Regioselective Multiboration and Hydroboration of Alkenes and Alkynes Enabled by a Platinum Single-Atom Catalyst
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41127639
PubMed Central
PMC12538553
DOI
10.1021/acscatal.5c03767
Knihovny.cz E-zdroje
- Klíčová slova
- diboration, heterogeneous catalysis, hydroboration, single-atom catalyst (SAC), triboration,
- Publikační typ
- časopisecké články MeSH
Selective multiboration including di- and triboration and hydroboration of alkynes and alkenes face significant challenges in organic synthesis, including achieving high regioselectivity, functional group tolerance, and catalyst stability while requiring mild conditions to maintain reactivity. These transformations have been predominantly explored by using homogeneous catalysts. In this study, we report the scalable synthesis of heterogeneous platinum single-atom catalyst (Pt-SAC) supported on ultrathin nanosheets of graphitic carbon nitride via a rapid microwave-assisted method. The Pt-SAC enables 1,2-diboration of sterically hindered alkenes and 1,2,2-triboration of alkynes with B2pin2 under mild conditions. For the diboration of styrene, the catalyst achieves 99% yield with 95% selectivity, a turnover number (TON) of 3711, and a turnover frequency (TOF) of 247 h-1. The catalyst also promotes the regioselective hydroboration of alkenes and alkynes, yielding anti-Markovnikov alkylboranes and vinylboranes, respectively. Computational calculations reveal that the enhanced reactivity on the Pt-SAC catalyst arises from adsorption-induced weakening of key bonds (C=C and B-H), thereby significantly lowering the activation energy barriers. The Pt-SAC exhibits stability and recyclability, maintaining performance over at least eight consecutive runs without detectable Pt leaching. This study highlights the potential of Pt-SAC as a robust and versatile platform for organoboron transformations under mild conditions, with relevance to applications in pharmaceutical, agrochemical, and polymer synthesis.
Zobrazit více v PubMed
Yoshida H.. Borylation of Alkynes under Base/Coinage Metal Catalysis: Some Recent Developments. ACS Catal. 2016;6(3):1799–1811. doi: 10.1021/acscatal.5b02973. DOI
Magre M., Szewczyk M., Rueping M.. S-Block Metal Catalysts for the Hydroboration of Unsaturated Bonds. Chem. Rev. 2022;122(9):8261–8312. doi: 10.1021/acs.chemrev.1c00641. PubMed DOI PMC
Chaves-Pouso A., Rivera-Chao E., Fañanás-Mastral M.. Catalytic Alkyne Allylboration: A Quest for Selectivity. ACS Catal. 2023;13(19):12656–12664. doi: 10.1021/acscatal.3c03015. PubMed DOI PMC
Tian Y.-M., Guo X.-N., Braunschweig H., Radius U., Marder T. B.. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem. Rev. 2021;121(7):3561–3597. doi: 10.1021/acs.chemrev.0c01236. PubMed DOI
Mkhalid I. A. I., Barnard J. H., Marder T. B., Murphy J. M., Hartwig J. F.. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010;110(2):890–931. doi: 10.1021/cr900206p. PubMed DOI
