Genetic reinstatement of RIG-I in chickens reveals insights into avian immune evolution and influenza interaction

. 2025 ; 16 () : 1680791. [epub] 20251008

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41132682

Retinoic acid-inducible gene I (RIG-I) activates mitochondrial antiviral signaling proteins, initiating the antiviral response. RIG-I and RNF135, a ubiquitin ligase regulator, are missing in domestic chickens but conserved in mallard ducks. The chickens' RIG-I loss was long believed to be linked to increased avian influenza susceptibility. We reinstated both genes in chickens and examined their susceptibility to infection with an H7N1 avian influenza virus. Uninfected RIG-I-expressing chickens exhibited shifts in T and B cells. At the same time, the H7N1 infection led to severe disease, persistent weight loss, and increased viral replication. The simultaneous expression of RIG-I and RNF135 potentiated the RIG-I activity and was associated with exacerbated inflammatory response and increased mortality without influencing virus replication. Additional animal infection experiments with two other avian influenza viruses validated these findings. They confirmed that the harmful effects triggered by RIG-I or RIG-I-RNF135-expression require a minimum degree of viral virulence. Our data indicate that the loss of RIG-I in chickens has likely evolved to counteract deleterious inflammation caused by viral infection and highlight an outcome of restoring evolutionary lost genes in birds.

Zobrazit více v PubMed

Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic potential of influenza A viruses: a comprehensive overview. Viruses. (2018) 10:497. doi:  10.3390/v10090497, PMID: PubMed DOI PMC

Authority EFS, E.U.R.L. for Avian, C. Adlhoch, Fusaro A, Gonzales JL, Kuiken T, et al. Avian influenza overview December 2022-March 2023. EFSA J Eur Food Saf Authority. (2023) 21:e07917. doi:  10.2903/j.efsa.2023.7917, PMID: PubMed DOI PMC

Granata G, Simonsen L, Petrosillo N, Petersen E. Mortality of H5N1 human infections might be due to H5N1 virus pneumonia and could decrease by switching receptor. Lancet Infect Dis. (2024) 24:e544–5. doi:  10.1016/S1473-3099(24)00460-2, PMID: PubMed DOI

Kang M, Li H-P, Tang J, Wang X-Y, Wang L-F, Baele G, et al. Changing epidemiological patterns in human avian influenza virus infections. Lancet Microbe 5. (2024) 5(11):100918. doi:  10.1016/S2666-5247(24)00158-7, PMID: PubMed DOI

MacLachlan N. Orthomyxoviridae. Fenner's veterinary Virol. (2011), 353–70.

Kim JK, Negovetich NJ, Forrest HL, Webster RG. Ducks: the “Trojan horses” of H5N1 influenza. Influenza other Respir viruses. (2009) 3:121–8. doi:  10.1111/j.1750-2659.2009.00084.x, PMID: PubMed DOI PMC

Barber MR, Aldridge JR, Jr., Webster RG, Magor KE. Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci. (2010) 107:5913–8. doi:  10.1073/pnas.1001755107, PMID: PubMed DOI PMC

Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. (2010) 140:397–408. doi:  10.1016/j.cell.2010.01.020, PMID: PubMed DOI

Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell. (2011) 147:423–35. doi:  10.1016/j.cell.2011.09.039, PMID: PubMed DOI

Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. (2004) 5:730–7. doi:  10.1038/ni1087, PMID: PubMed DOI

Gack MU, Shin YC, Joo C-H, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. (2007) 446:916–20. doi:  10.1038/nature05732, PMID: PubMed DOI

Gao D, Yang Y-K, Wang R-P, Zhou X, Diao F-C, Li M-D, et al. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PloS One. (2009) 4:e5760. doi:  10.1371/journal.pone.0005760, PMID: PubMed DOI PMC

Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe. (2010) 8:496–509. doi:  10.1016/j.chom.2010.11.008, PMID: PubMed DOI

Vanderven HA, Petkau K, Ryan-Jean KE, Aldridge JR, Jr., Webster RG, Magor KE. Avian influenza rapidly induces antiviral genes in duck lung and intestine. Mol Immunol. (2012) 51:316–24. doi:  10.1016/j.molimm.2012.03.034, PMID: PubMed DOI PMC

