Helical sensors of membrane saturation: Changes in orientation and curvature preference
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41046336
PubMed Central
PMC12709426
DOI
10.1016/j.bpj.2025.09.042
PII: S0006-3495(25)00622-8
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána * chemie metabolismus MeSH
- fosfatidylcholiny chemie MeSH
- hydrofobní a hydrofilní interakce MeSH
- lipidové dvojvrstvy * chemie metabolismus MeSH
- peptidy chemie metabolismus MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- fosfatidylcholiny MeSH
- lipidové dvojvrstvy * MeSH
- peptidy MeSH
The degree of unsaturation in lipids, which refers to the number of double bonds in their acyl chains, influences properties such as fluidity and lipid packing. However, it is not well understood how the unsaturation affects the ability of peptides to sense membrane curvature. In our study, we compared membranes with varying levels of unsaturation: monounsaturated POPC; bis-unsaturated DOPC; and polyunsaturated PAPC. We investigated how these membranes interact with peptides of varying hydrophobicity. Using coarse-grained molecular dynamics simulations, we found that increasing unsaturation leads to deeper peptide insertion into the lipid bilayer, which correlates with a shift in curvature preference toward more negative values. We demonstrate that specific peptides preferentially localize on the positively curved regions in saturated membranes but shift preference to negatively curved regions in unsaturated membranes, thereby functioning as sensors of membrane unsaturation. In addition, polyunsaturated lipids facilitate the reorientation of peptides from a membrane-adsorbed state to a transmembrane state. These findings may play a role in biological processes such as vesicle formation, membrane fusion, and protein sorting and highlight the adaptability of peptides to different lipid compositions in membranes.
Zobrazit více v PubMed
Ian M.A., et al. Regulating the regulator: post-translational modification of RAS. Nat. Rev. Mol. Cell Biol. 2012;13:39–51. PubMed PMC
Marco A.O.M., Glogauer M. Pivotal Advance: Phospholipids determine net membrane surface charge resulting in differential localization of active Rac1 and Rac2. J. Leukoc. Biol. 2010;87:545–555. PubMed
Joost H., Tim P.L. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 2005;6:209–220. PubMed
Bigay J., Gounon P., et al. Antonny B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature. 2003;426:563–566. PubMed
Bigay J., Casella J.F., et al. Antonny B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005;24:2244–2253. PubMed PMC
Frost A., Unger V.M., De Camilli P. The BAR domain superfamily: membrane-molding macromolecules. Cell. 2009;137:191–196. PubMed PMC
Bruno A., et al. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 1997;272:30848–30851. PubMed
Levi S., Rawet M., et al. Cassel D. Topology of amphipathic motifs mediating Golgi localization in ArfGAP1 and its splice isoforms. J. Biol. Chem. 2008;283:8564–8572. PubMed
Lorent J.H., Levental K.R., et al. Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 2020;16:644–652. PubMed PMC
Schneiter R., Brügger B., et al. Kohlwein S.D. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 1999;146:741–754. PubMed PMC
Tuller G., Nemec T., et al. Daum G. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast. 1999;15:1555–1564. PubMed
Mellman I., Nelson W.J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 2008;9:833–845. PubMed PMC
Vitrac H., et al. Dynamic membrane protein topological switching upon changes in phospholipid environment. Proc. Natl. Acad. Sci. 2015;112.45:13874–13879. PubMed PMC
Bigay J., Antonny B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell. 2012;23:886–895. PubMed
Wade F.Z., et al. Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat. Commun. 2018;9:4152. PubMed PMC
Brian J.P., et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303.5657:495–499. PubMed
Cui H., Lyman E., Voth G.A. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys. J. 2011;100:1271–1279. PubMed PMC
Vanni S., Hirose H., et al. Gautier R. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 2014;5:4916. PubMed
Vamparys L., Gautier R., et al. Fuchs P.F.J. Conical lipids in flat bilayers induce packing defects similar to that induced by positive curvature. Biophys. J. 2013;104:585–593. PubMed PMC
Campelo F., Kozlov M.M. Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 2014;10 PubMed PMC
Ollila O.H.S., Risselada H.J., et al. Marrink S.J. 3D pressure field in lipid membranes and membrane-protein complexes Physical Review Letters. Phys. Rev. Lett. 2009;102 PubMed
Pajtinka P., Vácha R. Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes. J. Phys. Chem. Lett. 2023;15:175–179. PubMed PMC
Seurig M., Ek M., et al. Fluman N. Dynamic membrane topology in an unassembled membrane protein. Nat. Chem. Biol. 2019;15:945–948. PubMed
Webb B., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics. 2016;54:5–6. PubMed PMC
Djurre H.D.J., et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theor. Comput. 2013;9:687–697. PubMed
Gautier R., et al. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. 2008;24.18:2101–2102. PubMed
Brooks B.R., Brooks C.L., 3rd, et al. Karplus M. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. PubMed PMC
Jo S., Kim T., et al. Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed
Abraham M.J., Murtola T., et al. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
Bonomi M., Branduardi D., et al. Parrinello M. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 2009;180:1961–1972.
Monticelli L., Kandasamy S.K., et al. Marrink S.J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theor. Comput. 2008;4:819–834. PubMed
Gómez-Llobregat J., Elías-Wolff F., Lindén M. Anisotropic membrane curvature sensing by amphipathic peptides. Biophys. J. 2016;110:197–204. PubMed PMC
Lindahl V., Lidmar J., Hess B. Accelerated weight histogram method for exploring free energy landscapes. J. Chem. Phys. 2014;141:044110. PubMed
Bhaskara R.M., Grumati P., et al. Hummer G. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 2019;10:2370. PubMed PMC
Deserno M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids. 2015;185:11–45. PubMed
Kučerka N., Nieh M.-P., Katsaras J. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 2011;1808.11:2761–2771. PubMed
Kučerka N., et al. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 2008;95:2356–2367. PubMed PMC
Kannan R., et al. Packing and viscoelasticity of polyunsaturated ω-3 and ω-6 lipid bilayers as seen by 2H NMR and X-ray diffraction. J. Am. Chem. Soc. 2005;127:1576–1588. PubMed
Holte L.L., Peter S.A., et al. Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys. J. 1995;68:2396–2403. PubMed PMC
Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. PubMed
Boyd K.J., Alder N.N., Eric R.M. Buckling under pressure: curvature-based lipid segregation and stability modulation in cardiolipin-containing bilayers. Langmuir. 2017;33:6937–6946. PubMed PMC
Ollila S., Hyvönen M.T., Vattulainen I. Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. J. Phys. Chem. B. 2007;111:3139–3150. PubMed
Perrin B.S., Sodt A.J., et al. Pastor R.W. The curvature induction of surface-bound antimicrobial peptides piscidin 1 and piscidin 3 varies with lipid chain length. Biophys. J. 2015;108 PubMed PMC
Bogdanov M., Dowhan W., Vitrac H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta. 2014;1843:1475–1488. PubMed PMC
Kabelka I., Vácha R. Optimal hydrophobicity and reorientation of amphiphilic peptides translocating through membrane. Biophys. J. 2018;115:1045–1054. PubMed PMC
Risselada H.J., Marrink S.J. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys. Chem. Chem. Phys. 2009;11:2056–2067. PubMed