Functional characterization and phenotyping of RAB2A and Lactadherin/MFGE8 as boar sperm zona pellucida binding proteins

. 2025 ; 13 () : 1653053. [epub] 20251002

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41113455

Mammalian fertilization begins with the species-specific binding of spermatozoa to the oocyte's zona pellucida (ZP), a process mediated by multiple surface proteins forming a functional receptor complex. Among them, the Ras oncogene family protein RAB2A and lactadherin/MFGE8 (p47/SED1) were previously identified as ZP-binding candidates in pig; however, their functional roles in sperm-oocyte interactions remained unconfirmed. This study aimed to evaluate their involvement in sperm-ZP binding by using antibody-blocking and competitive binding assays with porcine oocytes. In parallel, we validated the specificity and functional relevance of two in-house raised monoclonal antibodies, 5C5 and 1H9, targeting RAB2A and lactadherin/MFGE8, respectively, and further characterized these proteins in boar spermatozoa. Immunofluorescence detection indicated that both RAB2A and lactadherin/MFGE8 became accessible on the sperm surface upon capacitation. Their surface localization at this stage supports their potential involvement in the primary sperm-ZP interactions preceding acrosomal exocytosis. Moreover, the sperm-specific 5C5 antibody detected reduced RAB2A levels in ejaculates from men with abnormal sperm parameters. This highlights the potential of RAB2A as a biomarker of sperm quality and acrosomal integrity, with promising translational relevance from animal models to humans. In vitro sperm-zona binding assays revealed that while in-house raised antibody treatments showed no significant inhibition, follow-up experiments using a commercial anti-RAB2A antibody demonstrated a significant reduction in sperm binding to the ZP of the oocyte. Both recombinant RAB2A (rc-RAB2A) and recombinant lactadherin (rc-lactadherin) significantly reduced sperm-ZP binding, highlighting their functional relevance. Our results support the role of RAB2A and lactadherin/MFGE8 in sperm-oocyte binding and highlight the utility of monoclonal antibodies 5C5 and 1H9 for sperm phenotyping. Future work should focus on identifying molecular interaction partners and signaling mechanisms that mediate the initiation of acrosomal exocytosis at fertilization.

Zobrazit více v PubMed

Antalíková J., Jankovičová J., Simon M., Cupperová P., Michalková K., Horovská Ľ. (2015). Localization of CD9 molecule on bull spermatozoa: its involvement in the sperm-egg interaction. Reprod. Domest. Anim. 50, 423–430. 10.1111/rda.12508 PubMed DOI

Bae J.-W., Kim S.-H., Kim D.-H., Ha J. J., Yi J. K., Hwang S., et al. (2019). Ras-related proteins (Rab) are key proteins related to Male fertility following a unique activation mechanism. Reprod. Biol. 19, 356–362. 10.1016/j.repbio.2019.10.001 PubMed DOI

Bae J. W., Yi J. K., Jeong E. J., Lee W. J., Hwang J. M., Kim D. H., et al. (2022). Ras-related proteins (Rab) play significant roles in sperm motility and capacitation status. Reprod. Biol. 22, 100617. 10.1016/j.repbio.2022.100617 PubMed DOI

Bustos M. A., Lucchesi O., Ruete M. C., Mayorga L. S., Tomes C. N. (2012). Rab27 and Rab3 sequentially regulate human sperm dense-core granule exocytosis. Proc. Natl. Acad. Sci. U. S. A. 109, E2057–E2066. 10.1073/pnas.1121173109 PubMed DOI PMC

Eathiraj S., Pan X., Ritacco C., Lambright D. G. (2005). Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436, 415–419. 10.1038/nature03798 PubMed DOI PMC

Ensslin M. A., Shur B. D. (2003). Identification of mouse Sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-Egg binding. Cell 114, 405–417. 10.1016/S0092-8674(03)00643-3 PubMed DOI

Ensslin M., Calvete J. J., Thole H. H., Sierralta W. D., Adermann K., Sanz L., et al. (1995). Identification by affinity chromatography of boar sperm membrane-associated proteins bound to immobilized Porcine zona pellucida. Mapping of the Phosphorylethanolamine-Binding Region of spermadhesin AWN. Biol. Chem. Hoppe. Seyler. 376, 733–738. 10.1515/bchm3.1995.376.12.733 PubMed DOI

Ensslin M., Vogel T., Calvete J. J., Thole H. H., Schmidtke J., Matsuda T., et al. (1998). Molecular cloning and characterization of P47, a novel boar sperm-associated zona pellucida-binding protein homologous to a family of Mammalian secretory proteins. Biol. Reprod. 58, 1057–1064. 10.1095/biolreprod58.4.1057 PubMed DOI

