Anticoronavirus Isoquinoline Alkaloids: Unraveling the Secrets of Their Structure-Activity Relationship
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
114-2320-B-037-020-MY3
National Science and Technology Council (NSTC), Taiwan
113-2320-B-037-023
National Science and Technology Council (NSTC), Taiwan
113-2321-B-255-001
National Science and Technology Council (NSTC), Taiwan
112-2321-B-225-001
National Science and Technology Council (NSTC), Taiwan
112-2321-B-182-003
National Science and Technology Council (NSTC), Taiwan
111-2320-B-255-006-MY3
National Science and Technology Council (NSTC), Taiwan
111-2320-B-037-007
National Science and Technology Council (NSTC), Taiwan
112-2320-B-037-012
National Science and Technology Council (NSTC), Taiwan
112-2320-B-037-009
National Science and Technology Council (NSTC), Taiwan
113-2320-B-650-001-MY3
National Science and Technology Council (NSTC), Taiwan
ZRRPF3N0101
Chang Gung University of Science and Technology
CMRPF1M0101-2
Chang Gung Memorial Hospital
CMRPF1M0131-2
Chang Gung Memorial Hospital
CMRPF1N0021
Chang Gung Memorial Hospital
SVV 260 662
Charles University
KMU- Q113011
Kaohsiung Medical University Research Foundation
KMU-M114020
Kaohsiung Medical University Research Foundation
CZ.02.01.01/00/23_021/0008442
European Commission
NSYSU-KMU-114-P16
NSYSU-KMU joint research project
PubMed
41047521
PubMed Central
PMC12497685
DOI
10.1111/irv.70166
Knihovny.cz E-zdroje
- Klíčová slova
- ChemGPS‐NP, Omicron, SARS‐CoV‐2, bis‐benzylisoquinoline, docking,
- MeSH
- alkaloidy * farmakologie chemie MeSH
- antivirové látky * farmakologie chemie MeSH
- COVID-19 MeSH
- farmakoterapie COVID-19 MeSH
- isochinoliny * farmakologie chemie MeSH
- lidé MeSH
- lidský koronavirus 229E účinky léků MeSH
- SARS-CoV-2 * účinky léků MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy * MeSH
- antivirové látky * MeSH
- isochinoliny * MeSH
- isoquinoline MeSH Prohlížeč
BACKGROUND: Natural alkaloids are a structurally diverse class of bioactive compounds with significant therapeutic potential. This study aimed to evaluate the in vitro antiviral activity of various natural alkaloids against coronaviruses, clarify molecular effects via bioassays and docking, and explore structure-activity relationships. Tested compounds included a wide variety of isoquinoline and Amaryllidaceae-type alkaloids. METHODOLOGY: Antiviral activity was assessed using HCoV-229E and pseudotyped lentivirus assays for different strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cytotoxicity was evaluated with the WST-1 assay. AutoDock was used for molecular docking, online tools assessed drug-likeness, and ChemGPS-NP analyzed physicochemical properties correlated to antiviral clinical drugs. RESULTS: Several bis-benzylisoquinoline alkaloids, especially from Berberis vulgaris L., and specific Amaryllidaceae alkaloids showed protective activity against HCoV-229E (EC50 = 4.1-8.1 μM). Active compounds were further tested against SARS-CoV-2 variants. Aromoline (Compound 16) exhibited strong antiviral activity, inhibiting D614G, Delta, and Omicron variants in pseudovirus assays with IC50 values of 0.47-0.66 μM. Other bis-benzylisoquinoline analogues showed moderate activity (IC50 = 1.24-2.86 μM). Docking studies revealed aromoline's favorable interaction at the SARS-CoV-2 spike/ACE2 interface, forming hydrogen bonds with Gln493 and Ser494 (binding energy -5.34 kcal/mol). ChemGPS-NP analysis highlighted a distinct cluster of active bis-benzylisoquinolines (Compounds 16-19) in chemical space. CONCLUSION: This study highlights the antiviral potential of bis-benzylisoquinoline and Amaryllidaceae alkaloids, particularly aromoline. The findings support their relevance as scaffolds for developing novel anticoronavirus agents and advance the understanding of their structure-activity relationships.
Department of Anesthesiology Chang Gung Memorial Hospital Taoyuan Taiwan
Department of Biotechnology College of Life Science Kaohsiung Medical University Kaohsiung Taiwan
Department of Pharmaceutical Biosciences Faculty of Pharmacy Uppsala University Uppsala Sweden
Drug Development and Value Creation Research Center Kaohsiung Medical University Kaohsiung Taiwan
Graduate Institute of Natural Products College of Medicine Chang Gung University Taoyuan Taiwan
Zobrazit více v PubMed
Mani J. S., Johnson J. B., Steel J. C., et al., “Natural Product‐Derived Phytochemicals as Potential Agents Against Coronaviruses: A Review,” Virus Research 284 (2020): 197989, 10.1016/j.virusres.2020.197989. PubMed DOI PMC
World Health Organization , “Coronavirus disease (COVID‐19) Pandemic,” (2025), https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019.
