Magnetic Ground State Discrimination of a Polyradical Nanographene Using Nickelocene-Functionalized Tips

. 2025 Oct 29 ; 147 (43) : 39072-39079. [epub] 20251020

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41114714

Molecular magnets are a promising class of materials with exciting properties and applications. However, a profound understanding and application of such materials depend on the accurate detection of their electronic and magnetic properties. Despite the availability of experimental techniques that can sense the magnetic signal, the exact determination of the spin ground states and spatial distribution of the exchange interaction of strongly correlated single-molecule magnets remain challenging. Here, we demonstrate that scanning probe microscopy with a nickelocene-functionalized probe can distinguish between nearly degenerate multireference ground states of single-molecule π-magnets and map their spatial distribution of the exchange interaction. This method expands the already outstanding imaging capabilities of scanning probe microscopy for characterizing the chemical and electronic structures of individual molecules, paving the way for the study of strongly correlated molecular magnets with unprecedented spatial resolution.

Zobrazit více v PubMed

Bogani L., Wernsdorfer W.. Molecular Spintronics Using Single-Molecule Magnets. Nat. Mater. 2008;7(3):179–186. doi: 10.1038/nmat2133. PubMed DOI

Woodruff D. N., Winpenny R. E. P., Layfield R. A.. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013;113(7):5110–5148. doi: 10.1021/cr400018q. PubMed DOI

Shao D., Wang X.-Y.. Development of Single-Molecule Magnets. Chin. J. Chem. 2020;38(9):1005–1018. doi: 10.1002/cjoc.202000090. DOI

Yazyev O. V.. Emergence of Magnetism in Graphene Materials and Nanostructures. Rep. Prog. Phys. 2010;73(5):056501. doi: 10.1088/0034-4885/73/5/056501. DOI

de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34(44):443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI

Song S., Su J., Telychko M., Li J., Li G., Li Y., Su C., Wu J., Lu J.. On-Surface Synthesis of Graphene Nanostructures with π-Magnetism. Chem. Soc. Rev. 2021;50(5):3238–3262. doi: 10.1039/D0CS01060J. PubMed DOI

Roessler M. M., Salvadori E.. Principles and Applications of EPR Spectroscopy in the Chemical Sciences. Chem. Soc. Rev. 2018;47(8):2534–2553. doi: 10.1039/C6CS00565A. PubMed DOI

Clarke, J. ; Braginski, A. I. . The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems; John Wiley & Sons, 2006.

Eachus R. S., Olm M. T.. Electron Nuclear Double Resonance Spectroscopy. Science. 1985;230(4723):268–274. doi: 10.1126/science.230.4723.268. PubMed DOI

Su J., Lyu P., Lu J.. Atomically Precise Imprinting π-Magnetism in Nanographenes via Probe Chemistry. Precis. Chem. 2023;1(10):565–575. doi: 10.1021/prechem.3c00072. PubMed DOI PMC

Zeng W., Wu J.. Open-Shell Graphene Fragments. Chem. 2021;7(2):358–386. doi: 10.1016/j.chempr.2020.10.009. DOI

Perumal S., Minaev B., Ågren H.. Spin-Spin and Spin-Orbit Interactions in Nanographene Fragments: A Quantum Chemistry Approach. J. Chem. Phys. 2012;136(10):104702. doi: 10.1063/1.3687002. PubMed DOI

Zhou A., Sheng W., Xu S. J.. Electric Field Driven Magnetic Phase Transition in Graphene Nanoflakes. Appl. Phys. Lett. 2013;103(13):133103. doi: 10.1063/1.4821954. DOI

Han W., Kawakami R. K., Gmitra M., Fabian J.. Graphene Spintronics. Nat. Nanotechnol. 2014;9(10):794–807. doi: 10.1038/nnano.2014.214. PubMed DOI

Lombardi F., Lodi A., Ma J., Liu J., Slota M., Narita A., Myers W. K., Müllen K., Feng X., Bogani L.. Quantum Units from the Topological Engineering of Molecular Graphenoids. Science. 2019;366(6469):1107–1110. doi: 10.1126/science.aay7203. PubMed DOI

Clair S., de Oteyza D. G.. Controlling a Chemical Coupling Reaction on a Surface: Tools and Strategies for On-Surface Synthesis. Chem. Rev. 2019;119(7):4717–4776. doi: 10.1021/acs.chemrev.8b00601. PubMed DOI PMC

Li J., Sanz S., Castro-Esteban J., Vilas-Varela M., Friedrich N., Frederiksen T., Peña D., Pascual J. I.. Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface. Phys. Rev. Lett. 2020;124(17):177201. doi: 10.1103/PhysRevLett.124.177201. PubMed DOI

Mishra S., Beyer D., Berger R., Liu J., Gröning O., Urgel J. I., Müllen K., Ruffieux P., Feng X., Fasel R.. Topological Defect-Induced Magnetism in a Nanographene. J. Am. Chem. Soc. 2020;142(3):1147–1152. doi: 10.1021/jacs.9b09212. PubMed DOI

Zheng Y., Li C., Zhao Y., Beyer D., Wang G., Xu C., Yue X., Chen Y., Guan D.-D., Li Y.-Y., Zheng H., Liu C., Luo W., Feng X., Wang S., Jia J.. Engineering of Magnetic Coupling in Nanographene. Phys. Rev. Lett. 2020;124(14):147206. doi: 10.1103/PhysRevLett.124.147206. PubMed DOI

Chen Y., Bae Y., Heinrich A. J.. Harnessing the Quantum Behavior of Spins on Surfaces. Adv. Mater. 2023;35(27):2107534. doi: 10.1002/adma.202107534. PubMed DOI