Yu I. F., Wilson J. W., Hartwig J. F.. Transition-Metal-Catalyzed Silylation and Borylation of C–H Bonds for the Synthesis and Functionalization of Complex Molecules. Chem. Rev. 2023;123(19):11619–11663. doi: 10.1021/acs.chemrev.3c00207. PubMed DOI
Saptal V. B., Wang R., Park S.. Recent Advances in Transition Metal-Free Catalytic Hydroelementation (E = B, Si, Ge, and Sn) of Alkynes. RSC Adv. 2020;10(71):43539–43565. doi: 10.1039/D0RA07768B. PubMed DOI PMC
Geier S. J., Vogels C. M., Melanson J. A., Westcott S. A.. The Transition Metal-Catalysed Hydroboration Reaction. Chem. Soc. Rev. 2022;51(21):8877–8922. doi: 10.1039/D2CS00344A. PubMed DOI
Neeve E. C., Geier S. J., Mkhalid I. A. I., Westcott S. A., Marder T. B.. Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chem. Rev. 2016;116(16):9091–9161. doi: 10.1021/acs.chemrev.6b00193. PubMed DOI
Zheng W., Tan B. B., Ge S., Lu Y.. Enantioselective Copper-Catalyzed Ring-Opening Diboration of Arylidenecyclopropanes to Access Chiral Skipped 1,4- and 1,3-Diboronates. J. Am. Chem. Soc. 2024;146(8):5366–5374. doi: 10.1021/jacs.3c12675. PubMed DOI
Bose S. K., Mao L., Kuehn L., Radius U., Nekvinda J., Santos W. L., Westcott S. A., Steel P. G., Marder T. B.. First-Row d-Block Element-Catalyzed Carbon–Boron Bond Formation and Related Processes. Chem. Rev. 2021;121(21):13238–13341. doi: 10.1021/acs.chemrev.1c00255. PubMed DOI
Kong Z., Hu W., Morken J. P.. 1,2-Diborylsilanes: Catalytic Enantioselective Synthesis and Site-Selective Cross-Coupling. ACS Catal. 2023;13(17):11522–11527. doi: 10.1021/acscatal.3c01789. PubMed DOI PMC
Takaya J., Iwasawa N.. Catalytic, Direct Synthesis of Bis(Boronate) Compounds. ACS Catal. 2012;2(9):1993–2006. doi: 10.1021/cs300320u. DOI
Zhao F., Jia X., Li P., Zhao J., Zhou Y., Wang J., Liu H.. Catalytic and Catalyst-Free Diboration of Alkynes. Org. Chem. Front. 2017;4(11):2235–2255. doi: 10.1039/C7QO00614D. DOI
Eghbarieh N., Hanania N., Masarwa A.. Stereodefined Polymetalloid Alkenes Synthesis via Stereoselective Boron-Masking of Polyborylated Alkenes. Nat. Commun. 2023;14(1):2022. doi: 10.1038/s41467-023-37733-0. PubMed DOI PMC
Ishiyama T., Matsuda N., Miyaura N., Suzuki A.. Platinum(0)-Catalyzed Diboration of Alkynes. J. Am. Chem. Soc. 1993;115(23):11018–11019. doi: 10.1021/ja00076a081. DOI
Coombs J. R., Haeffner F., Kliman L. T., Morken J. P.. Scope and Mechanism of the Pt-Catalyzed Enantioselective Diboration of Monosubstituted Alkenes. J. Am. Chem. Soc. 2013;135(30):11222–11231. doi: 10.1021/ja4041016. PubMed DOI PMC
Gao C., Lee P. S., Morken J. P.. Platinum-Catalyzed Enantioselective Diboration of Monosubstituted Alkenes. Org. Synth. 2024;101:229–241. doi: 10.15227/orgsyn.101.0229. PubMed DOI PMC
Vendola A. J., Allais C., Dechert-Schmitt A.-M. R., Lee J. T., Singer R. A., Morken J. P.. Diastereoselective Diboration of Cyclic Alkenes: Application to the Synthesis of Aristeromycin. Org. Lett. 2021;23(8):2863–2867. doi: 10.1021/acs.orglett.1c00353. PubMed DOI
