Adult survival has a stronger role than productivity in the annual population change of European songbirds
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
202105166
Koneen Säätiö
202104881
Koneen Säätiö
DKRVO 2024-2028/6.I.a
Ministry of Culture Czech Republic
362647
National Research Council of Finland
PubMed
41074943
PubMed Central
PMC12515112
DOI
10.1007/s00442-025-05810-4
PII: 10.1007/s00442-025-05810-4
Knihovny.cz E-zdroje
- Klíčová slova
- Demography, Passerines, Population change, Productivity, Survival rates,
- MeSH
- ekosystém MeSH
- migrace zvířat MeSH
- populační dynamika MeSH
- zpěvní ptáci * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Biodiversity is decreasing at an alarming rate, and there is an urgent need to understand the demographic drivers behind population declines. Therefore, it is important to study the different stages of a species' life cycle, including adult survival and productivity. It is still poorly understood whether adult survival or productivity has a stronger role in population change, and how the role of adult survival and productivity varies spatially in relation to species' traits. We used bird ringing data from the European Constant Effort Sites (EuroCES) project from the years 2000 to 2021, with 1.2 million captures of 33 songbird species from ten European countries. We investigated the role of productivity and adult survival in annual population change and how it was affected by spatio-climatic gradient (measured as average breeding season temperature per country), migratory strategy (long- vs. short-distance and sedentary birds), and breeding habitat (forest vs. reeds) using linear mixed effect models. Overall, our results show that adult survival is a more important driver of annual population change than productivity within European songbirds. The importance of adult survival and productivity varied spatially, both having a weaker influence in warmer regions. Furthermore, the role of adult survival was stronger for long-distance migrants compared to short-distance migrants. Acknowledging that adult survival has a stronger role in annual population change than productivity can help design more robust conservation actions, especially regarding long-distance migratory songbirds.
Aranzadi Ringing Scheme Aranzadi Sciences Society Zorroagaina 11 S20014 San Sebastián Spain
Area Avifauna Migratrice Via Ca' Fornacetta 9 40064 Ozzano Dell'Emilia BO Italy
Bird Ringing Centre National Museum Hornoměcholupská 34 10200 Prague 10 Czechia
Bonhoefferstr 5 E04668 Grimma Germany
British Trust for Ornithology The Nunnery Thetford Norfolk IP24 2PU UK
Institute of Avian Research An der Vogelwarte 21 26386 Wilhelmshaven Niedersachsen Germany
LUKE Natural Resources Institute Finland Latokartanonkaari 9 00790 Helsinki Finland
MME BirdLife Hungary Költő U 21 1121 Budapest Hungary
Paser SEO BirdLife C Melquiades Biencinto 34 28053 Madrid Spain
Zobrazit více v PubMed
Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103(2):247–260. 10.1034/j.1600-0706.2003.12559.x
Anderson B, Akçakaya H, Araújo M, Fordham D, Martinez-Meyer E, Thuiller W, Brook B (2009) Dynamics of range margins for metapopulations under climate change. Proc Biol Sci 276(1661):1415–1420. 10.1098/rspb.2008.1681 PubMed PMC
Arizaga J, Crespo A, Iraeta A (2023) Lowering the cost of citizen science: can we reduce the number of sampling visits in a constant ringing effort-based monitoring program? J Ornithol 164(1):245–251. 10.1007/s10336-022-02019-7
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67P:1–48 10.18637/jss.v067.i01
Begon M, Townsend CR (2020) Ecology: from individuals to ecosystems, 5th edn. Wiley, Oxford, UK
Bijlsma R, Vermeulen M, Hemerik L, Klok C (2012) Demography of European Honey Buzzards Pernis Apivorus. Ardea 100(2):163–177. 10.5253/078.100.0208
Bruderer B, Salewski V (2009) Lower annual fecundity in long-distance migrants than in less migratory birds of temperate Europe. J Ornithol 150(1):281–286. 10.1007/s10336-008-0348-0
Bowler DE, Heldbjerg H, Fox AD, de Jong M, Böhning-Gaese K (2019) Long-term declines of European insectivorous bird populations and potential causes. Conserv Biol 33(5):1120–1130. 10.1111/cobi.13307 PubMed
Bonney R, Podulka S, Rohrbaugh RW (2004) Handbook of bird biology / Sandy Podulka, Ronald W Rohrbaugh Jr, Rick Bonney, editors. (2nd ed.). CLO.
Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach (Second edition). Springer, New York, US 10.1007/978-0-387-22456-5_5
Böhning-Gaese K, Halbe B, Lemoine N, Oberrath R (2000) Factors influencing the Clutch Size, Number of Broods and Annual Fecundity of North American and European Land Birds. Evol Ecol Res 2:823–839
DeSante DF, Kaschube DR, Saracco JF, Hines J (2009) Power to detect differences and trends in apparent survival rates. Bird Pop 9:29–41
DeSante DF, Kaschube DR, Saracco JF (2018) Population changes and their demographic drivers in landbirds of western North America: An assessment from the Monitoring Avian Productivity and Survivorship program. In: WD Shuford, RE Gill Jr, CM Handel (eds) Trends and traditions: Avifaunal change in western North America. Studies of Western Birds 3. WFO, Camarillo, CA, pp 269–293
EEA (2005) Agriculture and environment in EU-15—The IRENA indicator report. EEA. https://www.eea.europa.eu/publications/eea_report_2005_6
Eglington SM, Julliard R, Gargallo G, van der Jeugd HP, Pearce-Higgins JW, Baillie SR, Robinson RA (2015) Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change. Glob Ecol Biogeogr 24(4):427–436. 10.1111/geb.12267
EURING—CES in Europe (2023) Retrieved October 31 2023 from https://euring.org/research/ces-europe/methods
EURING—EURING articles (2024) Retrieved July 10 2024 from https://euring.org/files/documents/EURING_SchemeInfo_BorisNikolov_21Sep2015_0.pdf
Fay R, Schaub M, Banik MV, Border JA, Henderson IG, Fahl G, Feulner J, Horch P, Korner F, Müller M, Michel V, Rebstock H, Shitikov D, Tome D, Vögeli M, Grüebler MU (2020) Whinchat survival estimates across Europe: can excessive adult mortality explain population declines? Anim Conserv 24(1):15–25. 10.1111/acv.12594
Flint PL, Grang JB, Rockwell RF (1998) A model of northern pintail productivity and population growth rate. J Wildl Manag 62(3):1110–1118. 10.2307/3802565
Forsman JT, Mönkkönen M (2002) The role of climate in limiting European resident bird populations. J Biogeogr 30(1):55–70. 10.1046/j.1365-2699.2003.00812.x
Gregory R, van Strien A, Vorisek P, Gmelig Meyling A, Noble D, Foppen R, Gibbons D (2005) Developing indicators for European birds. Philos Trans R Soc B Biol Sci 360(1454):269–288. 10.1098/rstb.2004.1602
Hartig F (2024) DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models R package version 0.4.7. https://CRAN.R-project.org/package=DHARMa
Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):109. 10.1038/s41597-020-0453-3 PubMed PMC
Hanzelka J, Horká P, Reif J (2019) Spatial gradients in country-level population trends of European birds. Divers Distrib 25(10):1527–1536. 10.1111/ddi.12945
Hanzelka J, Telenský T, Koleček J, Procházka P, Robinson R, Baltà O, Cepák J, Gargallo G, Henry P-Y, Henshaw I, van der Jeugd H, Karcza Z, Lehikoinen P, Meister B, Nebot A, Piha M, Thorup K, Tøttrup A, Reif J (2024) Climatic predictors of long-distance migratory birds breeding productivity across Europe. Glob Ecol Biogeogr 33:e13901. 10.1111/geb.13901
Hedenström A (2007) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philos Trans R Soc B Biol Sci 363(1490):287–299. 10.1098/rstb.2007.2140
Hoover J, Schelsky W (2020) Warmer April temperatures on breeding grounds promote earlier nesting in a long-distance migratory bird, the prothonotary warbler. Front Ecol 8. 10.3389/fevo.2020.580725
Howard C, Stephens PA, Pearce-Higgins JW, Gregory RD, Butchart SHM, Willis SG (2020) Disentangling the relative roles of climate and land cover change in driving the long-term population trends of European migratory birds. Divers Distrib 26(11):1442–1455. 10.1111/ddi.13144
IPBES (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Roy Chowdhury R, Shin YJ, Visseren-Hamakers IJ, Willis KJ, Zayas CN (eds) IPBES secretariat, Bonn, Germany, 56 p. 10.1111/padr.12283
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448. 10.1038/nature11631 PubMed
Jiguet F, Devictor V, Ottwall R, van Turnhout C, van der Jeugd H, Lindström A (2010) Bird population trends are linearly affected by climate change along species thermal ranges. Proc Biol Sci 277:3601–3608. 10.1098/rspb.2010.0796 PubMed PMC
Johnston A, Robinson RA, Gargallo G, Julliard R, van der Jeugd H, Baillie SR (2016) Survival of Afro-Palaearctic passerine migrants in Western Europe and the impacts of seasonal weather variables. Ibis 158(3):465–480. 10.1111/ibi.12366
Kuznetsova A, Brockhoff PB. Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. 10.18637/jss.v082.i13
