Anticoronavirus Isoquinoline Alkaloids: Unraveling the Secrets of Their Structure-Activity Relationship

. 2025 Oct ; 19 (10) : e70166.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41047521

Grantová podpora
114-2320-B-037-020-MY3 National Science and Technology Council (NSTC), Taiwan
113-2320-B-037-023 National Science and Technology Council (NSTC), Taiwan
113-2321-B-255-001 National Science and Technology Council (NSTC), Taiwan
112-2321-B-225-001 National Science and Technology Council (NSTC), Taiwan
112-2321-B-182-003 National Science and Technology Council (NSTC), Taiwan
111-2320-B-255-006-MY3 National Science and Technology Council (NSTC), Taiwan
111-2320-B-037-007 National Science and Technology Council (NSTC), Taiwan
112-2320-B-037-012 National Science and Technology Council (NSTC), Taiwan
112-2320-B-037-009 National Science and Technology Council (NSTC), Taiwan
113-2320-B-650-001-MY3 National Science and Technology Council (NSTC), Taiwan
ZRRPF3N0101 Chang Gung University of Science and Technology
CMRPF1M0101-2 Chang Gung Memorial Hospital
CMRPF1M0131-2 Chang Gung Memorial Hospital
CMRPF1N0021 Chang Gung Memorial Hospital
SVV 260 662 Charles University
KMU- Q113011 Kaohsiung Medical University Research Foundation
KMU-M114020 Kaohsiung Medical University Research Foundation
CZ.02.01.01/00/23_021/0008442 European Commission
NSYSU-KMU-114-P16 NSYSU-KMU joint research project

BACKGROUND: Natural alkaloids are a structurally diverse class of bioactive compounds with significant therapeutic potential. This study aimed to evaluate the in vitro antiviral activity of various natural alkaloids against coronaviruses, clarify molecular effects via bioassays and docking, and explore structure-activity relationships. Tested compounds included a wide variety of isoquinoline and Amaryllidaceae-type alkaloids. METHODOLOGY: Antiviral activity was assessed using HCoV-229E and pseudotyped lentivirus assays for different strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cytotoxicity was evaluated with the WST-1 assay. AutoDock was used for molecular docking, online tools assessed drug-likeness, and ChemGPS-NP analyzed physicochemical properties correlated to antiviral clinical drugs. RESULTS: Several bis-benzylisoquinoline alkaloids, especially from Berberis vulgaris L., and specific Amaryllidaceae alkaloids showed protective activity against HCoV-229E (EC50 = 4.1-8.1 μM). Active compounds were further tested against SARS-CoV-2 variants. Aromoline (Compound 16) exhibited strong antiviral activity, inhibiting D614G, Delta, and Omicron variants in pseudovirus assays with IC50 values of 0.47-0.66 μM. Other bis-benzylisoquinoline analogues showed moderate activity (IC50 = 1.24-2.86 μM). Docking studies revealed aromoline's favorable interaction at the SARS-CoV-2 spike/ACE2 interface, forming hydrogen bonds with Gln493 and Ser494 (binding energy -5.34 kcal/mol). ChemGPS-NP analysis highlighted a distinct cluster of active bis-benzylisoquinolines (Compounds 16-19) in chemical space. CONCLUSION: This study highlights the antiviral potential of bis-benzylisoquinoline and Amaryllidaceae alkaloids, particularly aromoline. The findings support their relevance as scaffolds for developing novel anticoronavirus agents and advance the understanding of their structure-activity relationships.

Zobrazit více v PubMed

Mani J. S., Johnson J. B., Steel J. C., et al., “Natural Product‐Derived Phytochemicals as Potential Agents Against Coronaviruses: A Review,” Virus Research 284 (2020): 197989, 10.1016/j.virusres.2020.197989. PubMed DOI PMC

World Health Organization , “Coronavirus disease (COVID‐19) Pandemic,” (2025), https://www.who.int/emergencies/diseases/novel‐coronavirus‐2019.