Wu C., Liu Y., Yang Y., et al., “Analysis of Therapeutic Targets for SARS‐CoV‐2 and Discovery of Potential Drugs by Computational Methods,” Acta Pharmaceutica Sinica B 10, no. 5 (2020): 766–788, 10.1016/j.apsb.2020.02.008. PubMed DOI PMC
Elmezayen A. D., Al‐Obaidi A., Sahin A. T., and Yelekci K., “Drug Repurposing for Coronavirus (COVID‐19): In Silico Screening of Known Drugs Against Coronavirus 3CL Hydrolase and Protease Enzymes,” Journal of Biomolecular Structure & Dynamics 39, no. 8 (2021): 2980–2992, 10.1080/07391102.2020.1758791. PubMed DOI PMC
Gyebi G. A., Ogunro O. B., Adegunloye A. P., Ogunyemi O. M., and Afolabi S. O., “Potential Inhibitors of Coronavirus 3‐Chymotrypsin‐Like Protease (3CL(pro)): An In Silico Screening of Alkaloids and Terpenoids From African Medicinal Plants,” Journal of Biomolecular Structure & Dynamics 39, no. 9 (2021): 3396–3408, 10.1080/07391102.2020.1764868. PubMed DOI PMC
Korber B., Fischer W. M., Gnanakaran S., et al., “Tracking Changes in SARS‐CoV‐2 Spike: Evidence That D614G Increases Infectivity of the COVID‐19 Virus,” Cell 182, no. 4 (2020): 812–827, 10.1016/j.cell.2020.06.043. PubMed DOI PMC
Sariol A. and Perlman S., “Lessons for COVID‐19 Immunity From Other Coronavirus Infections,” Immunity 53, no. 2 (2020): 248–263, 10.1016/j.immuni.2020.07.005. PubMed DOI PMC
Huang X., Dong W., Milewska A., et al., “Human Coronavirus HKU1 Spike Protein Uses O‐Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin‐Esterase Protein as a Receptor‐Destroying Enzyme,” Journal of Virology 89, no. 14 (2015): 7202–7213, 10.1128/JVI.00854-15. PubMed DOI PMC
Zabetakis I., Lordan R., Norton C., and Tsoupras A., “COVID‐19: The Inflammation Link and the Role of Nutrition in Potential Mitigation,” Nutrients 12, no. 5 (2020): 1466, 10.3390/nu12051466. PubMed DOI PMC
Newman D. J. and Cragg G. M., “Natural Products as Sources of New Drugs Over the Nearly Four Decades From 01/1981 to 09/2019,” Journal of Natural Products 83, no. 3 (2020): 770–803, 10.1021/acs.jnatprod.9b01285. PubMed DOI
Jayawardena T. U., Merindol N., Liyanage N. S., and Desgagne‐Penix I., “Unveiling Amaryllidaceae Alkaloids: From Biosynthesis to Antiviral Potential—A Review,” Natural Product Reports 41, no. 5 (2024): 721–747, 10.1039/d3np00044c. PubMed DOI
Qing Z. X., Huang J. L., Yang X. Y., et al., “Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and Their Structure‐Activity Relationship,” Current Medicinal Chemistry 25, no. 38 (2018): 5088–5114, 10.2174/0929867324666170920125135. PubMed DOI
Fielding B. C., da Silva Maia Bezerra Filho C., Ismail N. S. M., and Sousa D. P., “Alkaloids: Therapeutic Potential Against Human Coronaviruses,” Molecules 25, no. 23 (2020): 5496, 10.3390/molecules25235496. PubMed DOI PMC
Ismail E. M. O. A., Shantier S. W., Mohammed M. S., Musa H. H., Osman W., and Mothana R. A., “Quinoline and Quinazoline Alkaloids Against COVID‐19: An In Silico Multitarget Approach,” Journal of Chemistry 2021 (2021): 1–11, 10.1155/2021/3613268. DOI
He C.‐L., Huang L.‐Y., Wang K., et al., “Identification of Bis‐Benzylisoquinoline Alkaloids as SARS‐CoV‐2 Entry Inhibitors From a Library of Natural Products,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 131, 10.1038/s41392-021-00531-5. PubMed DOI PMC
Tang W. F., Tsai H. P., Chang Y. H., et al., “ PubMed DOI PMC
Hsieh C. F., Jheng J. R., Lin G. H., et al., “Rosmarinic Acid Exhibits Broad Anti‐Enterovirus A71 Activity by Inhibiting the Interaction Between the Five‐Fold Axis of Capsid VP1 and Cognate Sulfated Receptors,” Emerging Microbes & Infections 9, no. 1 (2020): 1194–1205, 10.1080/22221751.2020.1767512. PubMed DOI PMC