Laake JL (2013) RMark: an R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01 Alaska Fish. Sci. Cent. NOAA, Natl. Mar. Fish. Serv. 7600 Sand Point Way NE, Seattle WA 98115, 25 p. https://apps-afsc.fisheries.noaa.gov/Publications/ProcRpt/PR2013-01.pdf
Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62(1):67–118. 10.2307/2937171
Leech DI, Crick HQP (2007) Influence of climate change on the abundance, distribution, and phenology of woodland bird species in temperate regions. Ibis 149(s2):128–145. 10.1111/j.1474-919X.2007.00729.x
Lehikoinen A, Foppen RPB, Heldbjerg H, Lindström Å, van Manen W, Piirainen S, van Turnhout CAM, Stuart BHM (2016) Large-scale climatic drivers of regional winter bird population trends. Divers Distrib 22:1163–1173. 10.1111/ddi.12480
Li D, Dinnage R, Nell LA, Helmus MR, Ives AR (2020) phyr: an R package for phylogenetic species-distribution modeling in ecological communities. Methods Ecol Evol 11(11):1455–1463. 10.1111/2041-210X.13471
McDermott ME, DeGroote LW (2016) Long-term climate impacts on breeding bird phenology in Pennsylvania, USA. Glob Change Biol 22(10):3304–3319. 10.1111/gcb.13363
Meller K, Piha M, Vähätalo AV, Lehikoinen A (2018) A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186(3):883–893. 10.1007/s00442-017-4053-7 PubMed
Morrison CA, Robinson RA, Butler SJ, Clark JA, Gill JA, Morrison CA (2016) Demographic drivers of decline and recovery in an Afro-Palaearctic migratory bird population. Proc R Soc B Biol Sci 283:20161387
Morrison CA, Alves JA, Gunnarsson TG, Þórisson B, Gill JA (2019) Why do earlier-arriving migratory birds have better breeding success? Ecol Evol 9(15):8856–8864. 10.1002/ece3.5441 PubMed PMC
Morrison CA, Butler SJ, Robinson RA, Clark JA, Arizaga J, Aunins A, Baltà O, Cepák J, Chodkiewicz T, Escandell V, Foppen RPB, Gregory RD, Husby M, Jiguet F, Kålås JA, Lehikoinen A, Lindström Å, Moshøj CM, Nagy K, Nebot AL, Piha M, Reif J, Sattler T, Škorpilová J, Szép T, Teufelbauer N, Thorup K, van Turnhout C, Wenninger T, Gill JA (2021) Covariation in population trends and demography reveals targets for conservation action. Proc Biol Sci 288(1946):20202955. 10.1098/rspb.2020.2955
Morrison CA, Butler SJ, Clark JA, Arizaga J, Baltà O, Cepák J, Nebot AL, Piha M, Thorup K, Wenninger T, Robinson RA, Gill JA (2022) Demographic variation in space and time: Implications for conservation targeting. R Soc Open Sci 9(3):211671. 10.1098/rsos.211671 PubMed PMC
Morrison ML (1986) Bird populations as indicators of environmental change. In: Johnston RF (ed) Current ornithology, vol 3. Springer, New York, US, pp 429–451. 10.1007/978-1-4615-6784-4_10
Nater CR, Burgess MD, Coffey P, Harris B, Lander F, Price D, Reed M, Robinson RA (2023) Spatial consistency in drivers of population dynamics of a declining migratory bird. J Anim Ecol 92(1):97–111. 10.1111/1365-2656.13834 PubMed PMC
Newton I (2024) Migration mortality in birds. Ibis. 10.1111/ibi.13316
Nystrand M (2006) Effects of habitat quality on behavioural decisions and population dynamics in the Siberian Jay. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 174 Uppsala, Sweden, p 45
Paquette A, Hargreaves AL (2021) Biotic interactions are more often important at species’ warm versus cool range edges. Ecol Lett 24(11):2427–2438. 10.1111/ele.13864 PubMed
PECBMS (2024) European indicators. Accessed 31 Jan 2025. https://pecbms.info/trends-and-indicators/indicators/
Pearce-Higgins JW, Green RE (2014) Birds and climate change: impacts and conservation solutions. Press, Cambridge, UK, Camb. Uni
Pfeiffer T, Schaub M (2023) Productivity drives the dynamics of a red kite source population that depends on immigration. J Avian Biol 2023(1–2):e02984. 10.1111/jav.02984
Plard F, Bruns HA, Cimiotti DV, Helmecke A, Hötker H, Jeromin H, Roodbergen M, Schekkerman H, Teunissen W, van der Jeugd H, Schaub M (2020) Low productivity and unsuitable management drive the decline of central European lapwing populations. Anim Conserv 23(3):286–296. 10.1111/acv.12540
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rangel-Salazar JL, Martin K, Marshall P, Elner RW (2008) Population dynamics of the ruddy-capped nightingale thrush (
Reif J, Hanzelka J (2020) Continent-wide gradients in open-habitat insectivorous bird decline track spatial patterns in agricultural intensity across Europe. Glob Ecol and Biogeogr 29(11):1988–2013. 10.1111/geb.13170
Revell L (2024) Phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12:e16505. 10.7717/peerj.16505.
