Lysosomal Drug Sequestration Mediated by ABC Transporters and Drug Resistance

. 2025 Sep 24 ; 17 (10) : . [epub] 20250924

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41155892

Grantová podpora
IGA_LF_2025_023 Palacký University Olomouc

Odkazy

PubMed 41155892
PubMed Central PMC12566903
DOI 10.3390/pharmaceutics17101255
PII: pharmaceutics17101255
Knihovny.cz E-zdroje

Background: Drug resistance (DR) mediated by ABC transporters in the cytoplasmic membrane has been one of the best studied mechanisms of DR in vitro. More recently, it has also been suggested that ABC transporters expressed on lysosomal membranes could increase the sequestration of anticancer drugs in lysosomes, thereby reducing their concentration at target sites, and causing DR. Unfortunately, convincing evidence that such a DR mechanism actually exists is lacking, even in the case of in vitro experiments. Methods: This hypothetical study using simplified models evaluates the effect of ABC transporter-mediated accumulation of anticancer drugs in lysosomes on their concentration at target sites under standard in vitro conditions. Results: Calculations show that an ABC transporter resident on the plasma membrane must create and maintain a relatively small concentration gradient between extracellular space and the target site to reduce the drug concentration at the target site by, for example, half. In contrast, if a lysosomal ABC transporter is to also halve the concentration of the drug at the target site, then it must create and maintain a huge concentration gradient between lysosomes and target sites. It is very likely that massive accumulation of drugs in lysosomes would have a negative effect on the function of the lysosomes themselves. Conclusions: The results of this hypothetical study strongly suggest that the mechanism of DR mediated by lysosomal ABC transporters is questionable, as it requires enormous accumulation of the drug in lysosomes, which would likely also impair their function. Therefore, it is highly unlikely that this hypothetical DR mechanism could actually be utilized by tumor cells to defend against the cytotoxic effects of chemotherapy in vitro.

Zobrazit více v PubMed

Min H.Y., Lee H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022;54:1670–1694. doi: 10.1038/s12276-022-00864-3. PubMed DOI PMC

Holohan C., Van Schaeybroeck S., Longley D.B., Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer. 2013;13:714–726. doi: 10.1038/nrc3599. PubMed DOI

Ambudkar S.V., Dey S., Hrycyna C.A., Ramachandra M., Pastan I., Gottesman M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999;39:361–398. doi: 10.1146/annurev.pharmtox.39.1.361. PubMed DOI

Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI

Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer. 2018;18:452–464. doi: 10.1038/s41568-018-0005-8. PubMed DOI PMC

Shapiro A.B., Fox K., Lee P., Yang Y.D., Ling V. Functional intracellular P-glycoprotein. Int. J. Cancer. 1998;76:857–864. doi: 10.1002/(SICI)1097-0215(19980610)76:6<857::AID-IJC15>3.0.CO;2-#. PubMed DOI

Ferrao P., Sincock P., Cole S., Ashman L. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk. Res. 2001;25:395–405. doi: 10.1016/S0145-2126(00)00156-9. PubMed DOI

Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC

Rajagopal A., Simon S.M. Subcellular localization and activity of multidrug resistance proteins. Mol. Biol. Cell. 2003;14:3389–3399. doi: 10.1091/mbc.e02-11-0704. PubMed DOI PMC

Mlejnek P., Havlasek J., Pastvova N., Dolezel P. Can image analysis provide evidence that lysosomal sequestration mediates daunorubicin resistance? Chem. Biol. Interact. 2020;327:109138. doi: 10.1016/j.cbi.2020.109138. PubMed DOI

Gigli M., Doglia S.M., Millot J.M., Valentini L., Manfait M. Quantitative study of doxorubicin in living cell nuclei by microspectrofluorometry. Biochim. Biophys. Acta. 1988;950:13–20. doi: 10.1016/0167-4781(88)90068-1. PubMed DOI

Krumpochova P., Kocurova A., Dolezel P., Mlejnek P. Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011;879:1875–1880. doi: 10.1016/j.jchromb.2011.05.008. PubMed DOI

Katayama K., Kapoor K., Ohnuma S., Patel A., Swaim W., Ambudkar I.S., Ambudkar S.V. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway. Biochim. Biophys. Acta. 2015;1853:2361–2370. doi: 10.1016/j.bbamcr.2015.06.001. PubMed DOI PMC

Szakacs G., Abele R. An inventory of lysosomal ABC transporters. FEBS Lett. 2020;594:3965–3985. doi: 10.1002/1873-3468.13967. PubMed DOI

Laing N.M., Belinsky M.G., Kruh G.D., Bell D.W., Boyd J.T., Barone L., Testa J.R., Tew K.D. Amplification of the ATP-binding cassette 2 transporter gene is functionally linked with enhanced efflux of estramustine in ovarian carcinoma cells. Cancer Res. 1998;58:1332–1337. PubMed

Boonstra R., Timmer-Bosscha H., van Echten-Arends J., van der Kolk D.M., van den Berg A., de Jong B., Tew K.D., Poppema S., de Vries E.G. Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. Br. J. Cancer. 2004;90:2411–2417. doi: 10.1038/sj.bjc.6601863. PubMed DOI PMC

Gotovdorj T., Lee E., Lim Y., Cha E.J., Kwon D., Hong E., Kim Y., Oh M.Y. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induced cell-specific drug transporters with acquired cisplatin resistance in cisplatin sensitive cancer cells. J. Korean Med. Sci. 2014;29:1188–1198. doi: 10.3346/jkms.2014.29.9.1188. PubMed DOI PMC

