What Is the Significance of Lysosomal-Mediated Resistance to Imatinib?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36899844
PubMed Central
PMC10000661
DOI
10.3390/cells12050709
PII: cells12050709
Knihovny.cz E-zdroje
- Klíčová slova
- STI571, cancer, drug resistance mechanisms, hydrophobic weak-base drugs, lysosomal drug sequestration, tyrosine kinase inhibitors,
- MeSH
- chronická myeloidní leukemie * farmakoterapie MeSH
- imatinib mesylát terapeutické užití MeSH
- lidé MeSH
- lyzozomy MeSH
- protinádorové látky * terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- imatinib mesylát MeSH
- protinádorové látky * MeSH
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Zobrazit více v PubMed
Dy G.K., Adjei A.A. Systemic cancer therapy: Evolution over the last 60 years. Cancer. 2008;113((Suppl. 7)):1857–1887. doi: 10.1002/cncr.23651. PubMed DOI
Gottesman M.M., Fojo T., Bates S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Longley D.B., Johnston P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005;205:275–292. doi: 10.1002/path.1706. PubMed DOI
Monti E. Molecular Determinants of Intrinsic Multidrug Resistance in Cancer Cells and Tumors. In: Teicher B.A., editor. Cancer Drug Resistance. Humana Press; Totowa, NJ, USA: 2006. pp. 241–260. DOI
Holohan C., Van Schaeybroeck S., Longley D.B., Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer. 2013;13:714–726. doi: 10.1038/nrc3599. PubMed DOI
Housman G., Byler S., Heerboth S., Lapinska K., Longacre M., Snyder N., Sarkar S. Drug resistance in cancer: An overview. Cancers. 2014;6:1769–1792. doi: 10.3390/cancers6031769. PubMed DOI PMC
Wang X., Zhang H., Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2:141–160. doi: 10.20517/cdr.2019.10. PubMed DOI PMC
Ouar Z., Lacave R., Bens M., Vandewalle A. Mechanisms of altered sequestration and efflux of chemotherapeutic drugs by multidrug-resistant cells. Cell Biol. Toxicol. 1999;15:91–100. doi: 10.1023/A:1007521430236. PubMed DOI
Larsen A.K., Escargueil A.E., Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol. Ther. 2000;85:217–229. doi: 10.1016/S0163-7258(99)00073-X. PubMed DOI
Duvvuri M., Krise J.P. Intracellular drug sequestration events associated with the emergence of multidrug resistance: A mechanistic review. Front. Biosci. 2005;10:1499–1509. doi: 10.2741/1634. PubMed DOI
Kaufmann A.M., Krise J.P. Lysosomal sequestration of amine-containing drugs: Analysis and therapeutic implications. J. Pharm. Sci. 2007;96:729–746. doi: 10.1002/jps.20792. PubMed DOI
de Klerk D.J., Honeywell R.J., Jansen G., Peters G.J. Transporter and Lysosomal Mediated (Multi)drug Resistance to Tyrosine Kinase Inhibitors and Potential Strategies to Overcome Resistance. Cancers. 2018;10:503. doi: 10.3390/cancers10120503. PubMed DOI PMC
Halcrow P.W., Geiger J.D., Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front. Cell Dev. Biol. 2021;9:627639. doi: 10.3389/fcell.2021.627639. PubMed DOI PMC
Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009;10:623–635. doi: 10.1038/nrm2745. PubMed DOI
Appelqvist H., Wäster P., Kågedal K., Öllinger K. The lysosome: From waste bag to potential therapeutic target. J. Mol. Cell Biol. 2013;5:214–226. doi: 10.1093/jmcb/mjt022. PubMed DOI
Settembre C., Fraldi A., Medina D.L., Ballabio A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013;14:283–296. doi: 10.1038/nrm3565. PubMed DOI PMC