Gomes A. Q., Ali B. R., Ramalho J. S., Godfrey R. F., Barral D. C., Hume A. N., et al. (2003). Membrane targeting of rab GTPases is influenced by the prenylation motif. Mol. Biol. Cell. 14, 1882–1899. 10.1091/mbc.e02-10-0639 PubMed DOI PMC

Goud B., Liu S., Storrie B. (2018). Rab proteins as major determinants of the golgi complex structure. Small GTPases 9, 66–75. 10.1080/21541248.2017.1384087 PubMed DOI PMC

Harper S., Speicher D. W. (2008). Expression and purification of GST fusion proteins. Curr. Protoc. Protein. Sci. Chapter 6, Unit 6.6. 10.1002/0471140864.ps0606s52 PubMed DOI

Kongmanas K., Kruevaisayawan H., Saewu A., Sugeng C., Fernandes J., Souda P., et al. (2015). Proteomic characterization of pig sperm anterior head plasma membrane reveals roles of acrosomal proteins in ZP3 binding. J. Cell. Physiol. 230, 449–463. 10.1002/jcp.24728 PubMed DOI

Kwon W. S., Rahman M. S., Lee J. S., Kim J., Yoon S. J., Park Y. J., et al. (2014). A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa. BMC Genomics 15, 897. 10.1186/1471-2164-15-897 PubMed DOI PMC

Kwon W. S., Oh S. A., Kim Y. J., Rahman M. S., Park Y. J., Pang M. G. (2015). Proteomic approaches for profiling negative fertility markers in inferior boar spermatozoa. Sci. Rep. 5, 13821–10. 10.1038/srep13821 PubMed DOI PMC

Liu S., Storrie B. (2012). Are rab proteins the link between golgi organization and membrane trafficking? Cell. Mol. Life Sci. 69, 4093–4106. 10.1007/s00018-012-1021-6 PubMed DOI PMC

Lomize A. L., Pogozheva I. D., Lomize M. A., Mosberg H. I. (2006). Positioning of proteins in membranes: a computational approach. Protein Sci. 15, 1318–1333. 10.1110/ps.062126106 PubMed DOI PMC

Matás C., Sansegundo M., Ruiz S., García-Vázquez F. A., Gadea J., Romar R., et al. (2010). Sperm treatment affects capacitation parameters and penetration ability of ejaculated and epididymal boar spermatozoa. Theriogenology 74, 1327–1340. 10.1016/j.theriogenology.2010.06.002 PubMed DOI

Miles E. L., O’Gorman C., Zhao J., Samuel M., Walters E., Yi Y. J., et al. (2013). Transgenic pig carrying green fluorescent proteasomes. Proc. Natl. Acad. Sci. U. S. A. 110, 6334–6339. 10.1073/pnas.1220910110 PubMed DOI PMC

Morohoshi A., Miyata H., Oyama Y., Oura S., Noda T., Ikawa M. (2021). FAM71F1 binds to RAB2A and RAB2B and is essential for acrosome formation and Male fertility in mice. Development 148, dev199644. 10.1242/dev.199644 PubMed DOI PMC

Mountjoy J. R., Xu W., McLeod D., Hyndman D., Oko R. (2008). RAB2A: a major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis. Biol. Reprod. 79, 223–232. 10.1095/biolreprod.107.065060 PubMed DOI

Navarro-Serna S., París-Oller E., Simonik O., Romar R., Gadea J. (2021). Replacement of albumin by preovulatory oviductal fluid in Swim-Up sperm preparation method modifies boar sperm parameters and improves PubMed DOI PMC

Nixon B., Aitken R. J. (2009). The biological significance of detergent-resistant membranes in spermatozoa. J. Reprod. Immunol. 83, 8–13. 10.1016/j.jri.2009.06.258 PubMed DOI

Oko R., Sutovsky P. (2009). Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J. Reprod. Immunol. 83, 2–7. 10.1016/j.jri.2009.05.008 PubMed DOI

Palenikova V., Frolikova M., Valaskova E., Postlerova P., Komrskova K. (2021). αV integrin expression and localization in Male germ cells. Int. J. Mol. Sci. 22, 9525. 10.3390/ijms22179525 PubMed DOI PMC

Pereira-Leal J. B., Seabra M. C. (2000). The Mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the ras superfamily. J. Mol. Biol. 301, 1077–1087. 10.1006/jmbi.2000.4010 PubMed DOI

Pereira-Leal J. B., Seabra M. C. (2001). Evolution of the rab family of small GTP-Binding proteins. J. Mol. Biol. 313, 889–901. 10.1006/jmbi.2001.5072 PubMed DOI

Petrunkina A. M., Lakamp A., Gentzel M., Ekhlasi-Hundrieser M., Topfer-Petersen E. (2003). Fate of lactadherin P47 during post-testicular maturation and capacitation of boar spermatozoa. Reproduction 125, 377–387. 10.1530/reprod/125.3.377 PubMed DOI

