Acytota and the evolution of complexity

. 2025 Oct 27 ; () : . [epub] 20251027

Status Publisher Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41144018

Grantová podpora
22-00364S Grantová Agentura České Republiky
21-00580S Grantová Agentura České Republiky
24-11400S Grantová Agentura České Republiky

Odkazy

PubMed 41144018
DOI 10.1007/s00249-025-01802-7
PII: 10.1007/s00249-025-01802-7
Knihovny.cz E-zdroje

The overall complexity of organisms increases during the course of evolution, starting with the first self-replicating molecules, followed by prokaryotes and eukaryotes, first unicellular and later multicellular. We present an opinion that non-cellular genetic entities such as transposable elements, plasmids, viruses and viroids, although originally parasitic, selfish and sometimes destructive elements, may contribute to the increase of complexity. We propose that non-cellular genetic elements impose (parasitic) pressure on the cooperative genes of cellular organisms, driving the sequence of evolutionary transitions from the first cooperative replicators to multicellular life forms, and have suggested that they belong to a separate kingdom of life, the Acytota. The complexity increase is probably caused by the high proliferation capacity of these non-cellular genetic elements, their frequent horizontal gene transfer, participation in parasite-host arms races, formation of epigenetic silencing mechanisms as well as the ability to build genetic regulatory networks. Simultaneously, these elements contribute to complexity by supplying genetic material via domestication, genome rearrangements, and dispersal of regulatory elements. Complexity has not only increased during evolution, there are also examples of simplification, both during chemical evolution (in prebiotic chemistry) and the evolution of parasites. Therefore, we describe the ups and downs of organism complexity and discuss the reasons for the general dominant upward trend, namely coevolution and the interaction of existing modules.

Zobrazit více v PubMed

Adamala K, Szostak JW (2014) Competition between model protocells driven by an encapsulated catalyst. Nat Chem 5:495–501. https://doi.org/10.1038/nchem.1650 DOI

Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and diseases. Annu Rev Genomics Hum Genet 12:187–215. https://doi.org/10.1146/annurev-genom-082509-141802 PubMed DOI PMC

Benner SA, Kim H-J (2015) The case for a Martian origin of life. Proc SPIE 9606, Instruments, methods, and missions for astrobiology XVII, 96060C

Bickle TA, Krüger DH (1993) Biology of DNA restriction. Microbiol Rev 57:434–450. https://doi.org/10.1128/mr.57.2.434-450.1993 PubMed DOI PMC

Casanova EL, Konkel MK (2020) The developmental gene hypothesis for punctuated equilibrium: combined roles of developmental regulatory genes and transposable elements. BioEssays 42:1900173. https://doi.org/10.1002/bies.201900173 DOI

Cavalier-Smith T (2004) Only six kingdoms of life. Proc R Soc Lond B Biol Sci 271:1251–1262. https://doi.org/10.1098/rspb.2004.2705 DOI

Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflict to benefit. Nat Rev Genet 18:71–86. https://doi.org/10.1038/nrg.2016.139 PubMed DOI

Colson P, La Scola B, Levasseur A, Caetano-Anolles RD (2017) Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat Rev Microbiol 15:243–254. https://doi.org/10.1038/nrmicro.2016.197 PubMed DOI PMC

Cosby RL, Judd J, Zhang R, Zhong A, Garry N, Pritham EJ, Feschotte C (2021) Recurrent evolution of vertebrate transcription factors by transposase capture. Science 371:eabc6405. https://doi.org/10.1126/science.abc6405 PubMed DOI PMC

Dolgin ES, Charlesworth B (2008) The effects of recombination rate on the distribution and abundance of transposable elements. Genetics 178:2169–2177. https://doi.org/10.1534/genetics.107.082743 PubMed DOI PMC

Doolittle WF (1997) Fun with genealogy. Proc Natl Acad Sci U S A 94:12751–12753 PubMed DOI PMC

Drobot B, Iglesias-Artola JM, Le Vay K, Mayr V, Kar M, Kreysing M, Mutschler H, Tang TYD (2018) Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat Comm 9:3643. https://doi.org/10.1038/s41467-018-06072-w DOI

Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671. https://doi.org/10.1016/j.placenta.2012.05.005 PubMed DOI

