Spatial immunoprofiling of retroperitoneal leiomyosarcomas reveals intratumoral heterogeneity in immune cell infiltration, checkpoint molecule expression, and tertiary lymphoid structures

. 2025 Dec ; 57 (1) : 2568725. [epub] 20251013

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41081427

INTRODUCTION: Leiomyosarcoma (LMS) is a rare, aggressive cancer with limited treatment options at the metastatic stage. The response to immune checkpoint inhibitors (ICIs) is inconsistent, likely due to intratumoral heterogeneity, which is more pronounced in large tumours such as retroperitoneal LMS. METHODS: This study examined heterogeneity in four large treatment-naive LMS tumours (ten samples per tumour) by analysing immune cells, tertiary lymphoid structures (TLSs), checkpoint molecules, and cytokine secretion across different tumour regions. RESULTS: Significant region-dependent differences were observed in immune components, with TLSs present only at tumour margins and inconsistently across samples from the same tumour. Expression levels of programmed cell death 1 (PD-1) and programmed death ligand 1 (PD-L1) varied within individual tumours, and shared immune patterns were identified in specific regions, including elevated indoleamine 2,3-dioxygenase 1, absence of a particular macrophage subpopulation, and reduced PD-1 and lymphocyte activation gene 3 (LAG-3) expression at organ-adjacent margins. Anti-LAG-3 blockade altered cytokine and checkpoint molecule levels in a region-specific manner. CONCLUSION: These findings highlight substantial intratumoral heterogeneity, which may contribute to the variable response to ICI therapy. As immune checkpoint molecule expression influences treatment eligibility, multiple biopsies from different tumour regions may be necessary to assess immune infiltration accurately and guide therapy decisions.

Zobrazit více v PubMed

Devaud N, Vornicova O, Abdul Razak AR, et al. Leiomyosarcoma: current clinical management and future horizons. Surg Oncol Clin N Am. 2022;31(3):527–546. doi: 10.1016/j.soc.2022.03.011. PubMed DOI

Kim HJ, Cho YJ, Kim SH, et al. Leiomyosarcoma: investigation of prognostic factors for risk-stratification model. Int J Clin Oncol. 2015;20(6):1226–1232. doi: 10.1007/s10147-015-0847-y. PubMed DOI

Øines MN, Smith HG, Preisler L, et al. Leiomyosarcoma of the abdomen and retroperitoneum; a systematic review. Front Surg. 2024;11:1375483. doi: 10.3389/fsurg.2024.1375483. PubMed DOI PMC

Gootee J, Sioda N, Aurit S, et al. Important prognostic factors in leiomyosarcoma survival: a National Cancer Database (NCDB) analysis. Clin Transl Oncol. 2020;22(6):860–869. doi: 10.1007/s12094-019-02196-7. PubMed DOI

Guo Q, Zhao J, Du X, et al. Survival outcomes of surgery for retroperitoneal sarcomas: a systematic review and meta-analysis. PLoS One. 2022;17(7):e0272044. doi: 10.1371/journal.pone.0272044. PubMed DOI PMC

Lewis JJ, Leung D, Woodruff JM, et al. Retroperitoneal soft-tissue sarcoma: analysis of 500 patients treated and followed at a single institution. Ann Surg. 1998;228(3):355–365. doi: 10.1097/00000658-199809000-00008. PubMed DOI PMC

Callegaro D, Raut CP, Ajayi T, et al. Preoperative radiotherapy in patients with primary retroperitoneal sarcoma: EORTC-62092 Trial (STRASS) versus Off-trial (STREXIT) results. Ann Surg. 2023;278(1):127–134. doi: 10.1097/SLA.0000000000005492. PubMed DOI

Lawless A, Zhou DD-X, McDonough J, et al. The role of radiation therapy in the management of primary retroperitoneal sarcoma: a systematic review and clinical practice guidelines from the Australia and New Zealand Sarcoma Association. Cancer Treat Rev. 2023;120:102620. doi: 10.1016/j.ctrv.2023.102620. PubMed DOI