Perera R.M., Zoncu R. The Lysosome as a Regulatory Hub. Annu. Rev. Cell Dev. Biol. 2016;32:223–253. doi: 10.1146/annurev-cellbio-111315-125125. PubMed DOI PMC
De Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., van Hoof F. Commentary. Lysosomotropic agents. Biochem. Pharmacol. 1974;23:2495–2531. doi: 10.1016/0006-2952(74)90174-9. PubMed DOI
MacIntyre A.C., Cutler D.J. The potential role of lysosomes in tissue distribution of weak bases. Biopharm. Drug Dispos. 1988;9:513–526. doi: 10.1002/bod.2510090602. PubMed DOI
Hindenburg A.A., Gervasoni J.E., Jr., Krishna S., Stewart V.J., Rosado M., Lutzky J., Bhalla K., Baker M.A., Taub R.N. Intracellular distribution and pharmacokinetics of daunorubicin in anthracycline-sensitive and -resistant HL-60 cells. Cancer Res. 1989;49:4607–4614. PubMed
Schuurhuis G.J., Broxterman H.J., van Heijningen T.H., Cervantes A., Pinedo H.M., de Lange J.H., Keizer H.G., Broxterman H.J., Baak J.P., Lankelma J. Changes in subcellular doxorubicin distribution and cellular accumulation alone can largely account for doxorubicin resistance in SW-1573 lung cancer and MCF-7 breast cancer multidrug resistant tumour cells. Br. J. Cancer. 1993;68:898–908. doi: 10.1038/bjc.1993.452. PubMed DOI PMC
Breuninger L.M., Paul S., Gaughan K., Miki T., Chan A., Aaronson S.A., Kruh G.D. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995;55:5342–5347. PubMed
Hurwitz S.J., Terashima M., Mizunuma N., Slapak C.A. Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: Participation of lysosomes. Blood. 1997;89:3745–3754. doi: 10.1182/blood.V89.10.3745. PubMed DOI
Duvvuri M., Konkar S., Funk R.S., Krise J.M., Krise J.P. A chemical strategy to manipulate the intracellular localization of drugs in resistant cancer cells. Biochemistry. 2005;44:15743–15749. doi: 10.1021/bi051759w. PubMed DOI
Luzio J.P., Hackmann Y., Dieckmann N.M., Griffiths G.M. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb. Perspect. Biol. 2014;6:a016840. doi: 10.1101/cshperspect.a016840. PubMed DOI PMC
Yang W.C., Strasser F.F., Pomerat C.M. Mechanism of drug-induced vacuolization in tissue culture. Exp. Cell Res. 1965;38:495–506. doi: 10.1016/0014-4827(65)90373-3. PubMed DOI
Finnin B.C., Reed B.L., Ruffin N.E. The effects of osmotic pressure on procaine-induced vacuolation in cell culture. J. Pharm. Pharm. 1969;21:114–117. doi: 10.1111/j.2042-7158.1969.tb08207.x. PubMed DOI
Goldman S.D., Funk R.S., Rajewski R.A., Krise J.P. Mechanisms of amine accumulation in, and egress from, lysosomes. Bioanalysis. 2009;1:1445–1459. doi: 10.4155/bio.09.128. PubMed DOI PMC
Skoupa N., Dolezel P., Mlejnek P. Lysosomal Fusion: An Efficient Mechanism Increasing Their Sequestration Capacity for Weak Base Drugs without Apparent Lysosomal Biogenesis. Biomolecules. 2020;10:77. doi: 10.3390/biom10010077. PubMed DOI PMC
Collins K.P., Witta S., Coy J.W., Pang Y., Gustafson D.L. Lysosomal Biogenesis and Implications for Hydroxychloroquine Disposition. J. Pharmacol. Exp. Ther. 2021;376:294–305. doi: 10.1124/jpet.120.000309. PubMed DOI PMC
Ferrao P., Sincock P., Cole S., Ashman L. Intracellular P-gp contributes to functional drug efflux and resistance in acute myeloid leukaemia. Leuk. Res. 2001;25:395–405. doi: 10.1016/S0145-2126(00)00156-9. PubMed DOI
Ala A., Walker A.P., Ashkan K., Dooley J.S., Schilsky M.L. Wilson’s disease. Lancet. 2007;369:397–408. doi: 10.1016/S0140-6736(07)60196-2. PubMed DOI
