LYCOPENE β-CYCLASE overexpression improves growth, modulates hormone content, and affects rhizospheric interactions in tobacco and tomato roots
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Baseline
King Abdullah University of Science and Technology
PubMed
41102519
PubMed Central
PMC12532762
DOI
10.1007/s00299-025-03623-6
PII: 10.1007/s00299-025-03623-6
Knihovny.cz E-zdroje
- Klíčová slova
- Apocarotenoids, Carotenoids, LYCOPENE β-CYCLASE, Phytohormones, Roots,
- MeSH
- geneticky modifikované rostliny MeSH
- intramolekulární lyasy * metabolismus genetika MeSH
- karotenoidy metabolismus MeSH
- klíčení MeSH
- kořeny rostlin * růst a vývoj genetika metabolismus mikrobiologie MeSH
- mykorhiza fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- rhizosféra MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- Solanum lycopersicum * genetika růst a vývoj metabolismus mikrobiologie MeSH
- tabák * genetika růst a vývoj metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- intramolekulární lyasy * MeSH
- karotenoidy MeSH
- lycopene cyclase-isomerase MeSH Prohlížeč
- regulátory růstu rostlin * MeSH
- rostlinné proteiny * MeSH
Expression of plant LYCOPENE β-CYCLASEs modulates abscisic acid and strigolactone contents resulting in enhanced root length, impaired mycorrhiza colonization frequency, and reduced Striga-seed germination in tobacco and tomato. Genetic engineering of the carotenoid biosynthesis made possible the biofortification of many crops by enhancing the provitamin A content in their edible parts. Recent studies showed that overexpression of a single carotenogenic gene, the LYCOPENE β-CYCLASE (LCYB), impacted plant architecture, and improved photosynthesis efficiency and stress tolerance in tobacco (Nicotiana tabacum cv. Xanthi) and tomato (Solanum lycopersicum). Here, we show that LCYB overexpression also enhanced root growth and biomass, and affected rhizospheric interactions, causing a reduction in mycorrhization and decreased capability to induce seed germination in root parasitic plants. These below-ground effects in tobacco and tomato are associated with changes in the levels of carotenoids, apocarotenoids, and phytohormones. Our findings highlight LCYB as a key regulatory and metabolic hotspot in the carotenoid pathway. Its overexpression induces profound changes in root architecture and below-ground interactions. These results lay the foundation for a new generation of crops that can better face the future environmental stress caused by global warming and show increased resistance to root parasitic plants.
Center of Excellence for Sustainable Food Security KAUST 23955 6900 Thuwal Saudi Arabia
Department of Life Sciences and Systems Biology University of Torino 10125 Turin Italy
Zobrazit více v PubMed
Ablazov A, Votta C, Fiorilli V, Wang JY, Aljedaani F, Jamil M, Balakrishna A, Balestrini R, Liew KX, Rajan C, Berqdar L, Blilou I, Lanfranco L, Al-Babili S (2023) ZAXINONE SYNTHASE 2 regulates growth and arbuscular mycorrhizal symbiosis in rice. Plant Physiol 191:382–399 PubMed DOI PMC
Ahrazem O, Rubio-Moraga A, Berman J, Capell T, Christou P, Zhu C, Gomez-Gomez L (2016) The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytol 209:650–663 PubMed DOI
Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186 PubMed DOI
Alagoz Y, Dhami N, Mitchell C, Cazzonelli CI (2020) cis/trans Carotenoid extraction, purification, detection, quantification, and profiling in plant tissues. Methods Mol Biol 2083:145–163 PubMed DOI
Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester HJ, Lopez-Raez JA (2015) Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 394:1–19 DOI
Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66 PubMed DOI PMC
Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993 PubMed DOI
Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062 PubMed DOI
Belmondo S, Marschall R, Tudzynski P, Lopez Raez JA, Artuso E, Prandi C, Lanfranco L (2017) Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Curr Genet 63:201–213 PubMed DOI
Beltran JC, Stange C (2016) Apocarotenoids: a new carotenoid-derived pathway. Subcell Biochem 79:239–272 PubMed DOI
Braguy J, Ramazanova M, Giancola S, Jamil M, Kountche BA, Zarban R, Felemban A, Wang JY, Lin PY, Haider I, Zurbriggen M, Ghanem B, Al-Babili S (2021) Seedquant: a deep learning-based tool for assessing stimulant and inhibitor activity on root parasitic seeds. Plant Physiol 186:1632–1644 PubMed DOI PMC
Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in PubMed DOI
Charpentier M, Sun J, Wen J, Mysore KS, Oldroyd GE (2014) Abscisic acid promotion of arbuscular mycorrhizal colonization requires a component of the PROTEIN PHOSPHATASE 2A complex. Plant Physiol 166:2077–2090 PubMed DOI PMC
Chen GE, Wang JY, Votta C, Braguy J, Jamil M, Kirschner GK, Fiorilli V, Berqdar L, Balakrishna A, Blilou I, Lanfranco L, Al-Babili S (2023) Disruption of the rice 4-deoxyorobanchol hydroxylase unravels specific functions of canonical strigolactones. Proc Natl Acad Sci USA 120:e2306263120 PubMed DOI PMC
Cosme M, Ramireddy E, Franken P, Schmülling T, Wurst S (2016) Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza 26:709–720 PubMed DOI PMC
Crupi P, Faienza MF, Naeem MY, Corbo F, Clodoveo ML, Muraglia M (2023) Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants. 10.3390/antiox12051069 PubMed DOI PMC
D’Alessandro S, Ksas B, Havaux M (2018) Decoding beta-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell 30:2495–2511 PubMed DOI PMC
D’Alessandro S, Mizokami Y, Legeret B, Havaux M (2019) The apocarotenoid beta-cyclocitric acid elicits drought tolerance in plants. iScience 19:461–473 PubMed DOI PMC
D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into beta-carotene in fruits of tomato plants transformed with the tomato lycopene beta-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214 DOI
Dickinson AJ, Lehner K, Mi J, Jia KP, Mijar M, Dinneny J, Al-Babili S, Benfey PN (2019) Beta-cyclocitral is a conserved root growth regulator. Proc Natl Acad Sci USA 116:10563–10567 PubMed DOI PMC
Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2:e350 PubMed DOI PMC
Diretto G, Frusciante S, Fabbri C, Schauer N, Busta L, Wang ZH, Matas AJ, Fiore A, Rose JKC, Fernie AR, Jetter R, Mattei B, Giovannoni J, Giuliano G (2020) Manipulation of beta-carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnol J 18:1185–1199 PubMed DOI PMC
Felemban A, Moreno JC, Mi J, Ali S, Sham A, AbuQamar SF, Al-Babili S (2024) The apocarotenoid beta-ionone regulates the transcriptome of PubMed DOI
Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S (2019) Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci 10:1186 PubMed DOI PMC
Giuliano G, Al-Babili S, von Lintig J (2003) Carotenoid oxygenases: cleave it or leave it. Trends Plant Sci 8:145–149 PubMed DOI
Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189-U122 PubMed DOI
Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, Thurnham D, Yin SA, Biesalski HK (2010) Beta-carotene is an important vitamin A source for humans. J Nutr 140:2268s–2285s PubMed DOI PMC
Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920 PubMed DOI