Zheng W, Satta Y. Functional evolution of avian RIG-I-like receptors. Genes. (2018) 9:456. doi:  10.3390/genes9090456, PMID: PubMed DOI PMC

Krchlíková V, Hron T, Těšický M, Li T, Ungrová L, Hejnar J, et al. Dynamic evolution of avian RNA virus sensors: repeated loss of RIG-I and RIPLET. Viruses. (2022) 15:3. doi:  10.3390/v15010003, PMID: PubMed DOI PMC

Hayman TJ, Hsu AC, Kolesnik TB, Dagley LF, Willemsen J, Tate MD, et al. RIPLET, and not TRIM25, is required for endogenous RIG-I-dependent antiviral responses. Immunol Cell Biol. (2019) 97:840–52. doi:  10.1111/imcb.12284, PMID: PubMed DOI

Xiao Y, Reeves MB, Caulfield AF, Evseev D, Magor KE. The core promoter controls basal and inducible expression of duck retinoic acid inducible gene-I (RIG-I). Mol Immunol. (2018) 103:156–65. doi:  10.1016/j.molimm.2018.09.002, PMID: PubMed DOI

Kandasamy M, Suryawanshi A, Tundup S, Perez JT, Schmolke M, Manicassamy S, et al. RIG-I signaling is critical for efficient polyfunctional T cell responses during influenza virus infection. PloS Pathog. (2016) 12:e1005754. doi:  10.1371/journal.ppat.1005754, PMID: PubMed DOI PMC

Dundon WG, Milani A, Cattoli G, Capua I. Progressive truncation of the Non-Structural 1 gene of H7N1 avian influenza viruses following extensive circulation in poultry. Virus Res. (2006) 119:171–6. doi:  10.1016/j.virusres.2006.01.005, PMID: PubMed DOI

Bryson KJ, Sives S, Lee H-M, Borowska D, Smith J, Digard P, et al. Comparative analysis of different inbred chicken lines highlights how a hereditary inflammatory state affects susceptibility to avian influenza virus. Viruses. (2023) 15:591. doi:  10.3390/v15030591, PMID: PubMed DOI PMC

de Wit J, Fabri T, Molenaar RJ, Dijkman R, de Bruijn N, Bouwstra R. Major difference in clinical outcome and replication of a H3N1 avian influenza strain in young pullets and adult layers. Avian Pathol. (2020) 49:286–95. doi:  10.1080/03079457.2020.1731423, PMID: PubMed DOI

Guan J, Fu Q, Sharif S. Replication of an H9N2 avian influenza virus and cytokine gene expression in chickens exposed by aerosol or intranasal routes. Avian Dis. (2015) 59:263–8. doi:  10.1637/10972-110714-Reg, PMID: PubMed DOI

Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. (2006) 441:101–5. doi:  10.1038/nature04734, PMID: PubMed DOI

Xu L, Yu D, Fan Y, Liu Y-P, Yao Y-G. Evolutionary selection on MDA5 and LGP2 in the chicken preserves antiviral competence in the absence of RIG-I. J Genet Genomics= Yi Chuan xue bao. (2019) 46:499–503. doi:  10.1016/j.jgg.2019.10.001, PMID: PubMed DOI

Evseev D, Miranzo-Navarro D, Fleming-Canepa X, Webster RG, Magor KE. Avian influenza NS1 proteins inhibit human, but not duck, RIG-I ubiquitination and interferon signaling. J Virol. (2022) 96:e00776–22. doi:  10.1128/jvi.00776-22, PMID: PubMed DOI PMC

Wang Y, Zhang H-X, Sun Y-P, Liu Z-X, Liu X-S, Wang L, et al. Rig-I–/– mice develop colitis associated with downregulation of Gαi2. Cell Res. (2007) 17:858–68. doi:  10.1038/cr.2007.81, PMID: PubMed DOI

Iwamoto A, Tsukamoto H, Nakayama H, Oshiumi H. E3 ubiquitin ligase riplet is expressed in T cells and suppresses T cell–mediated antitumor immune responses. J Immunol. (2022) 208:2067–76. doi:  10.4049/jimmunol.2100096, PMID: PubMed DOI