Wang X., Wang Y., Huang W., Xia C., Wu L.. Direct Synthesis of Multi(Boronate) Esters from Alkenes and Alkynes via Hydroboration and Boration Reactions. ACS Catal. 2021;11(1):1–18. doi: 10.1021/acscatal.0c03418. DOI
Szyling J., Szymańska A., Walkowiak J.. Selective Synthesis of Boron-Substituted Enynes via a One-Pot Diboration/Protodeboration Sequence. Chem. Commun. 2023;59(62):9541–9544. doi: 10.1039/D3CC02695G. PubMed DOI
Szyling J., Szymańska A., Franczyk A., Walkowiak J.. [Pt(PPh3)4]-Catalyzed Selective Diboration of Symmetrical and Unsymmetrical 1,3-Diynes. J. Org. Chem. 2022;87(16):10651–10663. doi: 10.1021/acs.joc.2c00844. PubMed DOI PMC
Salvadó O., Fernández E.. Tri(Boryl)Alkanes and Tri(Boryl)Alkenes: The Versatile Reagents. Molecules. 2020;25(7):1758. doi: 10.3390/molecules25071758. PubMed DOI PMC
Yang X., Ge S.. Cobalt-Catalyzed 1,1,3-Triborylation of Terminal Alkynes. Organometallics. 2022;41(14):1823–1828. doi: 10.1021/acs.organomet.2c00053. DOI
Liu X., Ming W., Friedrich A., Kerner F., Marder T. B.. Copper-Catalyzed Triboration of Terminal Alkynes Using B2pin2: Efficient Synthesis of 1,1,2-Triborylalkenes. Angew. Chem., Int. Ed. 2020;59(1):304–309. doi: 10.1002/anie.201908466. PubMed DOI PMC
Doan S. H., Mai B. K., Nguyen T. V.. A Universal Organocatalyst for Selective Mono-, Di-, and Triboration of Terminal Alkynes. ACS Catal. 2023;13(12):8099–8105. doi: 10.1021/acscatal.3c01435. DOI
Liu K., Liang M., Song Q.. Zr-Catalyzed Assembly of 1,1,1-Triborylalkanes from Alkenes and HBpin. J. Am. Chem. Soc. 2025;147(20):17539–17548. doi: 10.1021/jacs.5c05144. PubMed DOI
Liu X., Ming W., Zhang Y., Friedrich A., Marder T. B.. Copper-Catalyzed Triboration: Straightforward, Atom-Economical Synthesis of 1,1,1-Triborylalkanes from Terminal Alkynes and HBpin. Angew. Chem., Int. Ed. 2019;58(52):18923–18927. doi: 10.1002/anie.201909376. PubMed DOI PMC
Grirrane A., Corma A., Garcia H.. Stereoselective Single (Copper) or Double (Platinum) Boronation of Alkynes Catalyzed by Magnesia-Supported Copper Oxide or Platinum Nanoparticles. Chem. – Eur. J. 2011;17(8):2467–2478. doi: 10.1002/chem.201002777. PubMed DOI
Chen Q., Zhao J., Ishikawa Y., Asao N., Yamamoto Y., Jin T.. Remarkable Catalytic Property of Nanoporous Gold on Activation of Diborons for Direct Diboration of Alkynes. Org. Lett. 2013;15(22):5766–5769. doi: 10.1021/ol4028013. PubMed DOI
Li L., Gong T., Lu X., Xiao B., Fu Y.. Nickel-Catalyzed Synthesis of 1,1-Diborylalkanes from Terminal Alkenes. Nat. Commun. 2017;8(1):345. doi: 10.1038/s41467-017-00363-4. PubMed DOI PMC
Alonso F., Moglie Y., Pastor-Pérez L., Sepúlveda-Escribano A.. Solvent- and Ligand-Free Diboration of Alkynes and Alkenes Catalyzed by Platinum Nanoparticles on Titania. ChemCatChem. 2014;6(3):857–865. doi: 10.1002/cctc.201300946. DOI
Zhang J., Wu X., Cheong W.-C., Chen W., Lin R., Li J., Zheng L., Yan W., Gu L., Chen C., Peng Q., Wang D., Li Y.. Cation Vacancy Stabilization of Single-Atomic-Site Pt1/Ni(OH)x Catalyst for Diboration of Alkynes and Alkenes. Nat. Commun. 2018;9(1):1002. doi: 10.1038/s41467-018-03380-z. PubMed DOI PMC