Eschenmoser A (2007) Question 1: commentary referring to the statement “the origin of life can be traced back to the origin of kinetic control” and the question “do you agree with this statement; and how would you envisage the prebiotic evolutionary bridge between thermodynamic and kinetic control?” stated in section 1.1. Orig Life Evol Biosph 37:309–314. https://doi.org/10.1007/s11084-007-9102-5 PubMed DOI

Farkash EA, Luning Prak ET (2006) DNA damage and L1 retrotransposition. J Biomed Biotechnol. https://doi.org/10.1155/JBB/2006/37285 PubMed DOI PMC

Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767. https://doi.org/10.1126/science.338.6108.758 PubMed DOI

Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405. https://doi.org/10.1038/nrg2337 PubMed DOI PMC

Gould SJ (1996) Full house: the spread of excellence from Plato to Darwin. Harmony Books. ISBN 978–0517703946

Grandbastien M-A (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187. https://doi.org/10.1016/S1360-1385(98)01232-1 DOI

Horvath V, Jedlicka P, Kratka M, Kubat Z, Kejnovsky E, Lexa M (2024) Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning. BioData Min 17:57. https://doi.org/10.1186/s13040-024-00410-z PubMed DOI PMC

Joly-Lopez Z, Bureau TE (2018) Exaptation of transposable element coding sequences. Curr Opin Genet Dev 49:34–42. https://doi.org/10.1159/000107609 PubMed DOI

Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequence were derived from Transib transposons. PLoS Biol 3:e181. https://doi.org/10.1371/journal.pbio.0030181 PubMed DOI PMC

Kejnovský E, Leitch I, Leitch A (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582. https://doi.org/10.1016/j.tree.2009.04.010 PubMed DOI

Kejnovsky E, Trifonov EN (2016) Horizontal transfer—imperative mission of acellular life forms, Acytota. Mob Genet Elements 6:e1154636. https://doi.org/10.1080/2159256x.2016.1154636 PubMed DOI PMC

Kim T-M, Hong S-J, Rhyu M-G (2004) Periodic explosive expansion of human retroelements associated with the evolution of the hominoid primate. J Korean Med Sci 19:177–185. https://doi.org/10.3346/jkms.2004.19.2.177 PubMed DOI PMC

Koonin EV (2016) Viruses and mobile elements as drivers of evolutionary transitions. Phil Trans R Soc Lond B Biol Sci 371:20150442. https://doi.org/10.1098/rstb.2015.0442 DOI

Koonin EV, Makarova KS (2019) Origin and evolution of CRISPR-Cas systems. Phil Trans R Soc Lond B Biol Sci 374(1772):20180087. https://doi.org/10.1098/rstb.2018.0087 DOI

Koonin EV, Starokadomskyy (2016) Are viruses alive? The replicator paradigm shed decisive light on an old but misguided question. Stud Hist Philos Biol Biomed Sci 59:125–134. https://doi.org/10.1016/j.shpsc.2016.02.016 PubMed DOI PMC

Koonin EV, Makarova KS, Wolf YI, Krupovic M (2020) Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet 21:119–131. https://doi.org/10.1038/s41576-019-0172-9 PubMed DOI

Lawlor MA, Ellison CE (2023) Evolutionary dynamics between transposable elements and their host genomes: mechanisms of suppression and escape. Curr Opin Genet Dev 82:102092. https://doi.org/10.1016/j.gde.2023.102092 PubMed DOI PMC

Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232. https://doi.org/10.1126/science.1167856 PubMed DOI PMC

Lukes J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral ratchet can build cellular complexity. IUBMB Life 63:528–537. https://doi.org/10.1002/iub.489 PubMed DOI

Luo GX, Taylor J (1990) Template switching by reverse transcriptase during DNA synthesis. J Virol 64:4321–4328. https://doi.org/10.1128/jvi.64.9.4321-4328.1990 PubMed DOI PMC

Mason JM, Frydrychova RC, Biessmann H (2008) Drosophila telomeres: an exception providing new insights. BioEssays 30:25–37. https://doi.org/10.1002/bies.20688 PubMed DOI PMC

Mast CB, Schink S, Gerland U, Braun D (2013) Escalation of polymerization in a thermal gradient. Proc Natl Acad Sci U S A 110:8030–8035. https://doi.org/10.1073/pnas.1303222110 PubMed DOI PMC

