Genomic re-evaluation of clinical isolates reveals a structured Streptococcus suis complex
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2022-04223
Natural Sciences and Engineering Research Council of Canada
PubMed
41170938
PubMed Central
PMC12710308
DOI
10.1128/jcm.01030-25
Knihovny.cz E-zdroje
- Klíčová slova
- MALDI-TOF MS, Streptococcus suis complex, clinical isolates, genome-based diagnostics, phylogenomics, recN gene, species misidentification, swine pathogens, taxonomic reclassification, veterinary microbiology,
- MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- genomika MeSH
- nemoci prasat * mikrobiologie MeSH
- nemoci skotu * mikrobiologie MeSH
- prasata MeSH
- sekvenování celého genomu MeSH
- skot MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Streptococcus suis * genetika klasifikace izolace a purifikace MeSH
- streptokokové infekce * veterinární mikrobiologie diagnóza MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Accurate species-level identification among Streptococcus suis and its close relatives remains challenging due to limited resolution of existing diagnostic tools and incomplete taxonomic frameworks. We investigated 61 isolates from diseased swine and three from cows identified as S. suis by MALDI-TOF MS, but which tested negative by a recN gene-based PCR assay commonly used for species confirmation. Whole-genome sequencing revealed that only four isolates were S. suis sensu stricto, while most others belonged to Streptococcus parasuis, Streptococcus ruminantium, Streptococcus iners, Streptococcus suivaginalis, Streptococcus hepaticus, and several other newly proposed Streptococcus species. Core genome phylogenies consistently resolved these novel taxa as monophyletic and taxonomically coherent. However, phylogenies based on the recN gene did not reliably track species boundaries due to limited resolution and recombination, which also affects diagnostic assays. As a proof of concept, we identified 38 genes conserved in ≥95% of S. suis sensu stricto genomes that may support future marker-based diagnostics. Our results confirm extensive taxonomic diversity among S. suis-like organisms, support the recognition of a broader S. suis complex, demonstrate the need for genome-based methods to distinguish its members, and provide evidence supporting the potential clinical significance of several newly recognized and recently proposed species within this complex. IMPORTANCE: Several new species closely related genetically to Streptococcus suis have recently been formally recognized or proposed, raising the possibility that they form a broader, previously unrecognized S. suis complex. Yet most clinical laboratories still report such isolates simply as S. suis, due to the limited resolution of current diagnostic tools. Here, we show that two widely used methods, MALDI-TOF MS and a recN-based PCR used for molecular confirmation of MALDI-TOF MS results, can misidentify S. suis-like isolates. We analyzed 61 isolates from diseased swine and three from cows: all were classified as S. suis by MALDI-TOF MS but tested negative by the recN PCR. Exposing a major gap in current diagnostic frameworks, whole-genome sequencing revealed that most isolates were not S. suis sensu stricto but instead belonged to other recognized or recently proposed Streptococcus species. Most swine isolates were recovered from normally sterile sites, suggesting potential but unconfirmed pathogenic relevance. We provide genomic evidence supporting the proposal of a structured S. suis complex and identify S. suis sensu stricto-specific markers that may inform improved molecular diagnostics in the future. Our findings emphasize the need to modernize diagnostics to account for the true diversity and potential importance for animal health of this expanding group of taxa.
Department of Microbiology Graduate School of Medicine Kyoto University Kyoto Japan
Department of Veterinary Medicine University of Cambridge Cambridge United Kingdom
Zobrazit více v PubMed
Gottschalk M, Segura M. 2019. Streptococcosis, p 934–950. In Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J (ed), Diseases of swine, 11th ed. Wiley-Blackwell, Hoboken, NJ, USA.