Chapuy B., Koch R., Radunski U., Corsham S., Cheong N., Inagaki N., Ban N., Wenzel D., Reinhardt D., Zapf A., et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia. 2008;22:1576–1586. doi: 10.1038/leu.2008.103. PubMed DOI
Chapuy B., Panse M., Radunski U., Koch R., Wenzel D., Inagaki N., Haase D., Truemper L., Wulf G.G. ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica. 2009;94:1528–1536. doi: 10.3324/haematol.2009.008631. PubMed DOI PMC
Yanes R.E., Tarn D., Hwang A.A., Ferris D.P., Sherman S.P., Thomas C.R., Lu J., Pyle A.D., Zink J.I., Tamanoi F. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small. 2013;9:697–704. doi: 10.1002/smll.201201811. PubMed DOI PMC
Groth-Pedersen L., Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332:265–274. doi: 10.1016/j.canlet.2010.05.021. PubMed DOI
Willingham M.C., Cornwell M.M., Cardarelli C.O., Gottesman M.M., Pastan I. Single cell analysis of daunomycin uptake and efflux in multidrug-resistant and -sensitive KB cells: Effects of verapamil and other drugs. Cancer Res. 1986;46:5941–5946. PubMed
Noel G., Peterson C., Trouet A., Tulkens P. Uptake and subcellular localization of daunorubicin and adriamycin in cultured fibroblasts. Eur. J. Cancer. 1978;14:363–368. doi: 10.1016/0014-2964(78)90206-2. PubMed DOI
Loetchutinat C., Priebe W., Garnier-Suillerot A. Drug sequestration in cytoplasmic organelles does not contribute to the diminished sensitivity of anthracyclines in multidrug resistant K562 cells. Eur. J. Biochem. 2001;268:4459–4467. doi: 10.1046/j.1432-1327.2001.02370.x. PubMed DOI
Mlejnek P., Havlasek J., Pastvova N., Dolezel P. Can Image Analysis Provide Evidence That Lysosomal Sequestration Mediates Daunorubicin Resistance? Chem. Biol. Interact. 2020;327:109138. doi: 10.1016/j.cbi.2020.109138. PubMed DOI
Krumpochova P., Kocurova A., Dolezel P., Mlejnek P. Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011;879:1875–1880. doi: 10.1016/j.jchromb.2011.05.008. PubMed DOI
Smith D.A., Di L., Kerns E.H. The effect of plasma protein binding on in vivo efficacy: Misconceptions in drug discovery. Nat. Rev. Drug Discov. 2010;9:929–939. doi: 10.1038/nrd3287. PubMed DOI
Smith D.A., Rowland M. Intracellular and Intraorgan Concentrations of Small Molecule Drugs: Theory, Uncertainties in Infectious Diseases and Oncology, and Promise. Drug Metab. Dispos. 2019;47:665–672. doi: 10.1124/dmd.118.085951. PubMed DOI
Ruzickova E., Skoupa N., Dolezel P., Smith D.A., Mlejnek P. The lysosomal sequestration of tyrosine kinase inhibitors and drug resistance. Biomolecules. 2019;9:675. doi: 10.3390/biom9110675. PubMed DOI PMC
Druker B.J., Tamura S., Buchdunger E., Ohno S., Segal G.M., Fanning S., Zimmermann J., Lydon N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 1996;2:561–566. doi: 10.1038/nm0596-561. PubMed DOI
Nadanaciva S., Lu S., Gebhard D.F., Jessen B.A., Pennie W.D., Will Y. A high content screening assay for identifying lysosomotropic compounds. Toxicol. In Vitro. 2011;25:715–723. doi: 10.1016/j.tiv.2010.12.010. PubMed DOI
Fu D., Zhou J., Zhu W.S., Manley P.W., Wang Y.K., Hood T., Wylie A., Xie X.S. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 2014;6:614–622. doi: 10.1038/nchem.1961. PubMed DOI PMC
