Intercomparison of radon and radon progeny concentration measurements performed in the Historic Silver Mine in Tarnowskie Góry, Poland
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, srovnávací studie
PubMed
41170489
PubMed Central
PMC12568597
DOI
10.3389/fpubh.2025.1681537
Knihovny.cz E-zdroje
- Klíčová slova
- continuous monitor, integrative measurement, intercomparison, potential alpha energy concentration (PAEC), radon concentration, radon progeny concentration, underground mine,
- MeSH
- dceřiné produkty radonu * analýza MeSH
- hornictví * MeSH
- lidé MeSH
- monitorování radiace * metody přístrojové vybavení MeSH
- pracovní expozice * analýza MeSH
- radioaktivní látky znečišťující vzduch * analýza MeSH
- radon * analýza MeSH
- stříbro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Polsko MeSH
- Názvy látek
- dceřiné produkty radonu * MeSH
- radioaktivní látky znečišťující vzduch * MeSH
- radon * MeSH
- stříbro MeSH
INTRODUCTION: In the frame of the RadoNorm project, within work package 5.4, an intercomparison of radon and radon progeny measurements was organized in the Historic Silver Mine in Tarnowskie Gory (Poland). The aim of this intercomparison campaign was to compare the results of different electronic monitors for measurement of radon and radon progeny concentration under field conditions of an underground workplace over 3 days of measurements. METHODS: In total, nine laboratories from seven European countries participated in the intercomparison study contributing with sixteen continuous radon monitors, ten radon progeny continuous monitors, and one TLD-based integrating system for PAEC measurements. RESULTS: Despite the short duration of the field campaign, the comparison of radon activity concentration measurements showed strong consistency across most instruments, although notable deviations were observed with three instruments. Radon equivalent equilibrium concentration measurements also demonstrated good agreement, with only one outlier among ten instruments. Comparison of short term averages of EEC (PAEC) obtained from continuous monitors and integral TLD based Alpha probes showed good agreement. Greater variability was observed in the results for unattached radon progeny. DISCUSSION: This intercomparison also allowed of testing instrument's responses in extreme ambient conditions with high humidity and relatively low temperature that are at the edge of the instrument's operating conditions.
Centralne Laboratorium Ochrony Radiologicznej Warsaw Poland
Departament de Física Universitat Autònoma de Barcelona Barcelona Spain
Direktoratet for strålevern og atomsikkerhet Østerås Norway
Główny Instytut Górnictwa Państwowy Instytut Badawczy Katowice Poland
Institute of Energy Technologies Universitat Politècnica de Catalunya Barcelona Spain
Physics Department Universitat Politècnica de Catalunya Barcelona Spain
Zobrazit více v PubMed
European Parliament. Council Directive 2013/59/Euratom of 5 December 2013 Laying Down Basic Safety Standards for Protection Against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Available online at: http://data.europa.eu/eli/dir/2013/59/2014-01-17/eng (Acccessed Jan 17, 2014).
European Commission, Directorate-General for Energy, Perko T, Martell M, Rovenská K, Fojtíková I, et al. Radiation Protection No. 199 - Review and Evaluation of National Radon Action Plans in EU Member States According to the Requirements of Council Directive 2013/59/Euratom. Luxembourg: Publications Office of the European Union; (2023).
European Commission. Directorate General for Energy. Radiation Protection No. 193: Radon in Workplaces: Implementing the Requirements in Council Directive 2013/59/Euratom (Radiation protection series). Luxembourg: Publications Office; (2020). Available online at: https://data.europa.eu/doi/10.2833/957131 (Accessed Aug 1, 2024). DOI
European Commission. Directorate General for Energy. Radiation Protection No. 188: Technical recommendations for monitoring individuals for occupational intakes of radionuclides (Radiation protection series). Luxembourg: Publications Office; (2018). Available online at: https://data.europa.eu/doi/10.2833/393101 DOI
Commission Recommendation (Euratom) 2024/440 of 2 February 2024 on the Use of Dose Coefficients for the Estimation of the Effective Dose and Equivalent Dose for the Purposes of Council Directive 2013/59/Euratom (Notified Under Document C (2024) 563) . (2024). Available online at: http://data.europa.eu/eli/reco/2024/440/oj/eng (Accessed June 11, 2025).