Havaux M (2020) Beta-cyclocitral and derivatives: emerging molecular signals serving multiple biological functions. Plant Physiol Biochem 155:35–41 PubMed DOI
Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564 PubMed DOI
Ito S, Braguy J, Wang JY, Yoda A, Fiorilli V, Takahashi I, Jamil M, Felemban A, Miyazaki S, Mazzarella T, Chen GE, Shinozawa A, Balakrishna A, Berqdar L, Rajan C, Ali S, Haider I, Sasaki Y, Yajima S, Akiyama K, Lanfranco L, Zurbriggen MD, Nomura T, Asami T, Al-Babili S (2022) Canonical strigolactones are not the major determinant of tillering but important rhizospheric signals in rice. Sci Adv 8:1278 DOI
Jamil M, Alagoz Y, Wang JY, Chen GE, Berqdar L, Kharbatia NM, Moreno JC, Kuijer HNJ, Al-Babili S (2024) Abscisic acid inhibits germination of PubMed DOI
Jamil M, Wang JY, Yonli D, Patil RH, Riyazaddin M, Gangashetty P, Berqdar L, Chen GE, Traore H, Margueritte O, Zwanenburg B, Bhoge SE, Al-Babili S (2022) A new formulation for strigolactone suicidal germination agents, towards successful striga management. Plants (Basel) 11
Jia KP, Dickinson AJ, Mi J, Cui G, Xiao TT, Kharbatia NM, Guo X, Sugiono E, Aranda M, Blilou I, Rueping M, Benfey PN, Al-Babili S (2019) Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in Arabidopsis. Sci Adv 5:eaaw6787 PubMed DOI PMC
Jia KP, Mi J, Ablazov A, Ali S, Yang Y, Balakrishna A, Berqdar L, Feng Q, Blilou I, Al-Babili S (2021) Iso-anchorene is an endogenous metabolite that inhibits primary root growth in Arabidopsis. Plant J 107:54–66 PubMed DOI
Jia KP, Mi J, Ali S, Ohyanagi H, Moreno JC, Ablazov A, Balakrishna A, Berqdar L, Fiore A, Diretto G, Martinez C, de Lera AR, Gojobori T, Al-Babili S (2022) An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol Plant 15(1):151–166 PubMed DOI
Kodama K, Rich MK, Yoda A, Shimazaki S, Xie XN, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, Kameoka H, Libourel C, Keller J, Sakakibara K, Nishiyama T, Nakagawa T, Mashiguchi K, Uchida K, Yoneyama K, Tanaka Y, Yamaguchi S, Shimamura M, Delaux PM, Nomura T, Kyozuka J (2022) An ancestral function of strigolactones as symbiotic rhizosphere signals. Nat Commun. 10.1038/s41467-022-31708-3 PubMed DOI PMC
Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547 PubMed DOI
Kossler S, Armarego-Marriott T, Tarkowska D, Tureckova V, Agrawal S, Mi J, de Souza LP, Schottler MA, Schadach A, Frohlich A, Bock R, Al-Babili S, Ruf S, Sampathkumar A, Moreno JC (2021) Lycopene beta-cyclase expression influences plant physiology, development, and metabolism in tobacco plants. J Exp Bot 72:2544–2569 PubMed DOI PMC
Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344 PubMed DOI
Li C, Haider I, Wang JY, Quinodoz P, Suarez Duran HG, Mendez LR, Horber R, Fiorilli V, Votta C, Lanfranco L, Correia de Lemos SM, Jouffroy L, Moegle B, Miesch L, De Mesmaeker A, Medema MH, Al-Babili S, Dong L, Bouwmeester HJ (2024) OsCYP706C2 diverts rice strigolactone biosynthesis to a noncanonical pathway branch. Sci Adv 10:3942 DOI
Li L, Rodriguez-Concepcion M, Al-Babili S (2025) Advances in carotenoid and apocarotenoid metabolisms and functions in plants. Plant Physiol. 10.1093/plphys/kiaf304 PubMed DOI
Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, Lu S, Van Eck J, Deng XX, Failla M, Thannhauser TW (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352 PubMed DOI
Li LL, Li Z, Lou Y, Meiners SJ, Kong CH (2022) (-)-Loliolide is a general signal of plant stress that activates jasmonate-related responses. New Phytol. 10.1111/nph.18644 PubMed DOI
