chang MR, Stites RE et al. HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Nat Commun. 2017; 8:923. 10.1038/s41467-017-00978-7. PubMed DOI PMC
Gronemeyer H, Bourguet W Allosteric effects govern nuclear receptor action: DNA appears as a player. Sci Signal. 2009; 2:pe34. 10.1126/scisignal.273pe34. PubMed DOI
Rochel N, Ciesielski F, Godet J et al. Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol. 2011; 18:564–70. 10.1038/nsmb.2054. PubMed DOI
Osz J, McEwen AG, Bourguet M et al. Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR. Nucleic Acids Res. 2020; 48:9969–85. 10.1093/nar/gkaa697. PubMed DOI PMC
Kersten S, Kelleher D, Chambon P et al. Retinoid X receptor α forms tetramers in solution. Proc Natl Acad Sci USA. 1995; 92:8645–9. 10.1073/pnas.92.19.8645. PubMed DOI PMC
Dong D, Noy N Heterodimer formation by retinoid X receptor: regulation by ligands and by the receptor's self-association properties. Biochemistry. 1998; 37:10691–700. 10.1021/bi980561r. PubMed DOI
Senicourt L, le Maire A, Allemand F et al. Structural insights into the interaction of the intrinsically disordered co-activator TIF2 with retinoic acid receptor heterodimer (RXR/RAR). J Mol Biol. 2021; 433:166899. 10.1016/j.jmb.2021.166899. PubMed DOI
Cordeiro TN, Sibille N, Germain P et al. Interplay of protein disorder in retinoic acid receptor heterodimer and its corepressor regulates gene expression. Structure. 2019; 27:1270–85. 10.1016/j.str.2019.05.001. PubMed DOI
Rosales T, Royer CA A graphical user interface for BIOEQS: a program for simulating and analyzing complex biomolecular interactions. Anal Biochem. 2008; 381:270–2. 10.1016/j.ab.2008.05.056. PubMed DOI PMC
Royer CA, Beechem JM Numerical analysis of binding data: advantages, practical aspects, and implications. Methods Enzymol. 1992; 210:481–505. PubMed
Royer CA, Smith WR, Beechem JM Analysis of binding in macromolecular complexes: a generalized numerical approach. Anal Biochem. 1990; 191:287–94. 10.1016/0003-2697(90)90221-T. PubMed DOI
Yang M, Hoeppner M, Rey M et al. Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem. 2015; 87:6681–7. 10.1021/acs.analchem.5b00831. PubMed DOI
Trcka F, Durech M, Vankova P et al. Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol Cell Proteomics. 2019; 18:320–37. 10.1074/mcp.RA118.001044. PubMed DOI PMC
Kavan D, Man P MSTools—web based application for visualization and presentation of HXMS data. Int J Mass Spectrom. 2011; 302:53–8. 10.1016/j.ijms.2010.07.030. DOI
Thureau A, Roblin P, Pérez J BioSAXS on the SWING beamline at synchrotron SOLEIL. J Appl Crystallogr. 2021; 54:1698–710. 10.1107/S1600576721008736. DOI
Blanchet CE, Svergun DI Small-angle X-Ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem. 2013; 64:37–54. 10.1146/annurev-physchem-040412-110132. PubMed DOI
Panjkovich A, Svergun DI CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics. 2018; 34:1944–6. 10.1093/bioinformatics/btx846. PubMed DOI PMC
Manalastas-Cantos K, Konarev PV, Hajizadeh NR et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr. 2021; 54:343–55. 10.1107/S1600576720013412. PubMed DOI PMC
Konarev PV, Volkov VV, Sokolova AV et al. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003; 36:1277–82. 10.1107/S0021889803012779. DOI
Hajizadeh NR, Franke D, Jeffries CM et al. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Sci Rep. 2018; 8:7204. 10.1038/s41598-018-25355-2. PubMed DOI PMC
Svergun DI Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr. 1992; 25:495–503. 10.1107/S0021889892001663. DOI
Barozet A, Molloy K, Vaisset M et al. MoMA-LoopSampler: a web server to exhaustively sample protein loop conformations. Bioinformatics. 2022; 38:552–3. 10.1093/bioinformatics/btab584. PubMed DOI
Bernadó P, Mylonas E, Petoukhov MV et al. Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc. 2007; 129:5656–64. 10.1021/ja069124n. PubMed DOI
Tucker MR, Piana S, Tan D et al. Development of force field parameters for the simulation of single- and double-stranded DNA molecules and DNA–protein complexes. J Phys Chem B. 2022; 126:4442–57. 10.1021/acs.jpcb.1c10971. PubMed DOI PMC
Shirts MR, Klein C, Swails JM et al. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. J Comput Aided Mol Des. 2017; 31:147–61. 10.1007/s10822-016-9977-1. PubMed DOI PMC
Case DA, Aktulga HM, Belfon K et al. AmberTools. J Chem Inf Model. 2023; 63:6183–91. 10.1021/acs.jcim.3c01153. PubMed DOI PMC
Gowers R, Linke M, Barnoud J et al. MDAnalysis: a Python Package for the Rapid Analysis of Molecular Dynamics Simulations. 2016; 98–105.
