Rta1 lipid transporter involved in aluminum and acid tolerance in Cryptococcus humicola

. 2025 Oct 08 ; () : . [epub] 20251008

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41060562
Odkazy

PubMed 41060562
DOI 10.1007/s12223-025-01358-1
PII: 10.1007/s12223-025-01358-1
Knihovny.cz E-zdroje

Aluminum (Al) toxicity is a major limiting factor for crop growth in acidic soils worldwide. Therefore, it is necessary to study Al-tolerance mechanisms. Cryptococcus humicola is a good candidate for Al-tolerance research due to its high ability for Al tolerance. qRT-CR analysis revealed that the expression of the RTA1 gene was upregulated approximately 18-fold in C. humicola under 50 mM Al stress. In this study, we investigated the role of the Rta1 lipid transport protein of C. humicola in acid and Al resistance. The Rta1 lipid transport protein was predicted to be a membrane protein with seven transmembrane structural domains, with low homology to other fungi but highly similar secondary structures. RTA1 mutant and transgenic yeast strains were constructed. Under normal conditions, the RTA1 mutant tended to aggregate into clusters compared with the wild type, but the clustering of the RTA1 mutant disappeared under Al stress. The growth of the RTA1 mutant and transgenic yeast on plates and in liquid culture medium revealed that the Rta1 lipid transporter protein could help C. humicola resist acidic and Al stress. After 50 mM Al treatment, the malondialdehyde content of the RTA1 mutant was greater than that of the wild type, suggesting that membrane lipid damage was more severe in the RTA1 mutant than in the wild type. The above results suggest that the Rta1 lipid transporter protein may affect cellular membrane function and thus lead to increased acid and Al tolerance in cells.

Zobrazit více v PubMed

Alshammari WB, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi NA, Jakovljević D, Alharbi MH, Moustapha ME, Abd El-Moneim D, Abdelaal K (2024) Improvement of morphophysiological and anatomical attributes of plants under abiotic stress conditions using plant growth-promoting bacteria and safety treatments. PeerJ 12:e17286. https://doi.org/10.7717/peerj.17286 PubMed DOI PMC

Andreeva N, Ryazanova L, Dmitriev V, Kulakovskaya T, Kulaev I (2014) Cytoplasmic inorganic polyphosphate participates in the heavy metal tolerance of Cryptococcus humicola. Folia Microbiol (Praha) 59(5):381–389. https://doi.org/10.1007/s12223-014-0310-x PubMed DOI

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999 PubMed DOI

Dai M, Liu J, Zhang L, Tan Y, Yan J, Wang J, Nian H (2020) Transcriptome analysis of Cryptococcus humicola under aluminum stress revealed the potential role of the cell wall in aluminum tolerance. Metallomics 12(9):1370–1379. https://doi.org/10.1039/d0mt00042f PubMed DOI

Dardalhon M, Lin W, Nicolas A, Averbeck D (2007) Specific transcriptional responses induced by 8-methoxypsoralen and UVA in yeast. FEMS Yeast Res 7:866–878. https://doi.org/10.1111/j.1567-1364.2007.00270.x PubMed DOI

Edstam MM, Edqvist J (2014) Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana. Physiol Plant 152(1):32–42 PubMed DOI

Gomar J, Petit MC, Sodano P, Sy D, Marion D, Kader JC, Vovelle F, Ptak M (2008) Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seed. Protein Sci 5(4):565–577. https://doi.org/10.1002/pro.5560050402 DOI

Hamilton JA (2004) Fatty acid interactions with proteins: what X-ray crystal and NMR solution structures tell us. Prog Lipid Res 43(3):177–199. https://doi.org/10.1016/j.plipres.2003.09.002 PubMed DOI

Imanishi D, Abe K, Kera Y, Takahashi S (2018) Draft genome sequence of the yeast Vanrija humicola (formerly Cryptococcus humicola) strain UJ1, a producer of d-aspartate oxidase. Genome Announc 6(11):e00068–18. https://doi.org/10.1128/genomeA.00068-18 PubMed DOI PMC

Imanishi D, Zaitsu S, Takahashi S (2021) Regulation of d-aspartate oxidase gene expression by pyruvate metabolism in the yeast Cryptococcus humicola. Microorganisms 9(12):2444. https://doi.org/10.3390/microorganisms9122444 PubMed DOI PMC

Iwahashi H, Kitagawa E, Suzuki Y, Ueda Y, Ishizawa YH, Nobumasa H, Kuboki Y, Hosoda H, Iwahashi Y (2007) Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and oligo DNA microarray. BMC Genomics 8:95. https://doi.org/10.1186/1471-2164-8-95 PubMed DOI PMC

Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852 PubMed DOI

Jia XM, Ma ZP, Jia Y, Gao PH, Zhang JD, Wang Y, Jiang YY (2009) RTA2, a novel gene involved in azole resistance in Candida albicans. Biochem Biophys Res Commun 373:631–636. https://doi.org/10.1016/j.bbrc.2008.06.093 DOI

Jia XM, Wang Y, Jia Y, Gao PH, Xu YG, Wang L, Cao YY, Cao YB, Zhang LX, Jiang YY (2009) RTA2 is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in Candida albicans. Cell Mol Life Sci 66(1):122–134 PubMed DOI

Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47(1):627–654. https://doi.org/10.1146/annurev.arplant.47.1.627 PubMed DOI

Kovalchuk A, Driessen A (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genomics 11(1):177. https://doi.org/10.1186/1471-2164-11-177 PubMed DOI PMC