Li S, Joo Y, Cao D, Li R, Lee G, Halitschke R, Baldwin G, Baldwin IT, Wang M (2020) Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores. PLoS Biol 18:e3000830 PubMed DOI PMC
Maoka T (2020) Carotenoids as natural functional pigments. J Nat Med 74:1–16 PubMed DOI PMC
Marzec M, Muszynska A, Gruszka D (2013) The role of strigolactones in nutrient-stress responses in plants. Int J Mol Sci 14:9286–9304 PubMed DOI PMC
Mi J, Vallarino JG, Petrik I, Novak O, Correa SM, Chodasiewicz M, Havaux M, Rodriguez-Concepcion M, Al-Babili S, Fernie AR, Skirycz A, Moreno JC (2022) A manipulation of carotenoid metabolism influence biomass partitioning and fitness in tomato. Metab Eng 70:166–180 PubMed DOI
Mitra S, Estrada-Tejedor R, Volke DC, Phillips MA, Gershenzon J, Wright LP (2021) Negative regulation of plastidial isoprenoid pathway by herbivore-induced beta-cyclocitral in Arabidopsis thaliana. Proc Natl Acad Sci USA 118
Moise AR, Al-Babili S, Wurtzel ET (2014) Mechanistic aspects of carotenoid biosynthesis. Chem Rev 114:164–193 PubMed DOI PMC
Moreno JC, Al-Babili S (2023) Are carotenoids the true colors of crop improvement? New Phytol 237:1946–1950 PubMed DOI
Moreno JC, Cerda A, Simpson K, Lopez-Diaz I, Carrera E, Handford M, Stange C (2016a) Increased PubMed DOI PMC
Moreno JC, Cerda A, Simpson K, Lopez-Diaz I, Carrera E, Handford M, Stange C (2016b) Increased PubMed DOI PMC
Moreno JC, Martinez-Jaime S, Kosmacz M, Sokolowska EM, Schulz P, Fischer A, Luzarowska U, Havaux M, Skirycz A (2021a) A multi-OMICs approach sheds light on the higher yield phenotype and enhanced abiotic stress tolerance in tobacco lines expressing the carrot lycopene beta-cyclase1 gene. Front Plant Sci 12:624365 PubMed DOI PMC
Moreno JC, Mi J, Agrawal S, Kossler S, Tureckova V, Tarkowska D, Thiele W, Al-Babili S, Bock R, Schottler MA (2020) Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. Plant J 103:1967–1984 PubMed DOI
Moreno JC, Mi J, Alagoz Y, Al-Babili S (2021b) Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant J 105:351–375 PubMed DOI PMC
Moreno JC, Shahul Hameed UF, Balakrishna A, Ablazov A, Liew KX, Jamil M, Mi J, Alashoor K, de Saint Germain A, Arold ST, Al-Babili S (2025) Arabidopsis response to the apocarotenoid zaxinone involves interference with strigolactone signaling via binding to DWARF14. Nat Commun 16 (1):8789. 10.1038/s41467-025-63845-w
Murata M, Nakai Y, Kawazu K, Ishizaka M, Kajiwara H, Abe H, Takeuchi K, Ichinose Y, Mitsuhara I, Mochizuki A, Seo S (2019) Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiol 179:1822–1833 PubMed DOI PMC
Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487 PubMed DOI
Paparella A, Shaltiel-Harpaza L, Ibdah M (2021) Beta-ionone: its occurrence and biological function and metabolic engineering. Plants (Basel) 10
Parker C (2012) Parasitic weeds: a world challenge. Weed Sci 60:269–276 DOI
Rodrigo MJ, Alquezar B, Alos E, Medina V, Carmona L, Bruno M, Al-Babili S, Zacarias L (2013) A novel carotenoid cleavage activity involved in the biosynthesis of PubMed DOI PMC
Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419 PubMed DOI
Šimura J, Antoniadi I, Široká J, Tarkowská De, Strnad M, Ljung K, Novák O (2018) Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol 177:476–489 PubMed DOI PMC
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S (2022) Carotenoid metabolism: new insights and synthetic approaches. Front Plant Sci 13:1072061 PubMed DOI PMC
Sun T, Rao S, Zhou X, Li L (2022) Plant carotenoids: recent advances and future perspectives. Mol Hortic 2:3 PubMed DOI PMC
Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749 PubMed DOI