Burger H., den Dekker A.T., Segeletz S., Boersma A.W., de Bruijn P., Debiec-Rychter M., Taguchi T., Sleijfer S., Sparreboom A., Mathijssen R.H., et al. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol. Pharmacol. 2015;88:477–487. doi: 10.1124/mol.114.097451. PubMed DOI
Mahon F.X., Deininger M.W., Schultheis B., Chabrol J., Reiffers J., Goldman J.M., Melo J.V. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: Diverse mechanisms of resistance. Blood. 2000;96:1070–1079. doi: 10.1182/blood.V96.3.1070. PubMed DOI
Weisberg E., Griffin J.D. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood. 2000;95:3498–3505. doi: 10.1182/blood.V95.11.3498. PubMed DOI
le Coutre P., Tassi E., Varella-Garcia M., Barni R., Mologni L., Cabrita G., Marchesi E., Supino R., Gambacorti-Passerini C. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000;95:1758–1766. doi: 10.1182/blood.V95.5.1758.005a41_1758_1766. PubMed DOI
Weisberg E., Griffin J.D. Resistance to imatinib (Glivec): Update on clinical mechanisms. Drug Resist. Updat. 2003;6:231–238. doi: 10.1016/S1368-7646(03)00062-1. PubMed DOI
Weisberg E., Manley P.W., Cowan-Jacob S.W., Hochhaus A., Griffin J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer. 2007;7:345–356. doi: 10.1038/nrc2126. PubMed DOI
Milojkovic D., Apperley J. Mechanisms of Resistance to Imatinib and Second-Generation Tyrosine Inhibitors in Chronic Myeloid Leukemia. Clin. Cancer Res. 2009;15:7519–7527. doi: 10.1158/1078-0432.CCR-09-1068. PubMed DOI
Gounder M.M., Maki R.G. Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Cancer Chemother. Pharmacol. 2011;67((Suppl. 1)):S25–S43. doi: 10.1007/s00280-010-1526-3. PubMed DOI PMC
Patel A.B., O’Hare T., Deininger M.W. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol. Oncol. Clin. N. Am. 2017;31:589–612. doi: 10.1016/j.hoc.2017.04.007. PubMed DOI PMC
Braun T.P., Eide C.A., Druker B.J. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell. 2020;37:530–542. doi: 10.1016/j.ccell.2020.03.006. PubMed DOI PMC
Wang W.L., Conley A., Reynoso D., Nolden L., Lazar A.J., George S., Trent J.C. Mechanisms of resistance to imatinib and sunitinib in gastrointestinal stromal tumor. Cancer Chemother. Pharmacol. 2011;67((Suppl. 1)):S25–S43. doi: 10.1007/s00280-010-1513-8. PubMed DOI
Li G.Z., Raut C.P. Targeted therapy and personalized medicine in gastrointestinal stromal tumors: Drug resistance, mechanisms, and treatment strategies. Onco Targets Ther. 2019;12:5123–5133. doi: 10.2147/OTT.S180763. PubMed DOI PMC
Zhang H., Liu Q. Prognostic Indicators for Gastrointestinal Stromal Tumors: A Review. Transl. Oncol. 2020;13:100812. doi: 10.1016/j.tranon.2020.100812. PubMed DOI PMC
Théou N., Gil S., Devocelle A., Julié C., Lavergne-Slove A., Beauchet A., Callard P., Farinotti R., Le Cesne A., Lemoine A., et al. Multidrug resistance proteins in gastrointestinal stromal tumors: Site-dependent expression and initial response to imatinib. Clin. Cancer Res. 2005;11:7593–7598. doi: 10.1158/1078-0432.CCR-05-0710. PubMed DOI
Nimmanapalli R., O’Bryan E., Huang M., Bali P., Burnette P.K., Loughran T., Tepperberg J., Jove R., Bhalla K. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2002;62:5761–5769. PubMed
Donato N.J., Wu J.Y., Stapley J., Gallick G., Lin H., Arlinghaus R., Talpaz M. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood. 2003;101:690–698. doi: 10.1182/blood.V101.2.690. PubMed DOI