Huong VTL, Ha N, Huy NT, Horby P, Nghia HDT, Thiem VD, Zhu X, Hoa NT, Hien TT, Zamora J, Schultsz C, Wertheim HFL, Hirayama K. 2014. Epidemiology, clinical manifestations, and outcomes of Streptococcus suis infection in humans. Emerg Infect Dis 20:1105–1114. doi: 10.3201/eid2007.131594 PubMed DOI PMC
Kerdsin A, Segura M, Fittipaldi N, Gottschalk M. 2022. Sociocultural factors influencing human Streptococcus suis disease in Southeast Asia. Foods 11:1190. doi: 10.3390/foods11091190 PubMed DOI PMC
Segura M. 2020. Streptococcus suis research: progress and challenges. Pathogens 9:707. doi: 10.3390/pathogens9090707 PubMed DOI PMC
Hill JE, Gottschalk M, Brousseau R, Harel J, Hemmingsen SM, Goh SH. 2005. Biochemical analysis, cpn60 and 16S rDNA sequence data indicate that Streptococcus suis serotypes 32 and 34, isolated from pigs, are Streptococcus orisratti. Vet Microbiol 107:63–69. doi: 10.1016/j.vetmic.2005.01.003 PubMed DOI
Nomoto R, Maruyama F, Ishida S, Tohya M, Sekizaki T, Osawa R. 2015. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov. Int J Syst Evol Microbiol 65:438–443. doi: 10.1099/ijs.0.067116-0 PubMed DOI
Pérez-Sancho M, Vela AI, García-Seco T, González S, Domínguez L, Fernández-Garayzábal JF. 2017. Usefulness of MALDI-TOF MS as a diagnostic tool for the identification of Streptococcus species recovered from clinical specimens of pigs. PLoS One 12:e0170784. doi: 10.1371/journal.pone.0170784 PubMed DOI PMC
Pérez-Sancho M, Vela AI, García-Seco T, Gottschalk M, Domínguez L, Fernández-Garayzábal JF. 2015. Assessment of MALDI-TOF MS as alternative tool for Streptococcus suis identification. Front Public Health 3:202. doi: 10.3389/fpubh.2015.00202 PubMed DOI PMC
Santos Streauslin J, Nielsen DW, Schwartz KJ, Derscheid RJ, Magstadt DR, Burrough ER, Gauger PC, Schumacher LL, Rahe MC, Michael A, Sitthicharoenchai P, Siepker CL, Matias Ferreyra F, Nunes de Almeida M, Main R, Bradner LK, Hu X, Li G, Poeta Silva APS, Sahin O, Arruda BL. 2024. Characterization of neurologic disease-associated Streptococcus suis strains within the United States swine herd and use of diagnostic tools. J Clin Microbiol 62:e0037424. doi: 10.1128/jcm.00374-24 PubMed DOI PMC
Tohya M, Arai S, Tomida J, Watanabe T, Kawamura Y, Katsumi M, Ushimizu M, Ishida-Kuroki K, Yoshizumi M, Uzawa Y, Iguchi S, Yoshida A, Kikuchi K, Sekizaki T. 2017. Defining the taxonomic status of Streptococcus suis serotype 33: the proposal for Streptococcus ruminantium sp. nov. Int J Syst Evol Microbiol 67:3660–3665. doi: 10.1099/ijsem.0.002204 PubMed DOI
Werinder A, Aspán A, Söderlund R, Backhans A, Sjölund M, Guss B, Jacobson M. 2021. Whole-genome sequencing evaluation of MALDI-TOF MS as a species identification tool for Streptococcus suis. J Clin Microbiol 59:e0129721. doi: 10.1128/JCM.01297-21 PubMed DOI PMC
Ishida S, Tien LHT, Osawa R, Tohya M, Nomoto R, Kawamura Y, Takahashi T, Kikuchi N, Kikuchi K, Sekizaki T. 2014. Development of an appropriate PCR system for the reclassification of Streptococcus suis. J Microbiol Methods 107:66–70. doi: 10.1016/j.mimet.2014.09.003 PubMed DOI
Lacouture S, Olivera YR, Mariela S, Gottschalk M. 2022. Distribution and characterization of Streptococcus suis serotypes isolated from January 2015 to June 2020 from diseased pigs in Québec, Canada. Can J Vet Res 86:78–82. PubMed PMC
