Magnetic Ground State Discrimination of a Polyradical Nanographene Using Nickelocene-Functionalized Tips
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41114714
PubMed Central
PMC12576821
DOI
10.1021/jacs.5c11722
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Molecular magnets are a promising class of materials with exciting properties and applications. However, a profound understanding and application of such materials depend on the accurate detection of their electronic and magnetic properties. Despite the availability of experimental techniques that can sense the magnetic signal, the exact determination of the spin ground states and spatial distribution of the exchange interaction of strongly correlated single-molecule magnets remain challenging. Here, we demonstrate that scanning probe microscopy with a nickelocene-functionalized probe can distinguish between nearly degenerate multireference ground states of single-molecule π-magnets and map their spatial distribution of the exchange interaction. This method expands the already outstanding imaging capabilities of scanning probe microscopy for characterizing the chemical and electronic structures of individual molecules, paving the way for the study of strongly correlated molecular magnets with unprecedented spatial resolution.
IMDEA Nanoscience Madrid 28049 Spain
Institute of Physics of the Czech Academy of Science CZ 16200 Praha Czech Republic
Zobrazit více v PubMed
Bogani L., Wernsdorfer W.. Molecular Spintronics Using Single-Molecule Magnets. Nat. Mater. 2008;7(3):179–186. doi: 10.1038/nmat2133. PubMed DOI
Woodruff D. N., Winpenny R. E. P., Layfield R. A.. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013;113(7):5110–5148. doi: 10.1021/cr400018q. PubMed DOI
Shao D., Wang X.-Y.. Development of Single-Molecule Magnets. Chin. J. Chem. 2020;38(9):1005–1018. doi: 10.1002/cjoc.202000090. DOI
Yazyev O. V.. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010;73(5):056501. doi: 10.1088/0034-4885/73/5/056501. DOI
de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34(44):443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI
Song S., Su J., Telychko M., Li J., Li G., Li Y., Su C., Wu J., Lu J.. On-Surface Synthesis of Graphene Nanostructures with π-Magnetism. Chem. Soc. Rev. 2021;50(5):3238–3262. doi: 10.1039/D0CS01060J. PubMed DOI
Roessler M. M., Salvadori E.. Principles and Applications of EPR Spectroscopy in the Chemical Sciences. Chem. Soc. Rev. 2018;47(8):2534–2553. doi: 10.1039/C6CS00565A. PubMed DOI
Clarke, J. ; Braginski, A. I. . The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems; John Wiley & Sons, 2006.
Eachus R. S., Olm M. T.. Electron Nuclear Double Resonance Spectroscopy. Science. 1985;230(4723):268–274. doi: 10.1126/science.230.4723.268. PubMed DOI
Su J., Lyu P., Lu J.. Atomically Precise Imprinting π-Magnetism in Nanographenes via Probe Chemistry. Precis. Chem. 2023;1(10):565–575. doi: 10.1021/prechem.3c00072. PubMed DOI PMC
Zeng W., Wu J.. Open-Shell Graphene Fragments. Chem. 2021;7(2):358–386. doi: 10.1016/j.chempr.2020.10.009. DOI
Perumal S., Minaev B., Ågren H.. Spin-Spin and Spin-Orbit Interactions in Nanographene Fragments: A Quantum Chemistry Approach. J. Chem. Phys. 2012;136(10):104702. doi: 10.1063/1.3687002. PubMed DOI
Zhou A., Sheng W., Xu S. J.. Electric Field Driven Magnetic Phase Transition in Graphene Nanoflakes. Appl. Phys. Lett. 2013;103(13):133103. doi: 10.1063/1.4821954. DOI
Han W., Kawakami R. K., Gmitra M., Fabian J.. Graphene Spintronics. Nat. Nanotechnol. 2014;9(10):794–807. doi: 10.1038/nnano.2014.214. PubMed DOI
Lombardi F., Lodi A., Ma J., Liu J., Slota M., Narita A., Myers W. K., Müllen K., Feng X., Bogani L.. Quantum Units from the Topological Engineering of Molecular Graphenoids. Science. 2019;366(6469):1107–1110. doi: 10.1126/science.aay7203. PubMed DOI
Clair S., de Oteyza D. G.. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119(7):4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC
Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J. I.. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124(17):177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI
Mishra S., Beyer D., Berger R., Liu J., Gröning O., Urgel J. I., Müllen K., Ruffieux P., Feng X., Fasel R.. Topological Defect-Induced Magnetism in a Nanographene. J. Am. Chem. Soc. 2020;142(3):1147–1152. doi: 10.1021/jacs.9b09212. PubMed DOI