Wu C., Liu Y., Yang Y., et al., “Analysis of Therapeutic Targets for SARS‐CoV‐2 and Discovery of Potential Drugs by Computational Methods,” Acta Pharmaceutica Sinica B 10, no. 5 (2020): 766–788, 10.1016/j.apsb.2020.02.008. PubMed DOI PMC

Elmezayen A. D., Al‐Obaidi A., Sahin A. T., and Yelekci K., “Drug Repurposing for Coronavirus (COVID‐19): In Silico Screening of Known Drugs Against Coronavirus 3CL Hydrolase and Protease Enzymes,” Journal of Biomolecular Structure & Dynamics 39, no. 8 (2021): 2980–2992, 10.1080/07391102.2020.1758791. PubMed DOI PMC

Gyebi G. A., Ogunro O. B., Adegunloye A. P., Ogunyemi O. M., and Afolabi S. O., “Potential Inhibitors of Coronavirus 3‐Chymotrypsin‐Like Protease (3CL(pro)): An In Silico Screening of Alkaloids and Terpenoids From African Medicinal Plants,” Journal of Biomolecular Structure & Dynamics 39, no. 9 (2021): 3396–3408, 10.1080/07391102.2020.1764868. PubMed DOI PMC

Korber B., Fischer W. M., Gnanakaran S., et al., “Tracking Changes in SARS‐CoV‐2 Spike: Evidence That D614G Increases Infectivity of the COVID‐19 Virus,” Cell 182, no. 4 (2020): 812–827, 10.1016/j.cell.2020.06.043. PubMed DOI PMC

Sariol A. and Perlman S., “Lessons for COVID‐19 Immunity From Other Coronavirus Infections,” Immunity 53, no. 2 (2020): 248–263, 10.1016/j.immuni.2020.07.005. PubMed DOI PMC

Huang X., Dong W., Milewska A., et al., “Human Coronavirus HKU1 Spike Protein Uses O‐Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin‐Esterase Protein as a Receptor‐Destroying Enzyme,” Journal of Virology 89, no. 14 (2015): 7202–7213, 10.1128/JVI.00854-15. PubMed DOI PMC

Zabetakis I., Lordan R., Norton C., and Tsoupras A., “COVID‐19: The Inflammation Link and the Role of Nutrition in Potential Mitigation,” Nutrients 12, no. 5 (2020): 1466, 10.3390/nu12051466. PubMed DOI PMC

Newman D. J. and Cragg G. M., “Natural Products as Sources of New Drugs Over the Nearly Four Decades From 01/1981 to 09/2019,” Journal of Natural Products 83, no. 3 (2020): 770–803, 10.1021/acs.jnatprod.9b01285. PubMed DOI

Jayawardena T. U., Merindol N., Liyanage N. S., and Desgagne‐Penix I., “Unveiling Amaryllidaceae Alkaloids: From Biosynthesis to Antiviral Potential—A Review,” Natural Product Reports 41, no. 5 (2024): 721–747, 10.1039/d3np00044c. PubMed DOI

Qing Z. X., Huang J. L., Yang X. Y., et al., “Anticancer and Reversing Multidrug Resistance Activities of Natural Isoquinoline Alkaloids and Their Structure‐Activity Relationship,” Current Medicinal Chemistry 25, no. 38 (2018): 5088–5114, 10.2174/0929867324666170920125135. PubMed DOI

Fielding B. C., da Silva Maia Bezerra Filho C., Ismail N. S. M., and Sousa D. P., “Alkaloids: Therapeutic Potential Against Human Coronaviruses,” Molecules 25, no. 23 (2020): 5496, 10.3390/molecules25235496. PubMed DOI PMC

Ismail E. M. O. A., Shantier S. W., Mohammed M. S., Musa H. H., Osman W., and Mothana R. A., “Quinoline and Quinazoline Alkaloids Against COVID‐19: An In Silico Multitarget Approach,” Journal of Chemistry 2021 (2021): 1–11, 10.1155/2021/3613268. DOI

He C.‐L., Huang L.‐Y., Wang K., et al., “Identification of Bis‐Benzylisoquinoline Alkaloids as SARS‐CoV‐2 Entry Inhibitors From a Library of Natural Products,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 131, 10.1038/s41392-021-00531-5. PubMed DOI PMC

Tang W. F., Tsai H. P., Chang Y. H., et al., “ PubMed DOI PMC

Hsieh C. F., Jheng J. R., Lin G. H., et al., “Rosmarinic Acid Exhibits Broad Anti‐Enterovirus A71 Activity by Inhibiting the Interaction Between the Five‐Fold Axis of Capsid VP1 and Cognate Sulfated Receptors,” Emerging Microbes & Infections 9, no. 1 (2020): 1194–1205, 10.1080/22221751.2020.1767512. PubMed DOI PMC