Cote GM, Haddox CL, Choy E, et al. Safety and efficacy of the combination lurbinectedin plus doxorubicin from a phase 1b trial in patients with advanced/metastatic soft-tissue sarcoma. Clin Cancer Res. 2024;30(13):2702–2708. doi: 10.1158/1078-0432.CCR-24-1037. PubMed DOI

Bonvalot S, Gronchi A, Le Péchoux C, et al. Preoperative radiotherapy plus surgery versus surgery alone for patients with primary retroperitoneal sarcoma (EORTC-62092: STRASS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020;21(10):1366–1377. doi: 10.1016/S1470-2045(20)30446-0. PubMed DOI

Lambdin J, Ryan C, Gregory S, et al. A randomized phase III study of neoadjuvant chemotherapy followed by surgery versus surgery alone for patients with high-risk retroperitoneal sarcoma (STRASS2). Ann Surg Oncol. 2023;30(8):4573–4575. doi: 10.1245/s10434-023-13500-9. PubMed DOI PMC

Pautier P, Italiano A, Piperno-Neumann S, et al. Doxorubicin–trabectedin with trabectedin maintenance in leiomyosarcoma. N Engl J Med. 2024;391(9):789–799. doi: 10.1056/NEJMoa2403394. PubMed DOI

Pautier P, Italiano A, Piperno-Neumann S, et al. Doxorubicin alone versus doxorubicin with trabectedin followed by trabectedin alone as first-line therapy for metastatic or unresectable leiomyosarcoma (LMS-04): a randomised, multicentre, open-label phase 3 trial. Lancet Oncol. 2022;23(8):1044–1054. doi: 10.1016/S1470-2045(22)00380-1. PubMed DOI

Roulleaux Dugage M, Nassif EF, Italiano A, et al. Improving immunotherapy efficacy in soft-tissue sarcomas: a biomarker driven and histotype tailored review. Front Immunol. 2021;12:775761. doi: 10.3389/fimmu.2021.775761. PubMed DOI PMC

Sun Q, Hong Z, C EF, et al. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct. Target. Ther. 2023;8:320. doi: 10.1038/s41392-023-01522-4. PubMed DOI PMC

Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–325. doi: 10.1038/s41568-019-0144-6. PubMed DOI

Cope BM, Traweek RS, Lazcano R, et al. Targeting the molecular and immunologic features of leiomyosarcoma. Cancers (Basel). 2023;15(7):2099. doi: 10.3390/cancers15072099. PubMed DOI PMC

Martin-Broto J, Hindi N, Moura DS.. Combination treatment with PD1/PDL-1 inhibitors for sarcomas: state of the art, next questions. Curr Opin Oncol. 2024;36(4):269–275. doi: 10.1097/CCO.0000000000001050. PubMed DOI

Chen Y, Liu X, Liu J, et al. Nivolumab plus ipilimumab versus nivolumab in individuals with treatment-naive programmed death-ligand 1 positive metastatic soft tissue sarcomas: a multicentre retrospective study. BMC Cancer. 2021;21(1):108. doi: 10.1186/s12885-021-07843-3. PubMed DOI PMC

Italiano A, Bellera C, D’Angelo S.. PD1/PD-L1 targeting in advanced soft-tissue sarcomas: a pooled analysis of phase II trials. J Hematol Oncol. 2020;13(1):55. doi: 10.1186/s13045-020-00891-5. PubMed DOI PMC

Chi X, Luo S, Ye P, et al. T-cell exhaustion and stemness in antitumor immunity: characteristics, mechanisms, and implications. Front Immunol. 2023;14:1104771. doi: 10.3389/fimmu.2023.1104771. PubMed DOI PMC

Dancsok AR, Gao D, Lee AF, et al. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology. 2020;9(1):1747340. doi: 10.1080/2162402X.2020.1747340. PubMed DOI PMC

Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps – myth or reality? Clin Sci (Lond). 2023;137(15):1067–1093. doi: 10.1042/CS20220531. PubMed DOI PMC

Yi M, Jiao D, Xu H, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 2018;17(1):129. doi: 10.1186/s12943-018-0864-3. PubMed DOI PMC

Birdi HK, Jirovec A, Cortés-Kaplan S, et al. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J Immunother Cancer. 2021;9(2):e001580. e001580 doi: 10.1136/jitc-2020-001580. PubMed DOI PMC

McInnes L, Healy J, Saul N, et al. UMAP: uniform manifold approximation and projection. JOSS. 2018;3(29):861. doi: 10.21105/joss.00861. DOI

Van Gassen S, Callebaut B, Van Helden MJ, et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87(7):636–645. doi: 10.1002/cyto.a.22625. PubMed DOI

Lê S, Josse J, Husson F.. FactoMineR: an R package for multivariate analysis. J Stat Soft. 2008;25(1):1–18. doi: 10.18637/jss.v025.i01. DOI

Kassambara A, Mundt F.. Factoextra: extract and visualize the results of multivariate data analyses. R Package Version. 2020; Version 1.0.7.

Wickham H. Ggplot2: elegant graphics for data analysis. New York: Springer; 2016.

Slowikowski K. ggrepel: automatically Position Non-Overlapping Text Labels with ‘ggplot2’. ; 2024.

Kim MJ, Ha S-J.. Differential Role of PD-1 Expressed by Various Immune and Tumor Cells in the Tumor Immune Microenvironment: Expression, Function, Therapeutic Efficacy, and Resistance to Cancer Immunotherapy. Front Cell Dev Biol. 2021;9:767466. doi: 10.3389/fcell.2021.767466. PubMed DOI PMC

Jia Q, Wang A, Yuan Y, et al. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol. 2022;11(1):24. doi: 10.1186/s40164-022-00277-y. PubMed DOI PMC

Gnjatic S, Bronte V, Brunet LR, et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer. 2017;5(1):44. doi: 10.1186/s40425-017-0243-4. PubMed DOI PMC

Feng X, Tonon L, Li H, et al. Comprehensive Immune Profiling Unveils a Subset of Leiomyosarcoma with “Hot” Tumor Immune Microenvironment. Cancers (Basel). 2023;15(14):3705. doi: 10.3390/cancers15143705. PubMed DOI PMC

Petitprez F, de Reyniès A, Keung EZ, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556–560. doi: 10.1038/s41586-019-1906-8. PubMed DOI

Burns J, Wilding CP, Krasny L, et al. The proteomic landscape of soft tissue sarcomas. Nat Commun. 2023;14(1):3834. doi: 10.1038/s41467-023-39486-2. PubMed DOI PMC

Forster JC, Harriss-Phillips WM, Douglass MJ, et al. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia (Auckl). 2017;5:21–32. doi: 10.2147/HP.S133231. PubMed DOI PMC

Friedlaender A, Addeo A, Banna G.. New emerging targets in cancer immunotherapy: the role of TIM3. ESMO Open. 2019;4(Suppl 3):e000497. doi: 10.1136/esmoopen-2019-000497. PubMed DOI PMC

García-Mulero S, Alonso MH, Pardo J, et al. Lung metastases share common immune features regardless of primary tumor origin. J Immunother Cancer. 2020;8(1):e000491. doi: 10.1136/jitc-2019-000491. PubMed DOI PMC

Nguyen PHD, Ma S, Phua CZJ, et al. Intratumoural immune heterogeneity as a hallmark of tumour evolution and progression in hepatocellular carcinoma. Nat Commun. 2021;12(1):227. doi: 10.1038/s41467-020-20171-7. PubMed DOI PMC