Zheng Y., Li C., Zhao Y., Beyer D., Wang G., Xu C., Yue X., Chen Y., Guan D.-D., Li Y.-Y., Zheng H., Liu C., Luo W., Feng X., Wang S., Jia J.. Engineering of Magnetic Coupling in Nanographene. Phys. Rev. Lett. 2020;124(14):147206. doi: 10.1103/PhysRevLett.124.147206. PubMed DOI
Chen Y., Bae Y., Heinrich A. J.. Harnessing the Quantum Behavior of Spins on Surfaces. Adv. Mater. 2023;35(27):2107534. doi: 10.1002/adma.202107534. PubMed DOI
Baumann S., Paul W., Choi T., Lutz C. P., Ardavan A., Heinrich A. J.. Electron Paramagnetic Resonance of Individual Atoms on a Surface. Science. 2015;350(6259):417–420. doi: 10.1126/science.aac8703. PubMed DOI
Zhang X., Wolf C., Wang Y., Aubin H., Bilgeri T., Willke P., Heinrich A. J., Choi T.. Electron Spin Resonance of Single Iron Phthalocyanine Molecules and Role of Their Non-Localized Spins in Magnetic Interactions. Nat. Chem. 2022;14(14):59–65. doi: 10.1038/s41557-021-00827-7. PubMed DOI
Esat T., Borodin D., Oh J., Heinrich A. J., Tautz F. S., Bae Y., Temirov R.. A Quantum Sensor for Atomic-Scale Electric and Magnetic Fields. Nat. Nanotechnol. 2024;19:1466–1471. doi: 10.1038/s41565-024-01724-z. PubMed DOI PMC
Wiesendanger R.. Spin Mapping at the Nanoscale and Atomic Scale. Rev. Mod. Phys. 2009;81(4):1495–1550. doi: 10.1103/RevModPhys.81.1495. DOI
Verlhac B., Bachellier N., Garnier L., Ormaza M., Abufager P., Robles R., Bocquet M.-L., Ternes M., Lorente N., Limot L.. Atomic-Scale Spin Sensing with a Single Molecule at the Apex of a Scanning Tunneling Microscope. Science. 2019;366(6465):623–627. doi: 10.1126/science.aax8222. PubMed DOI
Czap G., Wagner P. J., Xue F., Gu L., Li J., Yao J., Wu R., Ho W.. Probing and Imaging Spin Interactions with a Magnetic Single-Molecule Sensor. Science. 2019;364(6441):670–673. doi: 10.1126/science.aaw7505. PubMed DOI
Fétida A., Bengone O., Goyhenex C., Scheurer F., Robles R., Lorente N., Limot L.. Molecular Spin-Probe Sensing of H-Mediated Changes in Co Nanomagnets. Sci. Adv. 2025;11(7):eads1456. doi: 10.1126/sciadv.ads1456. PubMed DOI PMC
Pinar Solé A., Kumar M., Soler-Polo D., Stetsovych O., Jelínek P.. Nickelocene SPM Tip as a Molecular Spin Sensor. J. Phys.: Condens. Matter. 2025;37(9):095802. doi: 10.1088/1361-648X/ad9c08. PubMed DOI
Wäckerlin C., Cahlík A., Goikoetxea J., Stetsovych O., Medvedeva D., Redondo J., Švec M., Delley B., Ondráček M., Pinar A., Blanco-Rey M., Kolorenč J., Arnau A., Jelínek P.. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS Nano. 2022;16(10):16402–16413. doi: 10.1021/acsnano.2c05609. PubMed DOI
Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J.. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16(6):938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI
Fétida A., Bengone O., Romeo M., Scheurer F., Robles R., Lorente N., Limot L.. Single-Spin Sensing: A Molecule-on-Tip Approach. ACS Nano. 2024;18(21):13829–13835. doi: 10.1021/acsnano.4c02470. PubMed DOI
Aguirre A., Pinar Solé A., Soler Polo D., González-Orellana C., Thakur A., Ortuzar J., Stesovych O., Kumar M., Peña-Díaz M., Weber A., Tallarida M., Dai J., Dreiser J., Muntwiler M., Rogero C., Pascual J. I., Jelínek P., Ilyn M., Corso M.. Ferromagnetic Order in 2D Layers of Transition Metal Dichlorides. Adv. Mater. 2024;36(28):2402723. doi: 10.1002/adma.202402723. PubMed DOI
Fernández-Rossier J.. Theory of Single-Spin Inelastic Tunneling Spectroscopy. Phys. Rev. Lett. 2009;102(25):256802. doi: 10.1103/PhysRevLett.102.256802. PubMed DOI
Barragán A., Goudappagouda, Kumar M., Soler-Polo D., Pérez-Elvira E., Solé A. P., García-Frutos A., Gao Z., Lauwaet K., Gallego J. M., Miranda R., Écija D., Jelínek P., Narita A., Urgel J. I.. Strong Magnetic Exchange Coupling of a Dibenzo-Fused Rhomboidal Nanographene and Its Homocoupling with Tunable Periodicities on a Metal Surface. Nanoscale. 2025;17(30):17769–17776. doi: 10.1039/D5NR00957J. PubMed DOI
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Martin R. L.. Natural Transition Orbitals. J. Chem. Phys. 2003;118(11):4775–4777. doi: 10.1063/1.1558471. DOI
Chen C. J.. Tunneling Matrix Elements in Three-Dimensional Space: The Derivative Rule and the Sum Rule. Phys. Rev. B. 1990;42(14):8841–8857. doi: 10.1103/PhysRevB.42.8841. PubMed DOI
Calvo-Fernández A., Kumar M., Soler-Polo D., Eiguren A., Blanco-Rey M., Jelínek P.. Theoretical Model for Multiorbital Kondo Screening in Strongly Correlated Molecules with Several Unpaired Electrons. Phys. Rev. B. 2024;110(16):165113. doi: 10.1103/PhysRevB.110.165113. DOI
Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12(4):308–311. doi: 10.1038/nnano.2016.305. PubMed DOI