Maynard Smith J, Szathmáry E (1995) The major transition in evolution. Oxford University Press

Mougari S, Sahmi-Bounsiar D, Lecasseur A, Colson P (2019) Virophages of giant viruses: an update at eleven. Viruses 11:733. https://doi.org/10.3390/v11080733 PubMed DOI PMC

Niles E, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, CA, pp 82–115

Oliveira PH, Touchon M, Rocha EPC (2014) The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic host. Nucleic Acids Res 42:10618–10631. https://doi.org/10.1093/nar/gku734 PubMed DOI PMC

Oliveira PH, Touchon M, Rocha EPC (2016) Regulation of genetic flux between bacteria by restriction–modification systems. Proc Natl Acad Sci U S A 113:5658–5663. https://doi.org/10.1073/pnas.1603257113 PubMed DOI PMC

Pettersson ME, Berg OG (2007) Muller’s ratchet in symbiont populations. Genetica 130:199–211. https://doi.org/10.1007/s10709-006-9007-7 PubMed DOI

Pingoud A, Fuxreiter M, Pingoud V, Wende W (2005) Type II restriction endonucleases: structure and mechanism. Cell Mol Life Sci 62:685–707. https://doi.org/10.1007/s00018-004-4513-1 PubMed DOI PMC

Poudyal RR, Guth-Metzler RM, Veenis AJ, Frankel EA, Keating CD, Bevilacqua PC (2019) Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat Comm 10:490. https://doi.org/10.1038/s41467-019-08353-4 DOI

Pross A (2013) The evolutionary origin of biological function and complexity. J Mol Evol 76:185–191. https://doi.org/10.1007/s00239-013-9556-1 PubMed DOI

Pross A, Khodorkovsky V (2004) Extending the concept of kinetic stability: toward a paradigm for life. J Phys Org Chem 17:312–316. https://doi.org/10.1002/poc.729 DOI

Qiu Y, Kohler C (2020) Mobility connects: transposable elements wire new transcriptional networks by transferring transcription factor binding motifs. Biochem Soc Trans 48(3):1005–1017. https://doi.org/10.1042/BST20190937 PubMed DOI PMC

Serrato-Capuchina A, Matute DR (2018) The role of transposable elements in speciation. Genes 9:254. https://doi.org/10.3390/genes9050254 PubMed DOI PMC

Speijer D, Lukes J, Elias M (2015) Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc Natl Acad Sci U S A 112:8827–8834. https://doi.org/10.1073/pnas.1501725112 PubMed DOI PMC

Spiegelman S, Haruna I, Holland IB, Beaudreau G, Mills D (1965) The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A 54:919–927. https://doi.org/10.1073/pnas.54.3.919 PubMed DOI PMC

Takeuchi N, Kaneko K, Koonin EV (2014) Horizontal gene transfer can rescue prokaryotes from Muller’s ratchet: benefit of DNA from dead cells and population subdivision. G3 Genes|genomes|genetics 4:325–339. https://doi.org/10.1534/g3.113.009845 PubMed DOI

Trifonov EN (2011) Vocabulary of definitions of life suggests a definition. J Biomol Struct Dyn 29:259–266. https://doi.org/10.1080/073911011010524992 PubMed DOI

Trifonov EN, Kejnovsky E (2015) Acytota – associated kingdom of neglected life. J Biomol Struct Dyn 34(8):1641–1648. https://doi.org/10.1080/07391102.2015.1086959 DOI

Vaidya N, Manapat ML, Chen IA, Xulvi-Brunet R, Hayden EJ, Lehman N (2012) Spontaneous network formation among cooperative RNA replicators. Nature 491:72–77 PubMed DOI

Vasu K, Nagaraja V (2013) Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 77:53–72. https://doi.org/10.1128/MMBR.00044-12 PubMed DOI PMC

Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G (2021) Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 210:104566. https://doi.org/10.1016/j.biosystems.2021.104566 PubMed DOI

Woese CR, Kandler O, Wheelis ML (1990) Toward a natural system of organisms: proposal for the domains Archea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579. https://doi.org/10.1073/pnas.87.12.4576 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...