Yang Q, Han Y, Liu X, et al. High intratumoral heterogeneity in clear cell renal cell carcinoma is associated with reduced immune response and survival. Transl Androl Urol. 2025;14(5):1190–1203. doi: 10.21037/tau-2024-741. PubMed DOI PMC

Ng Kee Kwong F, Laggner U, McKinney O, et al. Expression of PD-L1 correlates with pleomorphic morphology and histological patterns of non-small-cell lung carcinomas. Histopathology. 2018;72(6):1024–1032. doi: 10.1111/his.13466. PubMed DOI

Italiano A, Bessede A, Pulido M, et al. Pembrolizumab in soft-tissue sarcomas with tertiary lymphoid structures: a phase 2 PEMBROSARC trial cohort. Nat Med. 2022;28(6):1199–1206. doi: 10.1038/s41591-022-01821-3. PubMed DOI

Spalato-Ceruso M, Ghazzi NE, Italiano A.. New strategies in soft tissue sarcoma treatment. J Hematol Oncol. 2024;17(1):76. doi: 10.1186/s13045-024-01580-3. PubMed DOI PMC

Moura DS, Lopez-Marti JM, Benesova I, et al. Predictive and dynamic signature for antiangiogenics in combination with a PD1 inhibitor in soft-tissue sarcoma: correlative studies linked to the IMMUNOSARC trial. Clin Cancer Res. 2024;30(22):5192–5206. doi: 10.1158/1078-0432.CCR-24-1782. PubMed DOI

Que Y, Fang Z, Guan Y, et al. LAG-3 expression on tumor-infiltrating T cells in soft tissue sarcoma correlates with poor survival. Cancer Biol Med. 2019;16(2):331–340. doi: 10.20892/j.issn.2095-3941.2018.0306. PubMed DOI PMC

Maruhashi T, Sugiura D, Okazaki I, et al. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020;8(2):e001014. doi: 10.1136/jitc-2020-001014. PubMed DOI PMC

Lee W-C, Diao L, Wang J, et al. Multiregion gene expression profiling reveals heterogeneity in molecular subtypes and immunotherapy response signatures in lung cancer. Mod Pathol. 2018;31(6):947–955. doi: 10.1038/s41379-018-0029-3. PubMed DOI

Lee ATJ, Chew W, Wilding CP, et al. The adequacy of tissue microarrays in the assessment of inter- and intra-tumoural heterogeneity of infiltrating lymphocyte burden in leiomyosarcoma. Sci Rep. 2019;9(1):14602. doi: 10.1038/s41598-019-50888-5. PubMed DOI PMC

Buchbinder EI, Desai A.. CTLA-4 and PD-1 Pathways. Am J Clin Oncol. 2016;39(1):98–106. doi: 10.1097/COC.0000000000000239. PubMed DOI PMC

Zou Y, Hu X, Zheng S, et al. Discordance of immunotherapy response predictive biomarkers between primary lesions and paired metastases in tumours: A multidimensional analysis. EBioMedicine. 2021;63:103137. doi: 10.1016/j.ebiom.2020.103137. PubMed DOI PMC

Gregorc V, Lazzari C, Mandalá M, et al. Intratumoral cellular heterogeneity: implications for drug resistance in patients with non-small cell lung cancer. Cancers (Basel). 2021;13(9):2023. doi: 10.3390/cancers13092023. PubMed DOI PMC

Chao S, Zhang F, Yan H, et al. Targeting intratumor heterogeneity suppresses colorectal cancer chemoresistance and metastasis. EMBO Rep. 2023;24(8):e56416. doi: 10.15252/embr.202256416. PubMed DOI PMC

Tabata M, Sato Y, Kogure Y, et al. Inter- and intra-tumor heterogeneity of genetic and immune profiles in inherited renal cell carcinoma. Cell Rep. 2023;42(7):112736. doi: 10.1016/j.celrep.2023.112736. PubMed DOI

Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493–1501. doi: 10.1016/S1470-2045(17)30624-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...