Murray GGR, Hossain ASMM, Miller EL, Bruchmann S, Balmer AJ, Matuszewska M, Herbert J, Hadjirin NF, Mugabi R, Li G, et al. 2023. The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs. Proc Natl Acad Sci USA 120:e2307773120. doi: 10.1073/pnas.2307773120 PubMed DOI PMC
Okura M, Osaki M, Nomoto R, Arai S, Osawa R, Sekizaki T, Takamatsu D. 2016. Current taxonomical situation of Streptococcus suis. Pathogens 5:45. doi: 10.3390/pathogens5030045 PubMed DOI PMC
Králová N, Fittipaldi N, Zouharová M, Nedbalcová K, Matiašková K, Gebauer J, Kulich P, Šimek B, Matiašovic J. 2024. Streptococcus suis strains with novel and previously undescribed capsular loci circulate in Europe. Vet Microbiol 298:110265. doi: 10.1016/j.vetmic.2024.110265 PubMed DOI
Lacouture S, Vincent AT, Gottschalk M. 2024. Distribution of Streptococcus suis, Actinobacillus pleuropneumoniae, and Glaesserella parasuis serotypes isolated from diseased pigs in Quebec between January 2020 and December 2023. Can Vet J 65:533–534. PubMed PMC
Li K, Lacouture S, Lewandowski E, Thibault E, Gantelet H, Gottschalk M, Fittipaldi N. 2024. Molecular characterization of Streptococcus suis isolates recovered from diseased pigs in Europe. Vet Res 55:117. doi: 10.1186/s13567-024-01366-y PubMed DOI PMC
Bojarska A, Janas K, Pejsak Z, Otulak-Kozieł K, Garbaczewska G, Hryniewicz W, Sadow https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 https://doi.org/10.69777/309365 y E. 2020. Diversity of serotypes and new cps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus. Vet Microbiol 240:108534. doi: 10.1016/j.vetmic.2019.108534 PubMed DOI
Huang J, Liu X, Chen H, Chen L, Gao X, Pan Z, Wang J, Lu C, Yao H, Wang L, Wu Z. 2019. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transbound Emerg Dis 66:995–1003. doi: 10.1111/tbed.13123 PubMed DOI
Qiu X, Bai X, Lan R, Zheng H, Xu J. 2016. Novel capsular polysaccharide loci and new diagnostic tools for high-throughput capsular gene typing in Streptococcus suis. Appl Environ Microbiol 82:7102–7112. doi: 10.1128/AEM.02102-16 PubMed DOI PMC
Zheng H, Ji S, Liu Z, Lan R, Huang Y, Bai X, Gottschalk M, Xu J. 2015. Eight novel capsular polysaccharide synthesis gene loci identified in nontypeable Streptococcus suis isolates. Appl Environ Microbiol 81:4111–4119. doi: 10.1128/AEM.00315-15 PubMed DOI PMC
Zheng H, Qiu X, Roy D, Segura M, Du P, Xu J, Gottschalk M. 2017. Genotyping and investigating capsular polysaccharide synthesis gene loci of non-serotypeable Streptococcus suis isolated from diseased pigs in Canada. Vet Res 48:10. doi: 10.1186/s13567-017-0417-6 PubMed DOI PMC
Teng JLL, Ma Y, Chen JHK, Luo R, Foo CH, Li TT, Fong JYH, Yao W, Wong SSY, Fung KSC, Lau SKP, Woo PCY. 2022. Streptococcus oriscaviae sp. nov. Infection associated with guinea pigs. Microbiol Spectr 10:e0001422. doi: 10.1128/spectrum.00014-22 PubMed DOI PMC
Kirchner MJ, Loy D, Williamson S, Whatmore AM. 2025. Streptococcus hepaticus sp. nov. isolated from the liver of domestic pigs (Sus scrofa domesticus). Int J Syst Evol Microbiol 75. doi: 10.1099/ijsem.0.006776 PubMed DOI PMC
Nicholson TL, Stuart KL, Bayles DO. 2025. Streptococcus suivaginalis sp. nov., Streptococcus iners sp. nov. and Streptococcus iners subsp. hyiners subsp. nov. isolated from pigs. Int J Syst Evol Microbiol 75. doi: 10.1099/ijsem.0.006631 PubMed DOI PMC
Luo W, Yi X, Zhang X, Yuan C, Wei W, Li X, Pu D, Yang J, Zheng H. 2025. Taxonomic reassessment of genomes from a divergent population of Streptococcus suis by average nucleotide identity analysis. Infect Genet Evol 131:105753. doi: 10.1016/j.meegid.2025.105753 PubMed DOI