Jia T., Ai J., Li X., Zhang M.-M., Hua Y., Li Y.-X., Sun C.-F., Liu F., Huang R.-W., Wang Z., Zang S.-Q.. Atomically Precise Copper Clusters with Dual Sites for Highly Chemoselective and Efficient Hydroboration. Nat. Commun. 2024;15(1):9551. doi: 10.1038/s41467-024-53950-7. PubMed DOI PMC
Li C., Song S., Li Y., Xu C., Luo Q., Guo Y., Wang X.. Selective Hydroboration of Unsaturated Bonds by an Easily Accessible Heterotopic Cobalt Catalyst. Nat. Commun. 2021;12(1):3813. doi: 10.1038/s41467-021-24117-5. PubMed DOI PMC
Qiu W., Tao R., He Y., Zhou Y., Yang K., Song Q.. Enantioselective Construction of C-B Axially Chiral Alkenylborons by Nickel-Catalyzed Radical Relayed Reductive Coupling. Nat. Commun. 2024;15(1):10432. doi: 10.1038/s41467-024-54597-0. PubMed DOI PMC
Wen J., Huang Y., Zhang Y., Grützmacher H., Hu P.. Cobalt Catalyzed Practical Hydroboration of Terminal Alkynes with Time-Dependent Stereoselectivity. Nat. Commun. 2024;15(1):2208. doi: 10.1038/s41467-024-46550-y. PubMed DOI PMC
Kaiser S. K., Chen Z., Faust Akl D., Mitchell S., Pérez-Ramírez J.. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020;120(21):11703–11809. doi: 10.1021/acs.chemrev.0c00576. PubMed DOI
Sarma B. B., Maurer F., Doronkin D. E., Grunwaldt J.-D.. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-Ray Spectroscopic Tools. Chem. Rev. 2023;123(1):379–444. doi: 10.1021/acs.chemrev.2c00495. PubMed DOI PMC
Liu L., Corma A.. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018;118(10):4981–5079. doi: 10.1021/acs.chemrev.7b00776. PubMed DOI PMC
Liang X., Fu N., Yao S., Li Z., Li Y.. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022;144(40):18155–18174. doi: 10.1021/jacs.1c12642. PubMed DOI
Zhang H., Liu G., Shi L., Ye J.. Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Adv. Energy Mater. 2018;8(1):1701343. doi: 10.1002/aenm.201701343. DOI
Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T.. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013;46(8):1740–1748. doi: 10.1021/ar300361m. PubMed DOI
Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T.. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020;120(21):11986–12043. doi: 10.1021/acs.chemrev.0c00797. PubMed DOI
Chen J.-Y., Xiao Y., Guo F.-S., Li K.-M., Huang Y.-B., Lu Q.. Single-Atom Metal Catalysts for Catalytic Chemical Conversion of Biomass to Chemicals and Fuels. ACS Catal. 2024;14(7):5198–5226. doi: 10.1021/acscatal.4c00208. DOI
Kment Š., Bakandritsos A., Tantis I., Kmentová H., Zuo Y., Henrotte O., Naldoni A., Otyepka M., Varma R. S., Zbořil R.. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024;124(21):11767–11847. doi: 10.1021/acs.chemrev.4c00155. PubMed DOI PMC
Singh B., Gawande M. B., Kute A. D., Varma R. S., Fornasiero P., McNeice P., Jagadeesh R. V., Beller M., Zbořil R.. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem. Rev. 2021;121(21):13620–13697. doi: 10.1021/acs.chemrev.1c00158. PubMed DOI