Kulakovskaya T, Ryazanova L, Zvonarev A, Khokhlova G, Ostroumov V, Vainshtein M (2018) The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation. Folia Microbiol (Praha) 63(4):507–510. https://doi.org/10.1007/s12223-018-0583-6 PubMed DOI

Liang L, Li J, Cheng L, Ling J, Luo Z, Bai M, Xie B (2014) A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum. Microbiol Res 169(11):835–843. https://doi.org/10.1016/j.micres.2014.03.004 PubMed DOI

Michael GP, Poul N (2011) P-Type ATPases. Annu Rev Biophys 40(1):243–266. https://doi.org/10.1146/annurev.biophys.093008.131331 DOI

Morita T, Ishibashi Y, Fukuoka T, Imura T, Sakai H, Abe M, Kitamoto D (2011) Production of glycolipid biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties. Biosci Biotechnol Biochem 75(8):1597–1599. https://doi.org/10.1271/bbb.110036 PubMed DOI

Nian H, Meng Q, Zhang W, Chen L (2013) Overexpression of the formaldehyde dehydrogenase gene from Brevibacillus brevis to enhance formaldehyde tolerance and detoxification of tobacco. Appl Biochem Biotechnol 169(1):170–180. https://doi.org/10.1007/s12010-012-9957-4 PubMed DOI

Nian H, Wang G, Chen L (2012) Physiological and transcriptional analysis of the effects of aluminum stress on Cryptococcus humicola. World J Microbiol Biotechnol 28(6):2319–2329. https://doi.org/10.1007/s11274-012-1039-9 PubMed DOI

Paumi CM, Chuk M, Snider J, Stagljar I, Michaelis S (2009) ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol Mol Biol Rev 73(4):577–593. https://doi.org/10.1128/MMBR.00020-09 PubMed DOI PMC

Puchkov EO, Zähringer U, Lindner B, Kulakovskaya TV, Seydel U, Wiese A (2002) The mycocidal, membrane-active complex of Cryptococcus humicola is a new type of cellobiose lipid with detergent features. Biochim Biophys Acta 1558(2):161–170. https://doi.org/10.1016/s0005-2736(01)00428-x PubMed DOI

Ryazanova L, Zvonarev A, Rusakova T, Dmitriev V, Kulakovskaya T (2016) Manganese tolerance in yeasts involves polyphosphate, magnesium, and vacuolar alterations. Folia Microbiol (Praha) 61(4):311–317. https://doi.org/10.1007/s12223-015-0440-9 PubMed DOI

Smith-Peavler ES, Patel R, Onumajuru AM, Bowring BG, Miller JL, Brunel JM, Djordjevic JT, Prabu MM, McClelland EE (2022) RTA1 is involved in resistance to 7-Aminocholesterol and secretion of fungal proteins in Cryptococcus neoformans. Pathogens 11(11):1239. https://doi.org/10.3390/pathogens11111239 PubMed DOI PMC

Soustre I, Letourneux Y, Karst F (1996) Characterization of the Saccharomyces cerevisiae RTA1 gene involved in 7-aminocholesterol resistance. Curr Genet 30:121–125. https://doi.org/10.1007/s002940050110 PubMed DOI

Srivastava A, Sircaik S, Husain F, Thomas E, Ror S, Rastogi S, Alim D, Bapat P, Andes DR, Nobile CJ, Panwar SL (2017) Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans. Cell Microbiol. https://doi.org/10.1111/cmi.12767 PubMed DOI PMC

Thomas E, Sircaik S, Roman E, Brunel JM, Johri AK, Pla J, Panwar SL (2015) The activity of RTA2, a downstream effector of the calcineurin pathway, is required during tunicamycin-induced ER stress response in Candida albicans. FEMS Yeast Res 15:29. https://doi.org/10.1093/femsyr/fov095 DOI

Wei H, Movahedi A, Liu GY, Zhu S, Chen YH, Yu CM, Zhong F, Zhang J (2022) Poplar glycosylphosphatidylinositol-anchored lipid transfer proteins respond to osmotic stress by regulating fatty acid biosynthesis. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2022.114683 DOI

Wen Z, Liu J, Li Y, Liu S, Nian H (2022) Transcription factor Crz1 from Cryptococcus humicola conferred aluminum resistance and interacted with calcineurin. Curr Microbiol 79(5):138 PubMed DOI

Yoneda A, Doering TL (2006) A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol Biol Cell 17:5131–5140. https://doi.org/10.1091/mbc.e06-08-0701 PubMed DOI PMC

Zhang J, Zhang L, Qiu J, Nian H (2015) Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress. J Biosci Bioeng 120(4):359–363. https://doi.org/10.1016/j.jbiosc.2015.02.007 PubMed DOI

Zhang J, Liu S, Zhang L, Nian H, Chen L (2016) Effect of aluminum stress on the expression of calmodulin and the role of calmodulin in aluminum tolerance. J Biosci Bioeng 122(5):558–562. https://doi.org/10.1016/j.jbiosc.2016.04.001 PubMed DOI

Zhang L, Zhang JJ, Liu S, Nian HJ, Chen LM (2017) Characterization of calcineurin from Cryptococcus humicola and the application of calcineurin in aluminum tolerance. BMC Biotechnol 17(1):35. https://doi.org/10.1186/s12896-017-0350-9 PubMed DOI PMC

Zhang PG, Hou ZH, Chen J, Zhou YB, Chen M, Fang ZW, Ma YZ, Ma DF, Xu ZS (2022) The non-specific lipid transfer protein GmLtpI.3 is involved in drought and salt tolerance in soybean. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2022.104823 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...