Higgins R, Gottschalk M. 1990. An update on Streptococcus suis identification. J Vet Diagn Invest 2:249–252. doi: 10.1177/104063879000200324 PubMed DOI
Okura M, Lachance C, Osaki M, Sekizaki T, Maruyama F, Nozawa T, Nakagawa I, Hamada S, Rossignol C, Gottschalk M, Takamatsu D. 2014. Development of a two-step multiplex PCR assay for typing of capsular polysaccharide synthesis gene clusters of Streptococcus suis. J Clin Microbiol 52:1714–1719. doi: 10.1128/JCM.03411-13 PubMed DOI PMC
O’Leary NA, Cox E, Holmes JB, Anderson WR, Falk R, Hem V, Tsuchiya MTN, Schuler GD, Zhang X, Torcivia J, Ketter A, Breen L, Cothran J, Bajwa H, Tinne J, Meric PA, Hlavina W, Schneider VA. 2024. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets. Sci Data 11:732. doi: 10.1038/s41597-024-03571-y PubMed DOI PMC
Pan Z, Ma J, Dong W, Song W, Wang K, Lu C, Yao H. 2015. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol 81:976–985. doi: 10.1128/AEM.02962-14 PubMed DOI PMC
Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J, Jombart T, Baig A, Howell KJ, Vehkala M, Välimäki N, et al. 2015. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun 6:6740. doi: 10.1038/ncomms7740 PubMed DOI PMC
Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. doi: 10.1093/bioinformatics/btu661 PubMed DOI
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153 PubMed DOI
Athey TBT, Teatero S, Lacouture S, Takamatsu D, Gottschalk M, Fittipaldi N. 2016. Determining Streptococcus suis serotype from short-read whole-genome sequencing data. BMC Microbiol 16:162. doi: 10.1186/s12866-016-0782-8 PubMed DOI PMC
Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277. doi: 10.1016/s0168-9525(00)02024-2 PubMed DOI
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol 20:257. doi: 10.1186/s13059-019-1891-0 PubMed DOI PMC
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi: 10.1093/bioinformatics/btv421 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi: 10.1371/journal.pone.0009490 PubMed DOI PMC
Steenwyk JL, Buida TJ III, Labella AL, Li Y, Shen X-X, Rokas A. 2021. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics 37:2325–2331. doi: 10.1093/bioinformatics/btab096 PubMed DOI PMC
R Core Team . 2024. A language and environment for statiscal computing, R Foundation for Statistical Computing. https://www.R-project.org.
Yu G. 2020. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics 69:e96. doi: 10.1002/cpbi.96 PubMed DOI
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu X-W, De Meyer S, Trujillo ME. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. doi: 10.1099/ijsem.0.002516 PubMed DOI
Criscuolo A. 2024. OGRI_B. Available from: https://gitlab.pasteur.fr/GIPhy/OGRI. Retrieved 30 May 2025.
Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. 2013. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 30:1224–1228. doi: 10.1093/molbev/mst028 PubMed DOI PMC
Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. doi: 10.1093/bioinformatics/btw313 PubMed DOI
Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 38:5825–5829. doi: 10.1093/molbev/msab293 PubMed DOI PMC
Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform 23:205–211. doi: 10.1142/9781848165632_0019 PubMed DOI
Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi: 10.1093/nar/28.1.27 PubMed DOI PMC
Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer International Publishing, Springer, Cham.
