Helical sensors of membrane saturation: Changes in orientation and curvature preference

. 2025 Dec 02 ; 124 (23) : 4087-4095. [epub] 20251003

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41046336
Odkazy

PubMed 41046336
PubMed Central PMC12709426
DOI 10.1016/j.bpj.2025.09.042
PII: S0006-3495(25)00622-8
Knihovny.cz E-zdroje

The degree of unsaturation in lipids, which refers to the number of double bonds in their acyl chains, influences properties such as fluidity and lipid packing. However, it is not well understood how the unsaturation affects the ability of peptides to sense membrane curvature. In our study, we compared membranes with varying levels of unsaturation: monounsaturated POPC; bis-unsaturated DOPC; and polyunsaturated PAPC. We investigated how these membranes interact with peptides of varying hydrophobicity. Using coarse-grained molecular dynamics simulations, we found that increasing unsaturation leads to deeper peptide insertion into the lipid bilayer, which correlates with a shift in curvature preference toward more negative values. We demonstrate that specific peptides preferentially localize on the positively curved regions in saturated membranes but shift preference to negatively curved regions in unsaturated membranes, thereby functioning as sensors of membrane unsaturation. In addition, polyunsaturated lipids facilitate the reorientation of peptides from a membrane-adsorbed state to a transmembrane state. These findings may play a role in biological processes such as vesicle formation, membrane fusion, and protein sorting and highlight the adaptability of peptides to different lipid compositions in membranes.

Zobrazit více v PubMed

Ian M.A., et al. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 2012;13:39–51. PubMed PMC

Marco A.O.M., Glogauer M. Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J. Leukoc. Biol. 2010;87:545–555. PubMed

Joost H., Tim P.L. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 2005;6:209–220. PubMed

Bigay J., Gounon P., et al. Antonny B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature. 2003;426:563–566. PubMed

Bigay J., Casella J.F., et al. Antonny B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005;24:2244–2253. PubMed PMC

Frost A., Unger V.M., De Camilli P. The BAR domain superfamily: membrane-molding macromolecules. Cell. 2009;137:191–196. PubMed PMC

Bruno A., et al. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 1997;272:30848–30851. PubMed

Levi S., Rawet M., et al. Cassel D. Topology of amphipathic motifs mediating Golgi localization in ArfGAP1 and its splice isoforms. J. Biol. Chem. 2008;283:8564–8572. PubMed

Lorent J.H., Levental K.R., et al. Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020;16:644–652. PubMed PMC

Schneiter R., Brügger B., et al. Kohlwein S.D. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 1999;146:741–754. PubMed PMC

Tuller G., Nemec T., et al. Daum G. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast. 1999;15:1555–1564. PubMed

Mellman I., Nelson W.J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 2008;9:833–845. PubMed PMC

Vitrac H., et al. Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc. Natl. Acad. Sci. 2015;112.45:13874–13879. PubMed PMC

Bigay J., Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell. 2012;23:886–895. PubMed

Wade F.Z., et al. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat. Commun. 2018;9:4152. PubMed PMC

Brian J.P., et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303.5657:495–499. PubMed

Cui H., Lyman E., Voth G.A. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys. J. 2011;100:1271–1279. PubMed PMC

Vanni S., Hirose H., et al. Gautier R. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 2014;5:4916. PubMed

Vamparys L., Gautier R., et al. Fuchs P.F.J. Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. Biophys. J. 2013;104:585–593. PubMed PMC

Campelo F., Kozlov M.M. Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 2014;10 PubMed PMC

Ollila O.H.S., Risselada H.J., et al. Marrink S.J. 3D pressure field in lipid membranes and membrane-protein complexes Physical Review Letters. Phys. Rev. Lett. 2009;102 PubMed

Pajtinka P., Vácha R. Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes. J. Phys. Chem. Lett. 2023;15:175–179. PubMed PMC

Seurig M., Ek M., et al. Fluman N. Dynamic membrane topology in an unassembled membrane protein. Nat. Chem. Biol. 2019;15:945–948. PubMed

Webb B., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2016;54:5–6. PubMed PMC

Djurre H.D.J., et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theor. Comput. 2013;9:687–697. PubMed

Gautier R., et al. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. 2008;24.18:2101–2102. PubMed

Brooks B.R., Brooks C.L., 3rd, et al. Karplus M. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. PubMed PMC

Jo S., Kim T., et al. Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed

Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.

Bonomi M., Branduardi D., et al. Parrinello M. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 2009;180:1961–1972.

Monticelli L., Kandasamy S.K., et al. Marrink S.J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theor. Comput. 2008;4:819–834. PubMed

Gómez-Llobregat J., Elías-Wolff F., Lindén M. Anisotropic membrane curvature sensing by amphipathic peptides. Biophys. J. 2016;110:197–204. PubMed PMC

Lindahl V., Lidmar J., Hess B. Accelerated weight histogram method for exploring free energy landscapes. J. Chem. Phys. 2014;141:044110. PubMed

Bhaskara R.M., Grumati P., et al. Hummer G. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 2019;10:2370. PubMed PMC

Deserno M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids. 2015;185:11–45. PubMed

Kučerka N., Nieh M.-P., Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 2011;1808.11:2761–2771. PubMed

Kučerka N., et al. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 2008;95:2356–2367. PubMed PMC

Kannan R., et al. Packing and viscoelasticity of polyunsaturated ω-3 and ω-6 lipid bilayers as seen by 2H NMR and X-ray diffraction. J. Am. Chem. Soc. 2005;127:1576–1588. PubMed

Holte L.L., Peter S.A., et al. Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys. J. 1995;68:2396–2403. PubMed PMC

Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. PubMed

Boyd K.J., Alder N.N., Eric R.M. Buckling under pressure: curvature-based lipid segregation and stability modulation in cardiolipin-containing bilayers. Langmuir. 2017;33:6937–6946. PubMed PMC

Ollila S., Hyvönen M.T., Vattulainen I. Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. J. Phys. Chem. B. 2007;111:3139–3150. PubMed

Perrin B.S., Sodt A.J., et al. Pastor R.W. The curvature induction of surface-bound antimicrobial peptides piscidin 1 and piscidin 3 varies with lipid chain length. Biophys. J. 2015;108 PubMed PMC

Bogdanov M., Dowhan W., Vitrac H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta. 2014;1843:1475–1488. PubMed PMC

Kabelka I., Vácha R. Optimal hydrophobicity and reorientation of amphiphilic peptides translocating through membrane. Biophys. J. 2018;115:1045–1054. PubMed PMC

Risselada H.J., Marrink S.J. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys. Chem. Chem. Phys. 2009;11:2056–2067. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...