Lysosomal Drug Sequestration Mediated by ABC Transporters and Drug Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2025_023
Palacký University Olomouc
PubMed
41155892
PubMed Central
PMC12566903
DOI
10.3390/pharmaceutics17101255
PII: pharmaceutics17101255
Knihovny.cz E-zdroje
- Klíčová slova
- lysosomal ABC transporters, lysosomal mediated drug resistance, mechanisms of drug resistance,
- Publikační typ
- časopisecké články MeSH
Background: Drug resistance (DR) mediated by ABC transporters in the cytoplasmic membrane has been one of the best studied mechanisms of DR in vitro. More recently, it has also been suggested that ABC transporters expressed on lysosomal membranes could increase the sequestration of anticancer drugs in lysosomes, thereby reducing their concentration at target sites, and causing DR. Unfortunately, convincing evidence that such a DR mechanism actually exists is lacking, even in the case of in vitro experiments. Methods: This hypothetical study using simplified models evaluates the effect of ABC transporter-mediated accumulation of anticancer drugs in lysosomes on their concentration at target sites under standard in vitro conditions. Results: Calculations show that an ABC transporter resident on the plasma membrane must create and maintain a relatively small concentration gradient between extracellular space and the target site to reduce the drug concentration at the target site by, for example, half. In contrast, if a lysosomal ABC transporter is to also halve the concentration of the drug at the target site, then it must create and maintain a huge concentration gradient between lysosomes and target sites. It is very likely that massive accumulation of drugs in lysosomes would have a negative effect on the function of the lysosomes themselves. Conclusions: The results of this hypothetical study strongly suggest that the mechanism of DR mediated by lysosomal ABC transporters is questionable, as it requires enormous accumulation of the drug in lysosomes, which would likely also impair their function. Therefore, it is highly unlikely that this hypothetical DR mechanism could actually be utilized by tumor cells to defend against the cytotoxic effects of chemotherapy in vitro.
Zobrazit více v PubMed
Min H.Y., Lee H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022;54:1670–1694. doi: 10.1038/s12276-022-00864-3. PubMed DOI PMC
Holohan C., Van Schaeybroeck S., Longley D.B., Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer. 2013;13:714–726. doi: 10.1038/nrc3599. PubMed DOI
Ambudkar S.V., Dey S., Hrycyna C.A., Ramachandra M., Pastan I., Gottesman M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999;39:361–398. doi: 10.1146/annurev.pharmtox.39.1.361. PubMed DOI
Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC
Shapiro A.B., Fox K., Lee P., Yang Y.D., Ling V. Functional intracellular P-glycoprotein. Int. J. Cancer. 1998;76:857–864. doi: 10.1002/(SICI)1097-0215(19980610)76:6<857::AID-IJC15>3.0.CO;2-#. PubMed DOI
Ferrao P., Sincock P., Cole S., Ashman L. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk. Res. 2001;25:395–405. doi: 10.1016/S0145-2126(00)00156-9. PubMed DOI
Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC
Rajagopal A., Simon S.M. Subcellular localization and activity of multidrug resistance proteins. Mol. Biol. Cell. 2003;14:3389–3399. doi: 10.1091/mbc.e02-11-0704. PubMed DOI PMC
Mlejnek P., Havlasek J., Pastvova N., Dolezel P. Can image analysis provide evidence that lysosomal sequestration mediates daunorubicin resistance? Chem. Biol. Interact. 2020;327:109138. doi: 10.1016/j.cbi.2020.109138. PubMed DOI
Gigli M., Doglia S.M., Millot J.M., Valentini L., Manfait M. Quantitative study of doxorubicin in living cell nuclei by microspectrofluorometry. Biochim. Biophys. Acta. 1988;950:13–20. doi: 10.1016/0167-4781(88)90068-1. PubMed DOI
Krumpochova P., Kocurova A., Dolezel P., Mlejnek P. Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011;879:1875–1880. doi: 10.1016/j.jchromb.2011.05.008. PubMed DOI
Katayama K., Kapoor K., Ohnuma S., Patel A., Swaim W., Ambudkar I.S., Ambudkar S.V. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway. Biochim. Biophys. Acta. 2015;1853:2361–2370. doi: 10.1016/j.bbamcr.2015.06.001. PubMed DOI PMC
Szakacs G., Abele R. An inventory of lysosomal ABC transporters. FEBS Lett. 2020;594:3965–3985. doi: 10.1002/1873-3468.13967. PubMed DOI
Laing N.M., Belinsky M.G., Kruh G.D., Bell D.W., Boyd J.T., Barone L., Testa J.R., Tew K.D. Amplification of the ATP-binding cassette 2 transporter gene is functionally linked with enhanced efflux of estramustine in ovarian carcinoma cells. Cancer Res. 1998;58:1332–1337. PubMed
Boonstra R., Timmer-Bosscha H., van Echten-Arends J., van der Kolk D.M., van den Berg A., de Jong B., Tew K.D., Poppema S., de Vries E.G. Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. Br. J. Cancer. 2004;90:2411–2417. doi: 10.1038/sj.bjc.6601863. PubMed DOI PMC