Didelot X, Maiden MCJ. 2010. Impact of recombination on bacterial evolution. Trends Microbiol 18:315–322. doi: 10.1016/j.tim.2010.04.002 PubMed DOI PMC
Kilian M, Slotved HC, Fuursted K, D’Mello A, Tettelin H. 2025. Re-evaluation of boundaries of Streptococcus mitis and Streptococcus oralis and demonstration of multiple later synonyms of Streptococcus mitis, Streptococcus oralis and Streptococcus thalassemiae: description of Streptococcus mitis subsp. carlssonii subsp. nov. and emended description of Streptococcus mitis. Int J Syst Evol Microbiol 75. doi: 10.1099/ijsem.0.006704 PubMed DOI PMC
Scherrer S, Biggel M, Schneeberger M, Cernela N, Rademacher F, Schmitt S, Stephan R. 2024. Genetic diversity and antimicrobial susceptibility of Streptococcus suis from diseased Swiss pigs collected between 2019 - 2022. Vet Microbiol 293:110084. doi: 10.1016/j.vetmic.2024.110084 PubMed DOI
Carneiro S, Pinto M, Rodrigues J, Gomes JP, Macedo R. 2024. Genome-scale analysis of Mycobacterium avium complex isolates from Portugal reveals extensive genetic diversity. Infect Genet Evol 125:105682. doi: 10.1016/j.meegid.2024.105682 PubMed DOI
Chorlton SD. 2024. Ten common issues with reference sequence databases and how to mitigate them. Front Bioinform 4:1278228. doi: 10.3389/fbinf.2024.1278228 PubMed DOI PMC
Hasegawa Y, Akita T, Kuchibiro T, Miyoshi-Akiyama T, Tomida J, Kutsuna R, Mori R, Okuno M, Ogura Y, Kawamura Y. 2024. Streptococcus suis subsp. hashimotonensis subsp. nov.: lancefield group A antigen-positive organisms isolated from human clinical specimens and wild boar oral cavity samples. Syst Appl Microbiol 47:126538. doi: 10.1016/j.syapm.2024.126538 PubMed DOI
Prinzi AM, Moore NM. 2023. Change of plans: overview of bacterial taxonomy, recent changes of medical importance, and potential areas of impact. Open Forum Infect Dis 10:ofad269. doi: 10.1093/ofid/ofad269 PubMed DOI PMC
Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. doi: 10.1073/pnas.0906412106 PubMed DOI PMC
Riesco R, Trujillo ME. 2024. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 74:006300. doi: 10.1099/ijsem.0.006300 PubMed DOI PMC
Glazunova OO, Raoult D, Roux V. 2010. Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus. Int J Syst Evol Microbiol 60:2140–2148. doi: 10.1099/ijs.0.018176-0 PubMed DOI
Baig A, Weinert LA, Peters SE, Howell KJ, Chaudhuri RR, Wang J, Holden MTG, Parkhill J, Langford PR, Rycroft AN, Wren BW, Tucker AW, Maskell DJ. 2015. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Front Microbiol 6:1191. doi: 10.3389/fmicb.2015.01191 PubMed DOI PMC
Long SW, Linson SE, Ojeda Saavedra M, Cantu C, Davis JJ, Brettin T, Olsen RJ. 2017. Whole-genome sequencing of human clinical Klebsiella pneumoniae isolates reveals misidentification and misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. mSphere 2. doi: 10.1128/mSphereDirect.00290-17 PubMed DOI PMC
Vincent AT, Schiettekatte O, Goarant C, Neela VK, Bernet E, Thibeaux R, Ismail N, Mohd Khalid MKN, Amran F, Masuzawa T, Nakao R, Amara Korba A, Bourhy P, Veyrier FJ, Picardeau M. 2019. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dis 13:e0007270. doi: 10.1371/journal.pntd.0007270 PubMed DOI PMC