Elsheimer-Matulova M, Polansky O, Seidlerova Z, Varmuzova K, Stepanova H, Fedr R, et al. Interleukin 4 inducible 1 gene (IL4I1) is induced in chicken phagocytes by Salmonella Enteritidis infection. Veterinary Res. (2020) 51:1–8. doi:  10.1186/s13567-020-00792-y, PMID: PubMed DOI PMC

Nish SA, Schenten D, Wunderlich FT, Pope SD, Gao Y, Hoshi N, et al. T cell-intrinsic role of IL-6 signaling in primary and memory responses. elife. (2014) 3:e01949. doi:  10.7554/eLife.01949, PMID: PubMed DOI PMC

Thoresen DT, Galls D, Götte B, Wang W, Pyle AM. A rapid RIG-I signaling relay mediates efficient antiviral response. Mol Cell. (2023) 83:90–104. e4. doi:  10.1016/j.molcel.2022.11.018, PMID: PubMed DOI PMC

Cornelissen J, Post J, Peeters B, Vervelde L, Rebel J. Differential innate responses of chickens and ducks to low-pathogenic avian influenza. Avian Pathol. (2012) 41:519–29. doi:  10.1080/03079457.2012.732691, PMID: PubMed DOI

Pang IK, Pillai PS, Iwasaki A. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proc Natl Acad Sci. (2013) 110:13910–5. doi:  10.1073/pnas.1303275110, PMID: PubMed DOI PMC

Liau NP, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. (2018) 9:1558. doi:  10.1038/s41467-018-04013-1, PMID: PubMed DOI PMC

Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. (2009) 30:592–602. doi:  10.1016/j.it.2009.09.009, PMID: PubMed DOI PMC

Giotis E, Ross C, Robey R, Nohturfft A, Goodbourn S, Skinner M. Constitutively elevated levels of SOCS1 suppress innate responses in DF-1 immortalised chicken fibroblast cells. Sci Rep. (2017) 7:17485. doi:  10.1038/s41598-017-17730-2, PMID: PubMed DOI PMC

Vazquez C, Tan CY, Horner SM. Hepatitis C virus infection is inhibited by a noncanonical antiviral signaling pathway targeted by NS3-NS4A. J Virol. (2019) 93:e00725–19. doi:  10.1128/JVI.00725-19, PMID: PubMed DOI PMC

Schmit T, Guo K, Tripathi JK, Wang Z, McGregor B, Klomp M, et al. Interferon-γ promotes monocyte-mediated lung injury during influenza infection. Cell Rep. (2022) 38(9):110456. doi:  10.1016/j.celrep.2022.110456, PMID: PubMed DOI PMC

Koliopoulos MG, Lethier M, van der Veen AG, Haubrich K, Hennig J, Kowalinski E, et al. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition. Nat Commun. (2018) 9:1820. doi:  10.1038/s41467-018-04214-8, PMID: PubMed DOI PMC

Meyerson NR, Zhou L, Guo YR, Zhao C, Tao YJ, Krug RM, et al. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe. (2017) 22:627–638. e7. doi:  10.1016/j.chom.2017.10.003, PMID: PubMed DOI PMC

Okamoto M, Kouwaki T, Fukushima Y, Oshiumi H. Regulation of RIG-I activation by K63-linked polyubiquitination. Front Immunol. (2018) 8:1942. doi:  10.3389/fimmu.2017.01942, PMID: PubMed DOI PMC

Fischer H, Tschachler E, Eckhart L. Pangolins lack IFIH1/MDA5, a cytoplasmic RNA sensor that initiates innate immune defense upon coronavirus infection. Front Immunol. (2020) 11:939. doi:  10.3389/fimmu.2020.00939, PMID: PubMed DOI PMC

Oshiumi H, Matsumoto M, Seya T. Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I. J Biochem. (2012) 151:5–11. doi:  10.1093/jb/mvr111, PMID: PubMed DOI

Chen Y, Huang Z, Wang B, Yu Q, Liu R, Xu Q, et al. Duck RIG-I CARD domain induces the chicken IFN-β by activating NF-κB. BioMed Res Int. (2015) 2015. doi:  10.1155/2015/348792, PMID: PubMed DOI PMC

Rieblinger B, Fischer K, Kind A, Saller BS, Baars W, Schuster M, et al. Strong xenoprotective function by single-copy transgenes placed sequentially at a permissive locus. Xenotransplantation. (2018) 25:e12382. doi:  10.1111/xen.12382, PMID: PubMed DOI