Baran Y., Ural A.U., Gunduz U. Mechanisms of cellular resistance to imatinib in human chronic myeloid leukemia cells. Hematology. 2007;12:497–503. doi: 10.1080/10245330701384179. PubMed DOI
Zhao F., Mancuso A., Bui T.V., Tong X., Gruber J.J., Swider C.R., Sanchez P.V., Lum J.J., Sayed N., Melo J.V., et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene. 2010;29:2962–2972. doi: 10.1038/onc.2010.67. PubMed DOI PMC
Hupfeld T., Chapuy B., Schrader V., Beutler M., Veltkamp C., Koch R., Cameron S., Aung T., Haase D., Larosee P., et al. Tyrosinekinase inhibition facilitates cooperation of transcription factor SALL4 and ABC transporter A3 towards intrinsic CML cell drug resistence. Br. J. Haematol. 2013;161:204–213. doi: 10.1111/bjh.12246. PubMed DOI
Dano K. Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim. Biophys. Acta. 1973;323:466–483. doi: 10.1016/0005-2736(73)90191-0. PubMed DOI
Juliano R.L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta. 1976;455:152–162. doi: 10.1016/0005-2736(76)90160-7. PubMed DOI
Ambudkar S.V., Kimchi-Sarfaty C., Sauna Z.E., Gottesman M.M. P-glycoprotein: From genomics to mechanism. Oncogene. 2003;22:7468–7485. doi: 10.1038/sj.onc.1206948. PubMed DOI
Shapiro A.B., Fox K., Lee P., Yang Y.D., Ling V. Functional intracellular P-glycoprotein. Int. J. Cancer. 1998;76:857–864. doi: 10.1002/(SICI)1097-0215(19980610)76:6<857::AID-IJC15>3.0.CO;2-#. PubMed DOI
Szakacs G., Abele R. An inventory of lysosomal ABC transporters. FEBS Lett. 2020;594:3965–3985. doi: 10.1002/1873-3468.13967. PubMed DOI
Gotink K.J., Broxterman H.J., Labots M., de Haas R.R., Dekker H., Honeywell R.J., Rudek M.A., Beerepoot L.V., Musters R.J., Jansen G., et al. Lysosomal sequestration of sunitinib: A novel mechanism of drug resistance. Clin. Cancer Res. 2011;17:7337–7346. doi: 10.1158/1078-0432.CCR-11-1667. PubMed DOI PMC
Mlejnek P., Havlasek J., Pastvova N., Dolezel P., Dostalova K. Lysosomal sequestration of weak base drugs, lysosomal biogenesis, and cell cycle alteration. Biomed. Pharmacother. 2022;153:113328. doi: 10.1016/j.biopha.2022.113328. PubMed DOI
Pastvova N., Havlasek J., Dolezel P., Kikalova K., Studentova H., Zemankova A., Melichar B., Mlejnek P. Changes in expression of lysosomal membrane proteins in leucocytes of cancer patients treated with tyrosine kinase inhibitors. Cancer Chemother. Pharmacol. 2021;88:89–98. doi: 10.1007/s00280-021-04266-6. PubMed DOI
Halaby R. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug Resist. 2019;2:31–42. doi: 10.20517/cdr.2018.23. PubMed DOI PMC
Ochiai H., Sakai S., Hirabayashi T., Shimizu Y., Terasawa K. Inhibitory effect of bafilomycin A1, a specific inhibitor of vacuolar-type proton pump, on the growth of influenza A and B viruses in MDCK cells. Antiviral Res. 1995;27:425–430. doi: 10.1016/0166-3542(95)00040-S. PubMed DOI
Nishihara T., Akifusa S., Koseki T., Kato S., Muro M., Hanada N. Specific inhibitors of vacuolar type H+-ATPases induce apoptotic cell death. Biochem. Biophys. Res. Commun. 1995;212:255–262. doi: 10.1006/bbrc.1995.1964. PubMed DOI
Yan Y., Jiang K., Liu P., Zhang X., Dong X., Gao J., Liu Q., Barr M.P., Zhang Q., Hou X., et al. Bafilomycin A1 induces caspase-independent cell death in hepatocellular carcinoma cells via targeting of autophagy and MAPK pathways. Sci. Rep. 2016;6:37052. doi: 10.1038/srep37052. PubMed DOI PMC