Chen Y. L., Chen C. Y., Lai K. H., Chang Y. C., and Hwang T. L., “Anti‐Inflammatory and Antiviral Activities of Flavone C‐glycosides of PubMed DOI PMC

Morris G. M., Huey R., Lindstrom W., et al., “AutoDock4 and AutoDockTools4: Automated Docking With Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–2791, 10.1002/jcc.21256. PubMed DOI PMC

Korinek M., Tsai Y. H., El‐Shazly M., et al., “Anti‐Allergic Hydroxy Fatty Acids From PubMed DOI PMC

Ts S., Senthilraja P., and Manivel G., “Molecular Docking, ADMET Property Analysis and Antibacterial Potency of Bioactive Compounds From Marine DOI

Lipinski C. A., “Lead‐and Drug‐Like Compounds: The Rule‐of‐Five Revolution,” Drug Discovery Today: Technologies 1, no. 4 (2004): 337–341, 10.1016/j.ddtec.2004.11.007. PubMed DOI

Daina A., Michielin O., and Zoete V., “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug‐Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7, no. 1 (2017): 42717, 10.1038/srep42717. PubMed DOI PMC

Pires D. E., Blundell T. L., and Ascher D. B., “pkCSM: Predicting Small‐Molecule Pharmacokinetic and Toxicity Properties Using Graph‐Based Signatures,” Journal of Medicinal Chemistry 58, no. 9 (2015): 4066–4072, 10.1021/acs.jmedchem.5b00104. PubMed DOI PMC

Cahlíková L., Macáková K., Kuneš J., et al., “Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds From PubMed DOI

Chlebek J., Macáková K., Cahlíková L., Kurfürst M., Kuneš J., and Opletal L., “Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds From PubMed DOI

Hulcova D., Marikova J., Korabecny J., et al., “Amaryllidaceae Alkaloids From PubMed DOI

Hošťálková A., Novák Z., Hrabinová M., et al., “Alkaloids From DOI

Islam M. T., Sarkar C., El‐Kersh D. M., et al., “Natural Products and Their Derivatives Against Coronavirus: A Review of the Non‐Clinical and Pre‐Clinical Data,” Phytotherapy Research 34, no. 10 (2020): 2471–2492, 10.1002/ptr.6700. PubMed DOI

Serkedjieva J. and Velcheva M., “In Vitro Anti‐inflammatory Virus Activity of the Pavine Alkaloid (−)‐Thalimonine Isolated From PubMed DOI

Serkedjieva J. and Velcheva M., “In Vitro Anti‐inflammatory Virus Activity of Isoquinoline Alkaloids From PubMed DOI

Warowicka A., Nawrot R., and Gozdzicka‐Jozefiak A., “Antiviral Activity of Berberine,” Archives of Virology 165, no. 9 (2020): 1935–1945, 10.1007/s00705-020-04706-3. PubMed DOI PMC

Gaba S., Saini A., Singh G., and Monga V., “An Insight Into the Medicinal Attributes of Berberine Derivatives: A Review,” Bioorganic & Medicinal Chemistry 38 (2021): 116143, 10.1016/j.bmc.2021.116143. PubMed DOI

Hung T. C., Jassey A., Liu C. H., et al., “Berberine Inhibits Hepatitis C Virus Entry by Targeting the Viral E2 Glycoprotein,” Phytomedicine 53 (2019): 62–69, 10.1016/j.phymed.2018.09.025. PubMed DOI

Hoffmann M., Kleine‐Weber H., Schroeder S., et al., “SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor,” Cell 181, no. 2 (2020): 271–280, 10.1016/j.cell.2020.02.052. PubMed DOI PMC

Puttaswamy H., Gowtham H. G., Ojha M. D., et al., “In Silico Studies Evidenced the Role of Structurally Diverse Plant Secondary Metabolites in Reducing SARS‐CoV‐2 Pathogenesis,” Scientific Reports 10, no. 1 (2020): 20584, 10.1038/s41598-020-77602-0. PubMed DOI PMC

Lan J., Ge J., Yu J., et al., “Structure of the SARS‐CoV‐2 Spike Receptor‐Binding Domain Bound to the ACE2 Receptor,” Nature 581, no. 7807 (2020): 215–220, 10.1038/s41586-020-2180-5. PubMed DOI

Ramos R. S., Borges R. S., de Souza J. S. N., Araujo I. F., Chaves M. H., and Santos C. B. R., “Identification of Potential Antiviral Inhibitors From Hydroxychloroquine and 1,2,4,5‐Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS‐CoV‐2,” International Journal of Molecular Sciences 23, no. 3 (2022): 1781, 10.3390/ijms23031781. PubMed DOI PMC