Baumann S., Paul W., Choi T., Lutz C. P., Ardavan A., Heinrich A. J.. Electron Paramagnetic Resonance of Individual Atoms on a Surface. Science. 2015;350(6259):417–420. doi: 10.1126/science.aac8703. PubMed DOI

Zhang X., Wolf C., Wang Y., Aubin H., Bilgeri T., Willke P., Heinrich A. J., Choi T.. Electron Spin Resonance of Single Iron Phthalocyanine Molecules and Role of Their Non-Localized Spins in Magnetic Interactions. Nat. Chem. 2022;14(14):59–65. doi: 10.1038/s41557-021-00827-7. PubMed DOI

Esat T., Borodin D., Oh J., Heinrich A. J., Tautz F. S., Bae Y., Temirov R.. A Quantum Sensor for Atomic-Scale Electric and Magnetic Fields. Nat. Nanotechnol. 2024;19:1466–1471. doi: 10.1038/s41565-024-01724-z. PubMed DOI PMC

Wiesendanger R.. Spin Mapping at the Nanoscale and Atomic Scale. Rev. Mod. Phys. 2009;81(4):1495–1550. doi: 10.1103/RevModPhys.81.1495. DOI

Verlhac B., Bachellier N., Garnier L., Ormaza M., Abufager P., Robles R., Bocquet M.-L., Ternes M., Lorente N., Limot L.. Atomic-Scale Spin Sensing with a Single Molecule at the Apex of a Scanning Tunneling Microscope. Science. 2019;366(6465):623–627. doi: 10.1126/science.aax8222. PubMed DOI

Czap G., Wagner P. J., Xue F., Gu L., Li J., Yao J., Wu R., Ho W.. Probing and Imaging Spin Interactions with a Magnetic Single-Molecule Sensor. Science. 2019;364(6441):670–673. doi: 10.1126/science.aaw7505. PubMed DOI

Fétida A., Bengone O., Goyhenex C., Scheurer F., Robles R., Lorente N., Limot L.. Molecular Spin-Probe Sensing of H-Mediated Changes in Co Nanomagnets. Sci. Adv. 2025;11(7):eads1456. doi: 10.1126/sciadv.ads1456. PubMed DOI PMC

Pinar Solé A., Kumar M., Soler-Polo D., Stetsovych O., Jelínek P.. Nickelocene SPM Tip as a Molecular Spin Sensor. J. Phys.: Condens. Matter. 2025;37(9):095802. doi: 10.1088/1361-648X/ad9c08. PubMed DOI

Wäckerlin C., Cahlík A., Goikoetxea J., Stetsovych O., Medvedeva D., Redondo J., Švec M., Delley B., Ondráček M., Pinar A., Blanco-Rey M., Kolorenč J., Arnau A., Jelínek P.. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS Nano. 2022;16(10):16402–16413. doi: 10.1021/acsnano.2c05609. PubMed DOI

Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J.. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16(6):938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI

Fétida A., Bengone O., Romeo M., Scheurer F., Robles R., Lorente N., Limot L.. Single-Spin Sensing: A Molecule-on-Tip Approach. ACS Nano. 2024;18(21):13829–13835. doi: 10.1021/acsnano.4c02470. PubMed DOI

Aguirre A., Pinar Solé A., Soler Polo D., González-Orellana C., Thakur A., Ortuzar J., Stesovych O., Kumar M., Peña-Díaz M., Weber A., Tallarida M., Dai J., Dreiser J., Muntwiler M., Rogero C., Pascual J. I., Jelínek P., Ilyn M., Corso M.. Ferromagnetic Order in 2D Layers of Transition Metal Dichlorides. Adv. Mater. 2024;36(28):2402723. doi: 10.1002/adma.202402723. PubMed DOI

Fernández-Rossier J.. Theory of Single-Spin Inelastic Tunneling Spectroscopy. Phys. Rev. Lett. 2009;102(25):256802. doi: 10.1103/PhysRevLett.102.256802. PubMed DOI

Barragán A., Goudappagouda, Kumar M., Soler-Polo D., Pérez-Elvira E., Solé A. P., García-Frutos A., Gao Z., Lauwaet K., Gallego J. M., Miranda R., Écija D., Jelínek P., Narita A., Urgel J. I.. Strong Magnetic Exchange Coupling of a Dibenzo-Fused Rhomboidal Nanographene and Its Homocoupling with Tunable Periodicities on a Metal Surface. Nanoscale. 2025;17(30):17769–17776. doi: 10.1039/D5NR00957J. PubMed DOI

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Martin R. L.. Natural Transition Orbitals. J. Chem. Phys. 2003;118(11):4775–4777. doi: 10.1063/1.1558471. DOI

Chen C. J.. Tunneling Matrix Elements in Three-Dimensional Space: The Derivative Rule and the Sum Rule. Phys. Rev. B. 1990;42(14):8841–8857. doi: 10.1103/PhysRevB.42.8841. PubMed DOI

Calvo-Fernández A., Kumar M., Soler-Polo D., Eiguren A., Blanco-Rey M., Jelínek P.. Theoretical Model for Multiorbital Kondo Screening in Strongly Correlated Molecules with Several Unpaired Electrons. Phys. Rev. B. 2024;110(16):165113. doi: 10.1103/PhysRevB.110.165113. DOI

Pavliček N., Mistry A., Majzik Z., Moll N., Meyer G., Fox D. J., Gross L.. Synthesis and Characterization of Triangulene. Nat. Nanotechnol. 2017;12(4):308–311. doi: 10.1038/nnano.2016.305. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...