Robinson RA, Morrison CA, Baillie SR (2014) Integrating demographic data: towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol Evol 5:1361–1372
Robinson RA (2023) Understanding population change: the value of the EuroCES constant-effort ringing program. Ring Migr 38(1–2):29–37. 10.1080/03078698.2024.2311771
Rockwell SM, Wunderle JM, Sillett TS, Bocetti CI, Ewert DN, Currie D, White JD, Marra PP (2017) Seasonal survival estimation for a long-distance migratory bird and the influence of winter precipitation. Oecologia 183(3):715–726. 10.1007/s00442-016-3788-x PubMed
Sæther B-E, Grøtan V, Engen S, Coulson T, Grant PR, Visser ME, Brommer JE, Grant RB, Gustafsson L, Hatchwell BJ, Jerstad K, Karell P, Pietiäinen H, Roulin A, Røstad OW, Weimerskirch H (2016) Demographic routes to variability and regulation in bird populations. Nat Commun 7(1):12001. 10.1038/ncomms12001 PubMed PMC
Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131(1):93–105. 10.1016/j.biocon.2006.02.008
Scholer MN, Strimas-Mackey M, Jankowski JE (2020) A meta-analysis of global avian survival across species and latitude. Ecol Lett 23(10):1537–1549. 10.1111/ele.13573 PubMed
Selwood K, McGeoch M, Mac Nally R (2015) The effects of climate change and land-use change on demographic rates and population viability. Biol Rev 90(3):837–853. 10.1111/brv.12136
Siriwardena GM, Baillie SR, Wilson JD (1998) Variation in the survival rates of some british passerines with respect to their population trends on farmland. Bird Study 45(3):276–292. 10.1080/00063659809461099
Tobias JA, Sheard C, Pigot AL, Devenish AJM, Yang J, Sayol F, Neate-Clegg MHC, Alioravainen N, Weeks TL, Barber RA, Walkden PA, MacGregor HEA, Jones SEI, Vincent C, Phillips AG, Marples NM, Montaño-Centellas FA, Leandro-Silva V, Claramunt S, Schleuning M (2022) AVONET: morphological, ecological, and geographical data for all birds. Ecol Lett 25(3):581–597. 10.1111/ele.13898
Valkama J, Saurola P, Lehikoinen A, Lehikoinen E, Piha M, Sola P, Velmala W (2014) The Finnish Bird Ringing Atlas. Vol. II. Finnish Museum of Natural History and Ministry of Environment, Helsinki
Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, Gregory RD (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156(1):1–22. 10.1111/ibi.12118
White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(sup1):S120–S139. 10.1080/00063659909477239
Youngflesh C, Montgomery GA, Saracco JF, Miller DAW, Guralnick RP, Hurlbert AH, Siegel RB, LaFrance R, Tingley MW (2023) Demographic consequences of phenological asynchrony for North American songbirds. Proc Natl Acad Sci 120(28). 10.1073/pnas.2221961120
Zylstra ER, Neupane N, Zipkin EF (2022) Multi-season climate projections forecast declines in migratory monarch butterflies. Glob Change Biol 28(21):6135–6151. 10.1111/gcb.16349