Manalastas-Cantos K, Konarev PV, Hajizadeh NR et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr. 54:343–55. 10.1107/S1600576720013412. PubMed DOI PMC
Köfinger J, Hummer G Empirical optimization of molecular simulation force fields by Bayesian inference. Europ Phys J B. 2021; 94:245.
Penvose A, Keenan JL, Bray D et al. Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity. Nat Commun. 2019; 10:2514. 10.1038/s41467-019-10264-3. PubMed DOI PMC
Koch MHJ, Vachette P, Svergun DI Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quart Rev Biophys. 2003; 36:147–227. 10.1017/S0033583503003871. PubMed DOI
Tucker MR, Piana S, Tan D et al. Development of force field parameters for the simulation of single- and double-stranded DNA molecules and DNA–protein complexes. J Phys Chem B. 2022; 126:4442–57. 10.1021/acs.jpcb.1c10971. PubMed DOI PMC
Abramson J, Adler J, Dunger J et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024; 630:493–500. 10.1038/s41586-024-07487-w. PubMed DOI PMC
Rastinejad F Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol. 2022; 69:T25–36. 10.1530/JME-22-0113. PubMed DOI PMC
Rastinejad F Allosteric communications between domains of nuclear receptors. Steroids. 2025; 214:109551. 10.1016/j.steroids.2024.109551. PubMed DOI
Rastinejad F, Wagner T, Zhao Q et al. Structure of the RXR–RAR DNA-binding complex on the retinoic acid response element DR1. EMBO J. 2000; 19:1045–54. 10.1093/emboj/19.5.1045. PubMed DOI PMC
Sheng Y, Guo Y, Zhao B et al. Structural basis for the asymmetric binding of coactivator SRC1 to FXR-RXRα and allosteric communication within the complex. Commun Biol. 2025; 8:425. 10.1038/s42003-025-07854-x. PubMed DOI PMC
Germain P, Iyer J, Zechel C et al. Co-regulator recruitment and the mechanism of retinoic acid receptor synergy. Nature. 2002; 415:187–92. 10.1038/415187a. PubMed DOI
Pogenberg V, Guichoul JF, Vivat-Hannah V et al. Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem. 2005; 280:1625–33. 10.1074/jbc.M409302200. PubMed DOI
Hazarika S, Yu T, Biswas A et al. Nuclear receptor interdomain communication is mediated by the hinge with ligand specificity. J Mol Biol. 2024; 436:168805. 10.1016/j.jmb.2024.168805. PubMed DOI
Chebaro Y, Sirigu S, Amal I et al. Allosteric regulation in the ligand binding domain of retinoic acid receptorγ. PLoS One. 2017; 12:e0171043. 10.1371/journal.pone.0171043. PubMed DOI PMC
Guillien M, le Maire A, Mouhand A et al. IDPs and their complexes in GPCR and nuclear receptor signaling. Prog Mol Biol Transl Sci. 2020; 174:105–55. PubMed
Brodie J, McEwan IJ Intra-domain communication between the N-terminal and DNA-binding domains of the androgen receptor: modulation of androgen response element DNA binding. J Mol Endocrinol. 2005; 34:603–15. 10.1677/jme.1.01723. PubMed DOI
Katsu Y, Oka K, Baker ME Evolution of human, chicken, alligator, frog, and zebrafish mineralocorticoid receptors: allosteric influence on steroid specificity. Sci Signal. 2018; 11:eaao1520. 10.1126/scisignal.aao1520. PubMed DOI
Perez-Riverol Y, Bandla C, Kundu DJ et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025; 53:D543–53. 10.1093/nar/gkae1011. PubMed DOI PMC