Chen Y. L., Chen C. Y., Lai K. H., Chang Y. C., and Hwang T. L., “Anti‐Inflammatory and Antiviral Activities of Flavone C‐glycosides of PubMed DOI PMC
Morris G. M., Huey R., Lindstrom W., et al., “AutoDock4 and AutoDockTools4: Automated Docking With Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–2791, 10.1002/jcc.21256. PubMed DOI PMC
Korinek M., Tsai Y. H., El‐Shazly M., et al., “Anti‐Allergic Hydroxy Fatty Acids From PubMed DOI PMC
Ts S., Senthilraja P., and Manivel G., “Molecular Docking, ADMET Property Analysis and Antibacterial Potency of Bioactive Compounds From Marine DOI
Lipinski C. A., “Lead‐and Drug‐Like Compounds: The Rule‐of‐Five Revolution,” Drug Discovery Today: Technologies 1, no. 4 (2004): 337–341, 10.1016/j.ddtec.2004.11.007. PubMed DOI
Daina A., Michielin O., and Zoete V., “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug‐Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7, no. 1 (2017): 42717, 10.1038/srep42717. PubMed DOI PMC
Pires D. E., Blundell T. L., and Ascher D. B., “pkCSM: Predicting Small‐Molecule Pharmacokinetic and Toxicity Properties Using Graph‐Based Signatures,” Journal of Medicinal Chemistry 58, no. 9 (2015): 4066–4072, 10.1021/acs.jmedchem.5b00104. PubMed DOI PMC
Cahlíková L., Macáková K., Kuneš J., et al., “Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds From PubMed DOI
Chlebek J., Macáková K., Cahlíková L., Kurfürst M., Kuneš J., and Opletal L., “Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds From PubMed DOI
Hulcova D., Marikova J., Korabecny J., et al., “Amaryllidaceae Alkaloids From PubMed DOI
Hošťálková A., Novák Z., Hrabinová M., et al., “Alkaloids From DOI
Islam M. T., Sarkar C., El‐Kersh D. M., et al., “Natural Products and Their Derivatives Against Coronavirus: A Review of the Non‐Clinical and Pre‐Clinical Data,” Phytotherapy Research 34, no. 10 (2020): 2471–2492, 10.1002/ptr.6700. PubMed DOI
Serkedjieva J. and Velcheva M., “In Vitro Anti‐inflammatory Virus Activity of the Pavine Alkaloid (−)‐Thalimonine Isolated From PubMed DOI
Serkedjieva J. and Velcheva M., “In Vitro Anti‐inflammatory Virus Activity of Isoquinoline Alkaloids From PubMed DOI
Warowicka A., Nawrot R., and Gozdzicka‐Jozefiak A., “Antiviral Activity of Berberine,” Archives of Virology 165, no. 9 (2020): 1935–1945, 10.1007/s00705-020-04706-3. PubMed DOI PMC
Gaba S., Saini A., Singh G., and Monga V., “An Insight Into the Medicinal Attributes of Berberine Derivatives: A Review,” Bioorganic & Medicinal Chemistry 38 (2021): 116143, 10.1016/j.bmc.2021.116143. PubMed DOI
Hung T. C., Jassey A., Liu C. H., et al., “Berberine Inhibits Hepatitis C Virus Entry by Targeting the Viral E2 Glycoprotein,” Phytomedicine 53 (2019): 62–69, 10.1016/j.phymed.2018.09.025. PubMed DOI
Hoffmann M., Kleine‐Weber H., Schroeder S., et al., “SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor,” Cell 181, no. 2 (2020): 271–280, 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Puttaswamy H., Gowtham H. G., Ojha M. D., et al., “In Silico Studies Evidenced the Role of Structurally Diverse Plant Secondary Metabolites in Reducing SARS‐CoV‐2 Pathogenesis,” Scientific Reports 10, no. 1 (2020): 20584, 10.1038/s41598-020-77602-0. PubMed DOI PMC
Lan J., Ge J., Yu J., et al., “Structure of the SARS‐CoV‐2 Spike Receptor‐Binding Domain Bound to the ACE2 Receptor,” Nature 581, no. 7807 (2020): 215–220, 10.1038/s41586-020-2180-5. PubMed DOI