International Commission on Radiological Protection. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3. Ann ICRP. London: SAGE; (2018). 487 p. PubMed
Marsh JW, Tomášek L, Laurier D, Harrison JD. Effective dose coefficients for radon and progeny: a review of ICRP and unscear values. Rad Prot Dosimetry. (2021) 195:1–20. 10.1093/rpd/ncab106 PubMed DOI
International Commission on Radiation Units and Measurements . Report 88: measurement and reporting of radon exposures. J ICRU. (2012) 12:NP-NP. 10.1093/jicru/ndv019 PubMed DOI
International Atomic Energy Agency. Protection of the Public Against Exposure Indoors Due to Radon and Other Natural Sources of Radiation. Report No: SSG-32. Vienna: International Atomic Energy Agency; (2015). p. 112. Available online at: https://www-pub.iaea.org/mtcd/publications/pdf/pub1651web-62473672.pdf
Zeeb H Shannoun F World Health Organization . WHO Handbook on Indoor Radon: a Public Health Perspective. Geneva: World Health Organization; (2009). Available online at: https://iris.who.int/handle/10665/44149 PubMed
ISO 11665-1: Measurement of Radioactivity in the Environment — Air: Radon-222 Part 1: Origins of Radon and its Short-Lived Decay Products and Associated Measurement Methods . (2019). Available online at: https://www.iso.org/standard/76006.html (Accessed June 11, 2025).
IEC 61577-1: Radiation Protection Instrumentation - Radon and Radon Decay Product Measuring Instruments - Part 1: General principles . (2006). Available online at: https://webstore.iec.ch/en/publication/5616 (Accessed June 11, 2025).
ISO/IEC 17025:2017. General Requirements for the Competence of Testing and Calibration Laboratories. (2017). Available online at: https://www.iso.org/standard/66912.html (Accessed June 11, 2025).
Daraktchieva Z, Howarth CB, Wasikiewicz JM, Miller CA, Wright DA. Long-term comparison and performance study of consumer grade electronic radon integrating monitors. J Radiol Prot. (2024) 44:031508. 10.1088/1361-6498/ad66db PubMed DOI
Jilek K, Hyza M, Kotik L, Thomas J, Tomasek L. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague. Rad Prot Dosimetry. (2014) 160:154–9. 10.1093/rpd/ncu079 PubMed DOI
Jilek K, Marusiakova M. Results of the 2010 National Radiation Protection Institute intercomparison of radon and its short-lived decay product continuous monitors. Rad Prot Dosimetry. (2011) 145:273–9. 10.1093/rpd/ncr064 PubMed DOI
Jilek K, Timkova J. 2014 ICHLNRRA intercomparison of radon/thoron gas and radon short-lived decay products measuring instruments in the NRPI Prague. Rad Prot Dosimetry. (2015) 164:556–62. 10.1093/rpd/ncv311 PubMed DOI
Thomas J, Jilek K. Evaluation and comparison of measurements of unattached and attached radon progeny in the radon chamber of PTB Braunschweig (Germany) with NRPI Praha (Czech Republic). Rad Prot Dosimetry. (2011) 145:316–9. 10.1093/rpd/ncr081 PubMed DOI
Jilek K, Havelka M, Kotík L. Results of the 2019 International Comparison of Radon/Thoron and Radon Short-lived Decay Product Measurement Instruments at the NRPI Prague. Report No.: REG 01-2020. Prague: National Radiation Protection Institute (SURO, v.v.i.) (2020). Available online at: https://www.suro.cz/files/2021-03/The-5th-International-Comparison-on-Radon-Thoron-gas-SURO-Prague-2019..pdf
Radulescu I, Calin MR, Luca A, Röttger A, Grossi C, Done L, et al. Inter-comparison of commercial continuous radon monitors responses. Nucl Instrum Methods Phys Res A Accel Spectrom Detect Assoc Equip. (2022) 1021:165927. 10.1016/j.nima.2021.165927 DOI
Otahal PPS, Fialova E, Vosahlik J, Wiedner H, Grossi C, Vargas A, et al. Low-level radon activity concentration—a MetroRADON international intercomparison. IJERPH. (2022) 19:5810. 10.3390/ijerph19105810 PubMed DOI PMC
Rabago D, Fuente I, Celaya S, Fernandez A, Fernandez E, Quindos J, et al. Intercomparison of indoor radon measurements under field conditions in the framework of MetroRADON European project. IJERPH. (2020) 17:1780. 10.3390/ijerph17051780 PubMed DOI PMC
Grossi C, Chambers SD, Llido O, Vogel FR, Kazan V, Capuana A, et al. Intercomparison study of atmospheric DOI
Cardellini F, Chiaberto E, Garlati L, Giuffrida D, Leonardi F, Magnoni M, et al. Main results of the international intercomparison of passive radon detectors under field conditions in Marie Curie's tunnel in Lurisia (Italy). Nukleonika. (2016) 61:251–6. 10.1515/nuka-2016-0042 DOI
Dziegiel M. Podziemne trasy turystyczne w Tarnowskich Górach (Górny Slask). Geotour. (2008) 15:51. 10.7494/geotour.2009.15.51 DOI
Zabytkowa Kopalnia Srebra. Zabytkowa Kopalnia Srebra – Historia (2021). Available online at: https://kopalniasrebra.pl/zabytkowa-kopalnia-srebra-historia/ (Accessed July 9, 2025).