Saini V., Hose C.D., Monks A., Nagashima K., Han B., Newton D.L., Millione A., Shah J., Hollingshead M.G., Hite K.M., et al. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS ONE. 2012;7:e41401. doi: 10.1371/annotation/8c74aaee-897d-4682-b62d-d95a3506c210. PubMed DOI PMC

Rakvács Z., Kucsma N., Gera M., Igriczi B., Kiss K., Barna J., Kovács D., Vellai T., Bencs L., Reisecker J.M., et al. The human ABCB6 protein is the functional homologue of HMT-1 proteins mediating cadmium detoxification. Cell. Mol. Life Sci. 2019;76:4131–4144. doi: 10.1007/s00018-019-03105-5. PubMed DOI PMC

Gong J.P., Yang L., Tang J.W., Sun P., Hu Q., Qin J.W., Xu X.M., Sun B.C., Tang J.H. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncol. Lett. 2016;12:3905–3911. doi: 10.3892/ol.2016.5139. PubMed DOI PMC

Moody H.L., Lind M.J., Maher S.G. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma. Mol. Ther. Nucleic Acids. 2017;8:317–329. doi: 10.1016/j.omtn.2017.07.001. PubMed DOI PMC

Chapuy B., Koch R., Radunski U., Corsham S., Cheong N., Inagaki N., Ban N., Wenzel D., Reinhardt D., Zapf A., et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia. 2008;22:1576–1586. doi: 10.1038/leu.2008.103. PubMed DOI

Chapuy B., Panse M., Radunski U., Koch R., Wenzel D., Inagaki N., Haase D., Truemper L., Wulf G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009;94:1528–1536. doi: 10.3324/haematol.2009.008631. PubMed DOI PMC

Panneerselvam J., Mohandoss P., Patel R., Gillan H., Li M., Kumar K., Nguyen D., Weygant N., Qu D., Pitts K., et al. DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-small Cell Lung Cancer via ABCD-Member-4. Mol. Ther. Oncolytics. 2020;18:24–36. doi: 10.1016/j.omto.2020.05.012. PubMed DOI PMC

Eckford P.D., Sharom F.J. ABC efflux pump-based resistance to chemotherapy drugs. Chem. Rev. 2009;109:2989–3011. doi: 10.1021/cr9000226. PubMed DOI

Ballabio A., Bonifacino J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell. Biol. 2020;21:101–118. doi: 10.1038/s41580-019-0185-4. PubMed DOI

Larsen A.K., Escargueil A.E., Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 2000;85:217–229. doi: 10.1016/S0163-7258(99)00073-X. PubMed DOI

Duvvuri M., Krise J.P. Intracellular drug sequestration events associated with the emergence of multidrug resistance: A mechanistic review. Front. Biosci. 2005;10:1499–1509. doi: 10.2741/1634. PubMed DOI

Groth-Pedersen L., Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332:265–274. doi: 10.1016/j.canlet.2010.05.021. PubMed DOI

Noel G., Peterson C., Trouet A., Tulkens P. Uptake and subcellular localization of daunorubicin and adriamycin in cultured fibroblasts. Eur. J. Cancer. 1978;14:363–368. doi: 10.1016/0014-2964(78)90206-2. PubMed DOI

Loetchutinat C., Priebe W., Garnier-Suillerot A. Drug sequestration in cytoplasmic organelles does not contribute to the diminished sensitivity of anthracyclines in multidrug resistant K562 cells. Eur. J. Biochem. 2001;268:4459–4467. doi: 10.1046/j.1432-1327.2001.02370.x. PubMed DOI

Burger H., den Dekker A.T., Segeletz S., Boersma A.W., de Bruijn P., Debiec-Rychter M., Taguchi T., Sleijfer S., Sparreboom A., Mathijssen R.H., et al. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol. Pharmacol. 2015;88:477–487. doi: 10.1124/mol.114.097451. PubMed DOI

Ruzickova E., Skoupa N., Dolezel P., Smith D.A., Mlejnek P. The Lysosomal Sequestration of Tyrosine Kinase Inhibitors and Drug Resistance. Biomolecules. 2019;9:675. doi: 10.3390/biom9110675. PubMed DOI PMC

Mlejnek P. Lysosomal-mediated drug resistance—Fact or illusion? Pharmacol. Res. 2024;199:107025. doi: 10.1016/j.phrs.2023.107025. PubMed DOI

Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells. 2023;12:709. doi: 10.3390/cells12050709. PubMed DOI PMC

MacIntyre A.C., Cutler D.J. The potential role of lysosomes in tissue distribution of weak bases. Biopharm. Drug Dispos. 1988;9:513–526. doi: 10.1002/bod.2510090602. PubMed DOI

Lieberman A.P., Puertollano R., Raben N., Slaugenhaupt S., Walkley S.U., Ballabio A. Autophagy in lysosomal storage disorders. Autophagy. 2012;8:719–730. doi: 10.4161/auto.19469. PubMed DOI PMC

Yim W.W., Mizushima N. Lysosome biology in autophagy. Cell Discov. 2020;6:6. doi: 10.1038/s41421-020-0141-7. PubMed DOI PMC

Boya P., Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27:6434–6451. doi: 10.1038/onc.2008.310. PubMed DOI

Mlejnek P., Havlasek J., Pastvova N., Dolezel P., Dostalova K. Lysosomal sequestration of weak base drugs, lysosomal biogenesis, and cell cycle alteration. Biomed. Pharmacother. 2022;153:113328. doi: 10.1016/j.biopha.2022.113328. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...