Long JS, Idoko-Akoh A, Mistry B, Goldhill D, Staller E, Schreyer J, et al. Species specific differences in use of ANP32 proteins by influenza A virus. Elife. (2019) 8:e45066. doi:  10.7554/eLife.45066, PMID: PubMed DOI PMC

Sid H, Hartmann S, Winter C, Rautenschlein S. Interaction of influenza A viruses with oviduct explants of different avian species. Front Microbiol. (2017) 8:1338. doi:  10.3389/fmicb.2017.01338, PMID: PubMed DOI PMC

Van de Lavoir M-C, Collarini EJ, Leighton PA, Fesler J, Lu DR, Harriman WD, et al. Interspecific germline transmission of cultured primordial germ cells. PloS One. (2012) 7:e35664. doi:  10.1371/journal.pone.0035664, PMID: PubMed DOI PMC

Van de Lavoir M-C, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, et al. Germline transmission of genetically modified primordial germ cells. Nature. (2006) 441:766–9. doi:  10.1038/nature04831, PMID: PubMed DOI

Leighton PA, van de Lavoir MC, Diamond JH, Xia C, Etches RJ. Genetic modification of primordial germ cells by gene trapping, gene targeting, and ϕC31 integrase. Mol Reprod Development: Incorporating Gamete Res. (2008) 75:1163–75. doi:  10.1002/mrd.20859, PMID: PubMed DOI

Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J morphology. (1951) 88:49–92. doi:  10.1002/jmor.1050880104 PubMed DOI

Whyte J, Glover JD, Woodcock M, Brzeszczynska J, Taylor L, Sherman A, et al. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. (2015) 5:1171–82. doi:  10.1016/j.stemcr.2015.10.008, PMID: PubMed DOI PMC

Schusser B, Collarini EJ, Yi H, Izquierdo SM, Fesler J, Pedersen D, et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci. (2013) 110:20170–5. doi:  10.1073/pnas.1317106110, PMID: PubMed DOI PMC

Hernandez R, Brown DT. Growth and maintenance of chick embryo fibroblasts (CEF). Curr Protoc Microbiol. (2010) 17:A. 4I. 1–A. 4I. 8. doi:  10.1002/9780471729259.mca04is17, PMID: PubMed DOI

Brauer R, Chen P. Influenza virus propagation in embryonated chicken eggs. JoVE (Journal Visualized Experiments). (2015):e52421. doi:  10.3791/52421, PMID: PubMed DOI PMC

Kong F-K, Chen C-LH, Six A, Hockett RD, Cooper MD. T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool. Proc Natl Acad Sci. (1999) 96:1536–40. doi:  10.1073/pnas.96.4.1536, PMID: PubMed DOI PMC

Burkhardt NB, Röll S, Staudt A, Elleder D, Härtle S, Costa T, et al. The long pentraxin PTX3 is of major importance among acute phase proteins in chickens. Front Immunol. (2019) 10:124. doi:  10.3389/fimmu.2019.00124, PMID: PubMed DOI PMC

Monne I, Fusaro A, Nelson MI, Bonfanti L, Mulatti P, Hughes J, et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J Virol. (2014) 88:4375–88. doi:  10.1128/JVI.03181-13, PMID: PubMed DOI PMC

Trapp S, Soubieux D, Lidove A, Esnault E, Lion A, Guillory V, et al. Major contribution of the RNA-binding domain of NS1 in the pathogenicity and replication potential of an avian H7N1 influenza virus in chickens. Virol J. (2018) 15:1–12. doi:  10.1186/s12985-018-0960-4, PMID: PubMed DOI PMC

Ward C, Dempsey M, Ring C, Kempson R, Zhang L, Gor D, et al. Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. J Clin Virol. (2004) 29:179–88. doi:  10.1016/S1386-6532(03)00122-7, PMID: PubMed DOI PMC

von Heyl T, Klinger R, Aumann D, Zenner C, Alhussien M, Schlickenrieder A, et al. Loss of αβ but not γδ T cells in chickens causes a severe phenotype. Eur J Immunol. (2023) 53:2350503. doi:  10.1002/eji.202350503, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...