Plantone D., Koudriavtseva T. Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. Clin. Drug Investig. 2018;38:653–671. doi: 10.1007/s40261-018-0656-y. PubMed DOI
Bellodi C., Lidonnici M.R., Hamilton A., Helgason G.V., Soliera A.R., Ronchetti M., Galavotti S., Young K.W., Selmi T., Yacobi R., et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J. Clin. Investig. 2009;119:1109–1123. doi: 10.1172/JCI35660. PubMed DOI PMC
Salomoni P., Calabretta B. Targeted therapies and autophagy: New insights from chronic myeloid leukemia. Autophagy. 2009;5:1050–1051. doi: 10.4161/auto.5.7.9509. PubMed DOI
Crowley L.C., O’Donovan T.R., Nyhan M.J., McKenna S.L. Pharmacological agents with inherent anti-autophagic activity improve the cytotoxicity of imatinib. Oncol. Rep. 2013;29:2261–2268. doi: 10.3892/or.2013.2377. PubMed DOI
Gupta A., Roy S., Lazar A.J., Wang W.L., McAuliffe J.C., Reynoso D., McMahon J., Taguchi T., Floris G., Debiec-Rychter M., et al. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST) Proc. Natl. Acad. Sci. USA. 2010;107:14333–14338. doi: 10.1073/pnas.1000248107. PubMed DOI PMC
Zheng S., Shu Y., Lu Y., Sun Y. Chloroquine Combined with Imatinib Overcomes Imatinib Resistance in Gastrointestinal Stromal Tumors by Inhibiting Autophagy via the MAPK/ERK Pathway. Onco Targets Ther. 2020;13:6433–6441. doi: 10.2147/OTT.S256935. PubMed DOI PMC
Ertmer A., Huber V., Gilch S., Yoshimori T., Erfle V., Duyster J., Elsässer H.P., Schätzl H.M. The anticancer drug imatinib induces cellular autophagy. Leukemia. 2007;21:936–942. doi: 10.1038/sj.leu.2404606. PubMed DOI
Rubinsztein D.C., Codogno P., Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 2012;11:709–730. doi: 10.1038/nrd3802. PubMed DOI PMC
Raghunand N., Martínez-Zaguilán R., Wright S.H., Gillies R.J. pH and drug resistance. II. Turnover of acidic vesicles and resistance to weakly basic chemotherapeutic drugs. Biochem. Pharmacol. 1999;57:1047–1058. doi: 10.1016/S0006-2952(99)00021-0. PubMed DOI
Vyas A., Gomez-Casal R., Cruz-Rangel S., Villanueva H., Sikora A.G., Rajagopalan P., Basu D., Pacheco J., Hammond G.R.V., Kiselyov K., et al. Lysosomal inhibition sensitizes TMEM16A-expressing cancer cells to chemotherapy. Proc. Natl. Acad. Sci. USA. 2022;119:e2100670119. doi: 10.1073/pnas.2100670119. PubMed DOI PMC
Watkins D.B., Hughes T.P., White D.L. OCT1 and imatinib transport in CML: Is it clinically relevant? Leukemia. 2015;29:1960–1969. doi: 10.1038/leu.2015.170. PubMed DOI
Gambacorti-Passerini C., Barni R., le Coutre P., Zucchetti M., Cabrita G., Cleris L., Rossi F., Gianazza E., Brueggen J., Cozens R., et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL+ leukemic cells to the abl inhibitor STI571. J. Natl. Cancer Inst. 2000;92:1641–1650. doi: 10.1093/jnci/92.20.1641. PubMed DOI
Jørgensen H.G., Elliott M.A., Allan E.K., Carr C.E., Holyoake T.L., Smith K.D. Alpha1-acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. Blood. 2002;99:713–715. doi: 10.1182/blood.V99.2.713. PubMed DOI
Smith K.D., Paterson S. Binding of alpha-1-acid glycoprotein to imatinib following increased dosage of drug. Haematologica. 2005;90:ELT01. PubMed
Gorre M.E., Mohammed M., Ellwood K., Hsu N., Paquette R., Rao P.N., Sawyers C.L. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–880. doi: 10.1126/science.1062538. PubMed DOI
Dai Y., Rahmani M., Corey S.J., Dent P., Grant S. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2. J. Biol. Chem. 2004;279:34227–34239. doi: 10.1074/jbc.M402290200. PubMed DOI