Liu Y., Wu X., Li Z., Zhang J., Liu S.-X., Liu S., Gu L., Zheng L. R., Li J., Wang D., Li Y.. Fabricating Polyoxometalates-Stabilized Single-Atom Site Catalysts in Confined Space with Enhanced Activity for Alkynes Diboration. Nat. Commun. 2021;12(1):4205. doi: 10.1038/s41467-021-24513-x. PubMed DOI PMC
Miao X., Chen W., Lv S., Li A., Li Y., Zhang Q., Yue Y., Zhao H., Liu L., Guo S., Guo L.. Stabilizing Single-Atomic Pt by Forming Pt–Fe Bonds for Efficient Diboration of Alkynes. Adv. Mater. 2023;35(14):2211790. doi: 10.1002/adma.202211790. PubMed DOI
Lin Q., Li L., Liang S., Liu M., Bi J., Wu L.. Efficient Synthesis of Monolayer Carbon Nitride 2D Nanosheet with Tunable Concentration and Enhanced Visible-Light Photocatalytic Activities. Appl. Catal. B Environ. 2015;163:135–142. doi: 10.1016/j.apcatb.2014.07.053. DOI
Kumar P., Askar A., Wang J., Roy S., Kancharlapalli S., Wang X., Joshi V., Hu H., Kannimuthu K., Trivedi D., Bollini P., Wu Y. A., Ajayan P. M., Adachi M. M., Hu J., Kibria M. G.. Isolated Iridium Sites on Potassium-Doped Carbon-Nitride Wrapped Tellurium Nanostructures for Enhanced Glycerol Photooxidation. Adv. Funct. Mater. 2024;34(29):2313793. doi: 10.1002/adfm.202313793. DOI
Kumar P., Antal P., Wang X., Wang J., Trivedi D., Fellner O. F., Wu Y. A., Nemec I., Santana V. T., Kopp J., Neugebauer P., Hu J., Kibria M. G., Kumar S.. Partial Thermal Condensation Mediated Synthesis of High-Density Nickel Single Atom Sites on Carbon Nitride for Selective Photooxidation of Methane into Methanol. Small. 2024;20(15):2304574. doi: 10.1002/smll.202304574. PubMed DOI
Gao G., Jiao Y., Waclawik E. R., Du A.. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2016;138(19):6292–6297. doi: 10.1021/jacs.6b02692. PubMed DOI
Lazaar N., Wu S., Qin S., Hamrouni A., Bikash Sarma B., Doronkin D. E., Denisov N., Lachheb H., Schmuki P.. Single-Atom Catalysts on C3N4: Minimizing Single Atom Pt Loading for Maximized Photocatalytic Hydrogen Production Efficiency. Angew. Chem., Int. Ed. 2025;64(6):e202416453. doi: 10.1002/anie.202416453. PubMed DOI PMC
Wang Y., Wang M., Mou X., Wang S., Jiang X., Chen Z., Jiang Z., Lin R., Ding Y.. Host-Induced Alteration of the Neighbors of Single Platinum Atoms Enables Selective and Stable Hydrogenation of Butadiene. Nanoscale. 2022;14(29):10506–10513. doi: 10.1039/D2NR02300H. PubMed DOI
Tian S., Wang B., Gong W., He Z., Xu Q., Chen W., Zhang Q., Zhu Y., Yang J., Fu Q., Chen C., Bu Y., Gu L., Sun X., Zhao H., Wang D., Li Y.. Dual-Atom Pt Heterogeneous Catalyst with Excellent Catalytic Performances for the Selective Hydrogenation and Epoxidation. Nat. Commun. 2021;12(1):3181. doi: 10.1038/s41467-021-23517-x. PubMed DOI PMC
Li J., Jiang Y., Wang Q., Xu C.-Q., Wu D., Banis M. N., Adair K. R., Doyle-Davis K., Meira D. M., Finfrock Y. Z., Li W., Zhang L., Sham T.-K., Li R., Chen N., Gu M., Li J., Sun X.. A General Strategy for Preparing Pyrrolic-N4 Type Single-Atom Catalysts via Pre-Located Isolated Atoms. Nat. Commun. 2021;12(1):6806. doi: 10.1038/s41467-021-27143-5. PubMed DOI PMC