Gotovdorj T., Lee E., Lim Y., Cha E.J., Kwon D., Hong E., Kim Y., Oh M.Y. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cell-specific drug transporters with acquired cisplatin resistance in cisplatin sensitive cancer cells. J. Korean Med. Sci. 2014;29:1188–1198. doi: 10.3346/jkms.2014.29.9.1188. PubMed DOI PMC
Saini V., Hose C.D., Monks A., Nagashima K., Han B., Newton D.L., Millione A., Shah J., Hollingshead M.G., Hite K.M., et al. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS ONE. 2012;7:e41401. doi: 10.1371/annotation/8c74aaee-897d-4682-b62d-d95a3506c210. PubMed DOI PMC
Rakvács Z., Kucsma N., Gera M., Igriczi B., Kiss K., Barna J., Kovács D., Vellai T., Bencs L., Reisecker J.M., et al. The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium detoxification. Cell. Mol. Life Sci. 2019;76:4131–4144. doi: 10.1007/s00018-019-03105-5. PubMed DOI PMC
Gong J.P., Yang L., Tang J.W., Sun P., Hu Q., Qin J.W., Xu X.M., Sun B.C., Tang J.H. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncol. Lett. 2016;12:3905–3911. doi: 10.3892/ol.2016.5139. PubMed DOI PMC
Moody H.L., Lind M.J., Maher S.G. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. Mol. Ther. Nucleic Acids. 2017;8:317–329. doi: 10.1016/j.omtn.2017.07.001. PubMed DOI PMC
Chapuy B., Koch R., Radunski U., Corsham S., Cheong N., Inagaki N., Ban N., Wenzel D., Reinhardt D., Zapf A., et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia. 2008;22:1576–1586. doi: 10.1038/leu.2008.103. PubMed DOI
Chapuy B., Panse M., Radunski U., Koch R., Wenzel D., Inagaki N., Haase D., Truemper L., Wulf G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009;94:1528–1536. doi: 10.3324/haematol.2009.008631. PubMed DOI PMC
Panneerselvam J., Mohandoss P., Patel R., Gillan H., Li M., Kumar K., Nguyen D., Weygant N., Qu D., Pitts K., et al. DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-small Cell Lung Cancer via ABCD-Member-4. Mol. Ther. Oncolytics. 2020;18:24–36. doi: 10.1016/j.omto.2020.05.012. PubMed DOI PMC
Eckford P.D., Sharom F.J. ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev. 2009;109:2989–3011. doi: 10.1021/cr9000226. PubMed DOI
Ballabio A., Bonifacino J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell. Biol. 2020;21:101–118. doi: 10.1038/s41580-019-0185-4. PubMed DOI
Larsen A.K., Escargueil A.E., Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 2000;85:217–229. doi: 10.1016/S0163-7258(99)00073-X. PubMed DOI
Duvvuri M., Krise J.P. Intracellular drug sequestration events associated with the emergence of multidrug resistance: A mechanistic review. Front. Biosci. 2005;10:1499–1509. doi: 10.2741/1634. PubMed DOI
Groth-Pedersen L., Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332:265–274. doi: 10.1016/j.canlet.2010.05.021. PubMed DOI
Noel G., Peterson C., Trouet A., Tulkens P. Uptake and subcellular localization of daunorubicin and adriamycin in cultured fibroblasts. Eur. J. Cancer. 1978;14:363–368. doi: 10.1016/0014-2964(78)90206-2. PubMed DOI
Loetchutinat C., Priebe W., Garnier-Suillerot A. Drug sequestration in cytoplasmic organelles does not contribute to the diminished sensitivity of anthracyclines in multidrug resistant K562 cells. Eur. J. Biochem. 2001;268:4459–4467. doi: 10.1046/j.1432-1327.2001.02370.x. PubMed DOI
Burger H., den Dekker A.T., Segeletz S., Boersma A.W., de Bruijn P., Debiec-Rychter M., Taguchi T., Sleijfer S., Sparreboom A., Mathijssen R.H., et al. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol. Pharmacol. 2015;88:477–487. doi: 10.1124/mol.114.097451. PubMed DOI
Ruzickova E., Skoupa N., Dolezel P., Smith D.A., Mlejnek P. The Lysosomal Sequestration of Tyrosine Kinase Inhibitors and Drug Resistance. Biomolecules. 2019;9:675. doi: 10.3390/biom9110675. PubMed DOI PMC
Mlejnek P. Lysosomal-mediated drug resistance—Fact or illusion? Pharmacol. Res. 2024;199:107025. doi: 10.1016/j.phrs.2023.107025. PubMed DOI
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells. 2023;12:709. doi: 10.3390/cells12050709. PubMed DOI PMC
MacIntyre A.C., Cutler D.J. The potential role of lysosomes in tissue distribution of weak bases. Biopharm. Drug Dispos. 1988;9:513–526. doi: 10.1002/bod.2510090602. PubMed DOI
Lieberman A.P., Puertollano R., Raben N., Slaugenhaupt S., Walkley S.U., Ballabio A. Autophagy in lysosomal storage disorders. Autophagy. 2012;8:719–730. doi: 10.4161/auto.19469. PubMed DOI PMC
Yim W.W., Mizushima N. Lysosome biology in autophagy. Cell Discov. 2020;6:6. doi: 10.1038/s41421-020-0141-7. PubMed DOI PMC
Boya P., Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27:6434–6451. doi: 10.1038/onc.2008.310. PubMed DOI
Mlejnek P., Havlasek J., Pastvova N., Dolezel P., Dostalova K. Lysosomal sequestration of weak base drugs, lysosomal biogenesis, and cell cycle alteration. Biomed. Pharmacother. 2022;153:113328. doi: 10.1016/j.biopha.2022.113328. PubMed DOI