Changes in expression of lysosomal membrane proteins in leucocytes of cancer patients treated with tyrosine kinase inhibitors
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-16614S
Grantová Agentura České Republiky
PubMed
33783548
DOI
10.1007/s00280-021-04266-6
PII: 10.1007/s00280-021-04266-6
Knihovny.cz E-zdroje
- Klíčová slova
- B2 subunit, Imatinib, LAMP1, LAMP2, Lysosmal membrane proteins, Sunitinib, Vacuolar H+-ATPase,
- MeSH
- gastrointestinální stromální tumory farmakoterapie metabolismus MeSH
- imatinib mesylát terapeutické užití MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- karcinom z renálních buněk farmakoterapie metabolismus MeSH
- leukocyty metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- membránové glykoproteiny asociované s lyzozomy metabolismus MeSH
- sunitinib terapeutické užití MeSH
- transkripční faktory BHLH-Zip metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imatinib mesylát MeSH
- inhibitory proteinkinas MeSH
- membránové glykoproteiny asociované s lyzozomy MeSH
- sunitinib MeSH
- transkripční faktory BHLH-Zip MeSH
Lysosomal sequestration of weak base drugs has been identified as one of the stress-related mechanisms that trigger in vitro lysosomal biogenesis controlled by transcription factor EB (TFEB). Whether such mechanism can induce lysosomal biogenesis in vivo is unknown. In this study, we addressed the question whether prolonged treatment with sunitinib (SUN) in patients with advanced renal cell carcinoma (n = 22) and with imatinib (IM) in those with gastrointestinal stromal tumor (n = 6) could induce lysosomal biogenesis in leukocytes. Lysosomal biogenesis was monitored using immunoblotting of three lysosomal membrane proteins: lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) and vacuolar H+-ATPase, B2 subunit (ATP6V1B2). Present results indicate that prolonged treatment with SUN affects LAMP1 and LAMP2 expression only marginally in most patients. In contrast, changes in ATP6V1B2 expression were marked and resembled irregular oscillations. Very similar changes in the expression of lysosomal membrane proteins were also found in IM-treated patients. Conclusion: prolonged treatment of cancer patients with SUN and IM did not induce leucocyte lysosomal biogenesis but dramatically affected expression of ATP6V1B2.
Zobrazit více v PubMed
Buchdunger E, Zimmermann J, Mett H, Meyer T, Müller M, Druker BJ, Lydon NB (1996) Inhibition of the Abl protein-kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56:100–104
Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanninget S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566 DOI
Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of C-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932 DOI
Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, Rahman A, Chen G, Staten A, Griebel D, Pazdur R (2002) Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 8:3034–3038 PubMed
Gounder MM, Maki RG (2011) Molecular basis for primary and secondary tyrosine kinase inhibitor resistance in gastrointestinal stromal tumor. Cancer Chemother Pharmacol 67:25–43 DOI
Spitaleri G, Biffi R, Barberis M, Fumagalli C, Toffalorio F, Catania C, Noberasco C, Lazzari C, de Marinis F, De Pas T (2015) Inactivity of Imatinib in gastrointestinal stromal tumors (GISTs) harboring a KIT activation-loop domain mutation (Exon 17 Mutation pN822K) Onco. Targets Ther 8:1997–2003 DOI
Chow LQ, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. Clin Oncol 25:884–896
Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124 DOI
Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA (2009) Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27:3584–3590 DOI
Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C (2014) Mechanisms of acquired resistance to tyrosine kinase inhibitors in clear - cell renal cell carcinoma (ccRCC). Curr Signal Transduct Ther 8:218–228 DOI
Joosten SC, Hamming L, Soetekouw PM, Aarts MJ, Veeck J, van Engeland M, Tjan-Heijnen VC (2015) Resistance to sunitinib in renal cell carcinoma: from molecular mechanisms to predictive markers and future perspectives. Biochim Biophys Acta 1855:1–16 PubMed
Czarnecka AM, Brodziak A, Sobczuk P, Dendek C, Labochka D, Korniluk J, Bartnik E, Szczylik C (2019) Metastatic tumor burden and loci as predictors of first line sunitinib treatment efficacy in patients with renal cell carcinoma. Sci Rep 9:7754 DOI
Motzer RJ, Barrios CH, Kim TM, Falcon S, Cosgriff T, Harker WG, Srimuninnimit V, Pittman K, Sabbatini R, Rha SY, Flaig TW, Page R, Bavbek S, Beck JT, Patel P, Cheung FY, Yadav S, Schiff EM, Wang X, Niolat J, Sellami D, Anak O, Knox JJ (2014) Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol 32:2765–2772 DOI
Larsen AK, Escargueil AE, Skladanowski A (2000) Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 85:217–229 DOI
Duvvuri M, Krise JP (2005) Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review. Front Biosci 10:1499–1509 DOI
Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477 DOI
Zhitomirsky B, Assaraf YG (2015) Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget 6:1143–1156 DOI
Chapuy B, Panse M, Radunski U, Koch R, Wenzel D, Inagaki N, Haase D, Truemper L, Wulf GG (2009) ABC transporter A3 facilitates lysosomal sequestration of imatinib and modulates susceptibility of chronic myeloid leukemia cell lines to this drug. Haematologica 94:1528–1536 DOI
Colombo F, Trombetta E, Cetrangolo P, Maggioni M, Razini P, De Santis F, Torrente Y, Prati D, Torresani E, Porretti L (2014) Giant lysosomes as a chemotherapy resistance mechanism in hepatocellular carcinoma cells. PLoS ONE 9:e114787 DOI
Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, Assaraf YG, Pili R, Peters GJ, Verheul HM (2012) Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 17:7337–7346 DOI
Burger H, Den Dekker AT, Segeletz S, Boersma AW, De Bruijn P, Debiec-Rychter M, Taguchi T, Sleijfer S, Sparreboom A, Mathijssen RH, Wiemer EA (2015) Lysosomal sequestration determines intracellular imatinib levels. Mol Pharmacol 88:477–487 DOI
Ruzickova E, Skoupa N, Dolezel P, Smith DA, Mlejnek P (2019) The lysosomal sequestration of tyrosine kinase inhibitors and drug resistance. Biomolecules 9:675 DOI
Mlejnek P, Havlasek J, Pastvova N, Dolezel P (2020) Can image analysis provide evidence that lysosomal sequestration mediates daunorubicin resistance? Chem Biol Interact 327:109138 DOI
Skoupa N, Dolezel P, Mlejnek P (2020) Lysosomal fusion: an efficient mechanism increasing their sequestration capacity for weak base drugs without apparent lysosomal biogenesis. Biomolec 10:77 DOI
Smith DA, Di L, Kerns EH (2010) The effect of plasma protein binding on in vivo efficacy: Misconceptions in drug discovery. Nat Rev Drug Discov 9:929–939 DOI
Smith DA, Rowland M (2019) Intracellular and intraorgan concentrations of small molecule drugs: theory, uncertainties in Infectious diseases and oncology, and promise. Drug Metab Dispos 47:665–672 DOI
Frydrych I, Mlejnek P (2008) Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) do not inhibit caspase-3 and caspase-7 processing in cells exposed to pro-apoptotic inducing stimuli. J Cell Biochem 105:1501–1506 DOI
Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129:2475–2481 PubMed PMC
Zhitomirsky B, Assaraf YG (2017) Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget 8:45117–45132 DOI