Trouvelot A, Kough JL, Gianinazzi‐Pearson V (1986) Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance
Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ (2010) SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J 61:300–311 PubMed DOI
von Lintig J (2012) Provitamin A metabolism and functions in mammalian biology. Am J Clin Nutr 96:1234s–1244s PubMed DOI PMC
Votta C, Fiorilli V, Haider I, Wang JY, Balestrini R, Petrik I, Tarkowska D, Novak O, Serikbayeva A, Bonfante P, Al-Babili S, Lanfranco L (2022) Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice. Plant J 111:1688–1700 PubMed DOI PMC
Votta C, Wang JY, Cavallini N, Savorani F, Capparotto A, Liew KX, Giovannetti M, Lanfranco L, Al-Babili S, Fiorilli V (2024) Integration of rice apocarotenoid profile and expression pattern of carotenoid cleavage dioxygenases reveals a positive effect of beta-ionone on mycorrhization. Plant Physiol Biochem 207:108366 PubMed DOI
Wakabayashi T, Moriyama D, Miyamoto A, Okamura H, Shiotani N, Shimizu N, Mizutani M, Takikawa H, Sugimoto Y (2022) Identification of novel canonical strigolactones produced by tomato. Front Plant Sci 13:1064378 PubMed DOI PMC
Wang JY, Chen G-TE, Jamil M, Braguy J, Sioud S, Liew KX, Balakrishna A, Al-Babili S (2022a) Protocol for characterizing strigolactones released by plant roots. STAR Protoc 3:101352 PubMed DOI PMC
Wang JY, Chen GE, Braguy J, Al-Babili S (2024) Distinguishing the functions of canonical strigolactones as rhizospheric signals. Trends Plant Sci 29:925–936 PubMed DOI
Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, Baz L, Kountche BA, Jia KP, Guo X, Balakrishna A, Ntui VO, Reinke B, Volpe V, Gojobori T, Blilou I, Lanfranco L, Bonfante P, Al-Babili S (2019) The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun 10:810 PubMed DOI PMC
Wang JY, Jamil M, Lin PY, Ota T, Fiorilli V, Novero M, Zarban RA, Kountche BA, Takahashi I, Martinez C, Lanfranco L, Bonfante P, de Lera AR, Asami T, Al-Babili S (2020) Efficient mimics for elucidating Zaxinone biology and promoting agricultural applications. Mol Plant 13:1654–1661 PubMed DOI PMC
Wang JY, Lin PY, Al-Babili S (2021) On the biosynthesis and evolution of apocarotenoid plant growth regulators. Semin Cell Dev Biol 109:3–11 PubMed DOI
Wang Y, Bouwmeester HJ (2018) Structural diversity in the strigolactones. J Exp Bot 69:2219–2230 PubMed DOI
Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin a accumulation in cassava ( PubMed DOI PMC
Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288 PubMed DOI
Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K (2013) Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant 6:153–163 PubMed DOI PMC
Xu YF, Shan Y, Lin XL, Miao Q, Lou LX, Wang YJ, Ye J (2021) Global patterns in vision loss burden due to vitamin A deficiency from 1990 to 2017. Public Health Nutr 24:5786–5794 PubMed DOI PMC
Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305 PubMed DOI
Yoneyama K, Brewer PB (2021) Strigolactones, how are they synthesized to regulate plant growth and development? Curr Opin Plant Biol 63:102072 PubMed DOI
Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 f-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196:1208–1216 PubMed DOI
Zheng X, Giuliano G, Al-Babili S (2020) Carotenoid biofortification in crop plants: citius, altius, fortius. Biochimica Et Biophysica Acta (BBA). 10.1016/j.bbalip.2020.158664 DOI
Zheng X, Kuijer HNJ, Al-Babili S (2021) Carotenoid biofortification of crops in the CRISPR era. Trends Biotechnol 39:857–860 PubMed DOI