Objaśnienie do mapy geośrodowiskowej Polski 1:50000. Arkusz Bytom (910). Warszawa: Państwowy Instytut Geologiczny (2004).
Stupnicka E. Geologia regionalna Polski. Wyd. 3 zm. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego; (2007). 346 p.
Grygier A, Skubacz K, Wysocka M, Bonczyk M, Piech A, Janik M. Radon exposure in the underground tourist route–historic silver mine in Tarnowskie Góry, Poland. IJERPH. (2022) 19:15778. 10.3390/ijerph192315778 PubMed DOI PMC
Skubacz K, Grygier A, Michalik B. Report and Comprehensive Database Containing Information to Radon Progeny Activity Concentration and Aerosols Characteristic at Selected Workplaces. Report No.: D2.3. (2024) Available online at: https://www.radonorm.eu/wp-content/uploads/file_exchange/D2.3_Report-and-comprehensive-database-containing-information-related-to-radon-progeny-activity-concentration-and-aerosol-characteristics.pdf (Accessed June 11, 2025).
Bertin Technologies. AlphaGUARD – Radon monitor. (2025). Available online at: https://www.bertin-technologies.com/product/radon-professional-monitoring/radon-alphaguard/ (Accessed June 11, 2025).
LAURUS Systems, Inc. AlphaPM Continuous Monitoring of Radon Decay. (2024). Available online at: https://www.laurussystems.com/wp-content/uploads/LS-AlphaPM-Radon-Decay-Continuous-Monitor.pdf (Accessed June 11, 2025).
DURRIDGE Company. RAD7 Radon Detector - DURRIDGE Scientific Research. (2023). Available online at: https://durridge.com/products/rad7-radon-detector/ (Accessed June 11, 2025).
Horst Kelm. Tracerlab Radon Daughter Monitor BWLM-PLUS-2S V/_2022_02/System Description and Instructions How to Operate. (2022).
SARAD GmbH. SARAD EQF 3220. (2024). Available online at: https://www.sarad.de/product-detail.php?lang=en_US&cat_ID=3&p_ID=27 (Accessed June 11, 2025).
SARAD GmbH. SARAD RPM 2200. (2024). Available online at: https://www.sarad.de/product-detail.php?p_ID=49&cat_ID=3 (Accessed June 11, 2025).
Skubacz K, Bywalec T. Monitoring of short-lived radon progeny in mines. Rad Prot Dosimetry. (2003) 103:241–6. 10.1093/oxfordjournals.rpd.a006139 PubMed DOI
TSI Incorporated. Condensation Particle Counter 3007. (2025). Available online at: https://tsi.com/products/particle-counters-and-detectors/condensation-particle-counters/condensation-particle-counter-3007 (Accessed June 11, 2025).
ISO 13528. Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. (2022). Available online at: https://www.iso.org/standard/78879.html (Accessed June 11, 2025).
Schwarzer G, Carpenter JR, Rücker G. Meta-Analysis with R. Cham: Springer International Publishing. (2015). 10.1007/978-3-319-21416-0 DOI
R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; (2025). Available online at: https://www.r-project.org/
Grygier A, Skubacz K. Radon equilibrium factor and the assessment of the annual effective dose at underground workplaces. Atmosphere. (2024) 15:1131. 10.3390/atmos15091131 DOI
Waring C, Hankin S, Solomon S, Long S, Yule A, Blackley R, et al. Cave radon exposure, dose, dynamics and mitigation. JCKS. (2021) 83:1–19. 10.4311/2019ES0124 DOI
Briestensky M, Ambrosino F, Smetanova I, Thinova L, Sebela S, Stemberk J, et al. Radon in dead-end caves in Europe. JCKS. (2022) 84:41–50. 10.4311/2021ES0101 DOI
Smetanová I, Holý K, Luhová L, Csicsay K, Haviarová D, Kunáková L. Seasonal variation of radon and CO DOI
Alvarez-Gallego M, Garcia-Anton E, Fernandez-Cortes A, Cuezva S, Sanchez-Moral S. High radon levels in subterranean environments: monitoring and technical criteria to ensure human safety (case of Castañar cave, Spain). J Environ Radioact. (2015) 145:19–29. 10.1016/j.jenvrad.2015.03.024 PubMed DOI
Gregorič A, Zidanšek A, Vaupotič J. Dependence of radon levels in Postojna Cave on outside air temperature. Nat Hazards Earth Syst Sci. (2011) 11:1523–8. 10.5194/nhess-11-1523-2011 DOI
Grygier A, Skubacz K, Michalik B. Radiation Exposure Analysis for Tourist Silver Mine in Tarnowskie Góry (Polish only). Doc. no. 37501160-370. Katowice: Central Mining Institute; (2024).
Marsh JW, Birchall A. Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny. Rad Prot Dosimetry. (2020) 87:167–78. 10.1093/oxfordjournals.rpd.a032993 PubMed DOI