Li K., Meyerholz D. K., Bartlett J. A., and P. B. McCray, Jr. , “The TMPRSS2 Inhibitor Nafamostat Reduces SARS‐CoV‐2 Pulmonary Infection in Mouse Models of COVID‐19,” MBio 12, no. 4 (2021): e0097021, 10.1128/mBio.00970-21. PubMed DOI PMC

Larsson J., Gottfries J., Muresan S., and Backlund A., “ChemGPS‐NP: Tuned for Navigation in Biologically Relevant Chemical Space,” Journal of Natural Products 70, no. 5 (2007): 789–794, 10.1021/np070002y. PubMed DOI

Rosén J., Rickardson L., Backlund A., et al., “ChemGPS‐NP Mapping of Chemical Compounds for Prediction of Anticancer Mode of Action,” QSAR and Combinatorial Science 28, no. 4 (2009): 436–446, 10.1002/qsar.200810162. DOI

Mykhailenko O., Hsieh C. F., El‐Shazly M., et al., “Anti‐Viral and Anti‐Inflammatory Isoflavonoids From Ukrainian PubMed DOI

Van T. T. T., Chang H. S., Wu H. C., et al., “The SAR Analysis of Dietary Polyphenols and Their Antagonistic Effects on Bortezomib at Physiological Concentrations,” Frontiers in Pharmacology 15 (2024): 1403424, 10.3389/fphar.2024.1403424. PubMed DOI PMC

Lai K. H., Peng B. R., Su C. H., et al., “Anti‐Proliferative Potential of Secondary Metabolites From the Marine Sponge PubMed DOI PMC

Zhang L., Lin D., Kusov Y., et al., “Alpha‐Ketoamides as Broad‐Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure‐Based Design, Synthesis, and Activity Assessment,” Journal of Medicinal Chemistry 63, no. 9 (2020): 4562–4578, 10.1021/acs.jmedchem.9b01828. PubMed DOI

Vangeel L., Chiu W., De Jonghe S., et al., “Remdesivir, Molnupiravir and Nirmatrelvir Remain Active Against SARS‐CoV‐2 Omicron and Other Variants of Concern,” Antiviral Research 198 (2022): 105252, 10.1016/j.antiviral.2022.105252. PubMed DOI PMC

Jayaram B., Singh T., Mukherjee G., Mathur A., Shekhar S., and Shekhar V., Sanjeevini. A Freely Accessible Web‐Server for Target Directed Lead Molecule Discovery (Springer, 2012), 1–13. PubMed PMC

Li S.‐y., Chen C., Zhang H.‐q., et al., “Identification of Natural Compounds With Antiviral Activities Against SARS‐Associated Coronavirus,” Antiviral Research 67, no. 1 (2005): 18–23, 10.1016/j.antiviral.2005.02.007. PubMed DOI PMC

Benet L. Z., Hosey C. M., Ursu O., and Oprea T. I., “BDDCS, the Rule of 5 and Drugability,” Advanced Drug Delivery Reviews 101 (2016): 89–98, 10.1016/j.addr.2016.05.007. PubMed DOI PMC

Doak B. C. and Kihlberg J., “Drug Discovery Beyond the Rule of 5—Opportunities and Challenges,” Expert Opinion on Drug Discovery 12, no. 2 (2017): 115–119, 10.1080/17460441.2017.1264385. PubMed DOI

Koyel K., Aditya S., Archana D., et al., “Quantitative Measurement of Some Physico‐Chemical Parameters for the Medicinally Useful Natural Products,” Letters in Drug Design & Discovery 9, no. 7 (2012): 706–730, 10.2174/157018012801319427. DOI

Oh S., Swainston N., Handl J., and Kell D. B., “A ‘Rule of 0.5’ for the Metabolite‐Likeness of Approved Pharmaceutical Drugs,” Metabolomics 11, no. 2 (2015): 323–339, 10.1007/s11306-014-0733-z. PubMed DOI PMC

Rogosnitzky M., Okediji P., and Koman I., “Cepharanthine: A Review of the Antiviral Potential of a Japanese‐Approved Alopecia Drug in COVID‐19,” Pharmacological Reports 72, no. 6 (2020): 1509–1516, 10.1007/s43440-020-00132-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...