Donato N.J., Wu J.Y., Stapley J., Lin H., Arlinghaus R., Aggarwal B.B., Shishodia S., Albitar M., Hayes K., Kantarjian H., et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res. 2004;64:672–677. doi: 10.1158/0008-5472.CAN-03-1484. PubMed DOI
Steinbach D., Gillet J.P., Sauerbrey A., Gruhn B., Dawczynski K., Bertholet V., de Longueville F., Zintl F., Remacle J., Efferth T. ABCA3 as a possible cause of drug resistance in childhood acute myeloid leukemia. Clin. Cancer Res. 2006;12:4357–4363. doi: 10.1158/1078-0432.CCR-05-2587. PubMed DOI
Song J.H., Kim S.H., Kim H.J., Hwang S.Y., Kim T.S. Alleviation of the drug-resistant phenotype in idarubicin and cytosine arabinoside double-resistant acute myeloid leukemia cells by indomethacin. Int. J. Oncol. 2008;32:931–936. doi: 10.3892/ijo.32.4.931. PubMed DOI
Wulf G.G., Modlich S., Inagaki N., Reinhardt D., Schroers R., Griesinger F., Trümper L. ABC transporter ABCA3 is expressed in acute myeloid leukemia blast cells and participates in vesicular transport. Haematologica. 2004;89:1395–1397. PubMed
de Lima L.T., Bueno C.T., Vivona D., Hirata R.D., Hirata M.H., Hungria V.T., Chiattone C.S., Zanichelli M.A., Chauffaille M.D.L.L.F., Guerra-Shinohara E.M. Relationship between SLCO1B3 and ABCA3 polymorphisms and imatinib response in chronic myeloid leukemia patients. Hematology. 2015;20:137–142. doi: 10.1179/1607845414Y.0000000181. PubMed DOI
Rahgozar S., Moafi A., Abedi M., Entezar-E-Ghaem M., Moshtaghian J., Ghaedi K., Esmaeili A., Montazeri F. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol. Ther. 2014;15:35–41. doi: 10.4161/cbt.26603. PubMed DOI PMC
Overbeck T.R., Arnemann J., Waldmann-Beushausen R., Trümper L., Schöndube F.A., Reuter-Jessen K., Danner B.C. ABCA3 Phenotype in Non-Small Cell Lung Cancer Indicates Poor Outcome. Oncology. 2017;93:270–278. doi: 10.1159/000477619. PubMed DOI
Rosenfeld M.R., Ye X., Supko J.G., Desideri S., Grossman S.A., Brem S., Mikkelson T., Wang D., Chang Y.C., Hu J., et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–1368. doi: 10.4161/auto.28984. PubMed DOI PMC
Rangwala R., Leone R., Chang Y.C., Fecher L.A., Schuchter L.M., Kramer A., Tan K.S., Heitjan D.F., Rodgers G., Gallagher M., et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1369–1379. doi: 10.4161/auto.29118. PubMed DOI PMC
Samaras P., Tusup M., Nguyen-Kim T.D.L., Seifert B., Bachmann H., von Moos R., Knuth A., Pascolo S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017;80:1005–1012. doi: 10.1007/s00280-017-3446-y. PubMed DOI
Karasic T.B., O’Hara M.H., Loaiza-Bonilla A., Reiss K.A., Teitelbaum U.R., Borazanci E., De Jesus-Acosta A., Redlinger C., Burrell J.A., Laheru D.A., et al. Effect of Gemcitabine and nab-Paclitaxel with or Without Hydroxychloroquine on Patients with Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019;5:993–998. doi: 10.1001/jamaoncol.2019.0684. PubMed DOI PMC
Horne G.A., Stobo J., Kelly C., Mukhopadhyay A., Latif A.L., Dixon-Hughes J., McMahon L., Cony-Makhoul P., Byrne J., Smith G., et al. A randomised phase II trial of hydroxychloroquine and imatinib versus imatinib alone for patients with chronic myeloid leukaemia in major cytogenetic response with residual disease. Leukemia. 2020;34:1775–1786. doi: 10.1038/s41375-019-0700-9. PubMed DOI PMC