Piñeiro-Silva C., Navarro-Serna S., Belda-Pérez R., Gadea J. (2023). Production of genetically modified porcine embryos PubMed DOI PMC

Redgrove K. A., Anderson A. L., Dun M. D., McLaughlin E. A., O’Bryan M. K., Aitken R. J., et al. (2011). Involvement of multimeric protein complexes in mediating the capacitation-dependent binding of human spermatozoa to homologous zonae pellucidae. Dev. Biol. 356 (2), 460–474. 10.1016/j.ydbio.2011.05.674 PubMed DOI

Redgrove K. A., Aitken R. J., Nixon B. (2012). “More than a simple lock and key mechanism: unraveling the intricacies of sperm-zona pellucida binding,” in Binding protein. Rijeka: InTech, 73–122.

Sanz L., Calvete J. J., Mann K., Schäfer W., Schmid E. R., Amselgruber W., et al. (1992). The complete primary structure of the spermadhesin AWN, a zona pellucida-binding protein isolated from boar spermatozoa. FEBS Lett. 300, 213–218. 10.1016/0014-5793(92)80848-B PubMed DOI

Silva E., Frost D., Li L., Bovin N., Miller D. (2017). Lactadherin is a candidate oviduct lewis X trisaccharide receptor on porcine spermatozoa. Andrology 5, 589–597. 10.1111/andr.12340 PubMed DOI PMC

Somanath P. R., Gandhi K. K. (2004). Isolation and partial characterisation of the plasma and outer acrosomal membranes of goat spermatozoa. Small Rumin. Res. 53, 67–74. 10.1016/j.smallrumres.2003.07.008 DOI

Stenmark H., Olkkonen V. M. (2001). The rab GTPase family. Genome Biol. 2, reviews3007–1. 10.1186/gb-2001-2-5-reviews3007 PubMed DOI PMC

Tanphaichitr N., Carmona E., Bou Khalil M., Xu H., Berger T., Gerton G. L. (2007). New insights into sperm-zona pellucida interaction: involvement of sperm lipid rafts. Front. Biosci. 12, 1748–1766. 10.2741/2186 PubMed DOI

Tanphaichitr N., Kongmanas K., Kruevaisayawan H., Saewu A., Sugeng C., Fernandes J., et al. (2015). Remodeling of the plasma membrane in preparation for sperm-egg recognition: roles of acrosomal proteins. Asian J. Androl. 17, 574–582. 10.4103/1008-682X.152817 PubMed DOI PMC

Tumova L., Zigo M., Sutovsky P., Sedmikova M., Postlerova P. (2021). Ligands and receptors involved in the sperm-zona pellucida interactions in mammals. Cells 10, 133–136. 10.3390/cells10010133 PubMed DOI PMC

van Gestel R. A., Brewis I. A., Ashton P. R., Brouwers J. F., Gadella B. M. (2007). Multiple proteins present in purified porcine sperm apical plasma membranes interact with the zona pellucida of the oocyte. Mol. Hum. Reprod. 13, 445–454. 10.1093/molehr/gam030 PubMed DOI

World Health Organization (2021). WHO laboratory manual for the examination and processing of human semen. 6th ed. Geneva: World Health Organization. Available online at: https://www.who.int/publications/i/item/9789240030787.

Yanagimachi R. (1994). in The physiology of reproduction. Editors Knobil E., Neill J. D. (New York, NY, United States: Raven Press; ), 189–317.

Yang X., Zhao Y., Yang X., Kan F. W. K. (2015). Recombinant hamster oviductin is biologically active and exerts positive effects on sperm functions and sperm-oocyte binding. PLoS One 10, e0123003. 10.1371/journal.pone.0123003 PubMed DOI PMC

Zhang M., Chiozzi R. Z., Skerrett-Byrne D. A., Veenendaal T., Klumperman J., Heck A. J. R., et al. (2022). High resolution proteomic analysis of subcellular fractionated boar spermatozoa provides comprehensive insights into perinuclear theca-residing proteins. Front. Cell Dev. Biol. 10, 836208. 10.3389/fcell.2022.836208 PubMed DOI PMC

Zigo M., Dorosh A., Pohlová A., Jonáková V., Šulc M., Maňásková-Postlerová P. (2015). Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm–zona pellucida receptors. Cell Tissue. Res. 359, 895–908. 10.1007/s00441-014-2072-9 PubMed DOI

Zigo M., Manaskova-Postlerova P., Jonakova V., Kerns K., Sutovsky P. (2019). Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep. 9, 12583. 10.1038/s41598-019-49024-0 PubMed DOI PMC

Zigo M., Netherton J., Zelenková N., Kerns K., Kraus V., Postlerová P., et al. (2024). Bottom-up approach to deciphering the targets of the ubiquitin-proteasome system in porcine sperm capacitation. Sci. Rep. 14, 20159. 10.1038/s41598-024-71056-4 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...