Ramos R. S., Borges R. S., de Souza J. S. N., Araujo I. F., Chaves M. H., and Santos C. B. R., “Identification of Potential Antiviral Inhibitors From Hydroxychloroquine and 1,2,4,5‐Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS‐CoV‐2,” International Journal of Molecular Sciences 23, no. 3 (2022): 1781, 10.3390/ijms23031781. PubMed DOI PMC
Li K., Meyerholz D. K., Bartlett J. A., and P. B. McCray, Jr. , “The TMPRSS2 Inhibitor Nafamostat Reduces SARS‐CoV‐2 Pulmonary Infection in Mouse Models of COVID‐19,” MBio 12, no. 4 (2021): e0097021, 10.1128/mBio.00970-21. PubMed DOI PMC
Larsson J., Gottfries J., Muresan S., and Backlund A., “ChemGPS‐NP: Tuned for Navigation in Biologically Relevant Chemical Space,” Journal of Natural Products 70, no. 5 (2007): 789–794, 10.1021/np070002y. PubMed DOI
Rosén J., Rickardson L., Backlund A., et al., “ChemGPS‐NP Mapping of Chemical Compounds for Prediction of Anticancer Mode of Action,” QSAR and Combinatorial Science 28, no. 4 (2009): 436–446, 10.1002/qsar.200810162. DOI
Mykhailenko O., Hsieh C. F., El‐Shazly M., et al., “Anti‐Viral and Anti‐Inflammatory Isoflavonoids From Ukrainian PubMed DOI
Van T. T. T., Chang H. S., Wu H. C., et al., “The SAR Analysis of Dietary Polyphenols and Their Antagonistic Effects on Bortezomib at Physiological Concentrations,” Frontiers in Pharmacology 15 (2024): 1403424, 10.3389/fphar.2024.1403424. PubMed DOI PMC
Lai K. H., Peng B. R., Su C. H., et al., “Anti‐Proliferative Potential of Secondary Metabolites From the Marine Sponge PubMed DOI PMC
Zhang L., Lin D., Kusov Y., et al., “Alpha‐Ketoamides as Broad‐Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure‐Based Design, Synthesis, and Activity Assessment,” Journal of Medicinal Chemistry 63, no. 9 (2020): 4562–4578, 10.1021/acs.jmedchem.9b01828. PubMed DOI
Vangeel L., Chiu W., De Jonghe S., et al., “Remdesivir, Molnupiravir and Nirmatrelvir Remain Active Against SARS‐CoV‐2 Omicron and Other Variants of Concern,” Antiviral Research 198 (2022): 105252, 10.1016/j.antiviral.2022.105252. PubMed DOI PMC
Jayaram B., Singh T., Mukherjee G., Mathur A., Shekhar S., and Shekhar V., Sanjeevini. A Freely Accessible Web‐Server for Target Directed Lead Molecule Discovery (Springer, 2012), 1–13. PubMed PMC
Li S.‐y., Chen C., Zhang H.‐q., et al., “Identification of Natural Compounds With Antiviral Activities Against SARS‐Associated Coronavirus,” Antiviral Research 67, no. 1 (2005): 18–23, 10.1016/j.antiviral.2005.02.007. PubMed DOI PMC
Benet L. Z., Hosey C. M., Ursu O., and Oprea T. I., “BDDCS, the Rule of 5 and Drugability,” Advanced Drug Delivery Reviews 101 (2016): 89–98, 10.1016/j.addr.2016.05.007. PubMed DOI PMC
Doak B. C. and Kihlberg J., “Drug Discovery Beyond the Rule of 5—Opportunities and Challenges,” Expert Opinion on Drug Discovery 12, no. 2 (2017): 115–119, 10.1080/17460441.2017.1264385. PubMed DOI
Koyel K., Aditya S., Archana D., et al., “Quantitative Measurement of Some Physico‐Chemical Parameters for the Medicinally Useful Natural Products,” Letters in Drug Design & Discovery 9, no. 7 (2012): 706–730, 10.2174/157018012801319427. DOI
Oh S., Swainston N., Handl J., and Kell D. B., “A ‘Rule of 0.5’ for the Metabolite‐Likeness of Approved Pharmaceutical Drugs,” Metabolomics 11, no. 2 (2015): 323–339, 10.1007/s11306-014-0733-z. PubMed DOI PMC
Rogosnitzky M., Okediji P., and Koman I., “Cepharanthine: A Review of the Antiviral Potential of a Japanese‐Approved Alopecia Drug in COVID‐19,” Pharmacological Reports 72, no. 6 (2020): 1509–1516, 10.1007/s43440-020-00132-z. PubMed DOI PMC