Sulfite oxidase deficiency causes persulfidation loss and hydrogen sulfide release

. 2025 Nov 03 ; 135 (21) : . [epub] 20251103

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41178722

Sulfite oxidase (SOX) deficiency is a rare inborn error of cysteine metabolism resulting in severe neurological damage. In patients, sulfite accumulates to toxic levels, causing a rise in the downstream products S-sulfocysteine, which mediates excitotoxicity, and thiosulfate, a catabolic intermediate/product of hydrogen sulfide (H2S) metabolism. Here, we report a full-body knockout mouse model for SOX deficiency (SOXD) with a severely impaired phenotype. Among the urinary biomarkers, thiosulfate showed a 45-fold accumulation in SOXD mice, representing the major excreted S-metabolite. Consistently, we found increased plasma H2S, which was derived from sulfite-induced release from persulfides, as demonstrated in vitro and in vivo. Mass spectrometry analysis of total protein persulfidome identified a major loss of S-persulfidation in 20% of the proteome, affecting enzymes in amino acids, fatty acid metabolism, and cytosolic iron-sulfur cluster biogenesis. Urinary amino acid profiles indicated metabolic rewiring and mitochondrial dysfunction, thus identifying an altered H2S metabolism and persulfidation in SOXD. Finally, oxidized glutathione and glutathione trisulfide were able to scavenge sulfite in vitro and in vivo, extending the lifespan of SOXD mice and providing a mechanistic concept of sulfite scavenging for the treatment of this severe metabolic disorder of cysteine catabolism.

Center for Molecular Medicine Cologne University of Cologne Cologne Germany

Center for Pediatric and Adolescent Medicine University Medical Center Mainz Mainz Germany

Chemistry Institute University of Debrecen Debrecen Hungary

Department of Anatomy and Histology Hungarian Research Network UVMB Laboratory of Redox Biology Research Group University of Veterinary Medicine Budapest Hungary

Department of Environmental Medicine and Molecular Toxicology Tohoku University Graduate School of Medicine Sendai Japan

Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory National Institute of Oncology Budapest Hungary

Department of Nuclear Medicine University of Cologne Faculty of Medicine and University Hospital Cologne Cologne Germany

Department of Pediatrics and Inherited Metabolic Disorders Charles University 1st Faculty of Medicine and General University Hospital Prague Prague Czech Republic

Forschungszentrum Jülich GmbH Institute of Neuroscience and Medicine Nuclear Chemistry Jülich Germany

Institute of Biochemistry Department of Chemistry and Biochemistry University of Cologne Cologne Germany

Institute of Diagnostic and Interventional Radiology

Institute of Genetics Department of Biology and CECAD University of Cologne Cologne Germany

Institute of Radiochemistry and Experimental Molecular Imaging and

Leibniz Institute for Analytical Sciences ISAS e 5 Dortmund Germany

Max Planck Institute for Polymer Research Mainz Germany

School of Molecular Biosciences University of Glasgow Glasgow United Kingdom

Zobrazit více v PubMed

Tan WH, et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics. 2005;116(3):757–766. doi: 10.1542/peds.2004-1897. PubMed DOI

Claerhout H, et al. Isolated sulfite oxidase deficiency. J Inherit Metab Dis. 2018;41(1):101–108. doi: 10.1007/s10545-017-0089-4. PubMed DOI

Kaczmarek AT, et al. Machine learning-based identification and characterization of 15 novel pathogenic SUOX missense mutations. Mol Genet Metab. 2021;134(1–2):188–194. doi: 10.1016/j.ymgme.2021.07.011. PubMed DOI

Mayr SJ, et al. Molybdenum cofactor biology, evolution and deficiency. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118883. doi: 10.1016/j.bbamcr.2020.118883. PubMed DOI

Johannes L, et al. Molybdenum cofactor deficiency in humans. Molecules. 2022;27(20):6896. doi: 10.3390/molecules27206896. PubMed DOI PMC

Van der Knaap MS, Valk J. Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Van der Knaap MS, Valk J, eds. Magnetic Resonance of Myelination and Myelin Disorders. Springer; 2001:372–376.

Carmi-Nawi N, et al. Prenatal brain disruption in molybdenum cofactor deficiency. J Child Neurol. 2011;26(4):460–464. doi: 10.1177/0883073810383017. PubMed DOI

Kaczmarek AT, et al. A defect in molybdenum cofactor binding causes an attenuated form of sulfite oxidase deficiency. J Inherit Metab Dis. 2022;45(2):169–182. doi: 10.1002/jimd.12454. PubMed DOI

Mudd SH, et al. Sulfite oxidase deficiency in man: demonstration of the enzymatic defect. Science. 1967;156(3782):1599–1602. doi: 10.1126/science.156.3782.1599. PubMed DOI

Zhang X, et al. A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem. 2004;279(41):43035–43045. doi: 10.1074/jbc.M402759200. PubMed DOI

Kumar A, et al. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest. 2017;127(12):4365–4378. doi: 10.1172/JCI89885. PubMed DOI PMC

Kohl JB, et al. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. Br J Pharmacol. 2019;176(4):554–570. doi: 10.1111/bph.14464. PubMed DOI PMC

Domán A, et al. Interactions of reactive sulfur species with metalloproteins. Redox Biol. 2023;60:102617. doi: 10.1016/j.redox.2023.102617. PubMed DOI PMC

Nagy P, et al. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta. 2014;1840(2):876–891. doi: 10.1016/j.bbagen.2013.05.037. PubMed DOI

Filipovic MR, et al. Chemical Biology of H2S Signaling through Persulfidation. Chem Rev. 2018;118(3):1253–1337. doi: 10.1021/acs.chemrev.7b00205. PubMed DOI PMC

Mustafa AK, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009;2(96):ra72. doi: 10.1126/scisignal.2000464. PubMed DOI PMC

Dóka E, et al. Control of protein function through oxidation and reduction of persulfidated states. Sci Adv. 2020;6(1):eaax8358. doi: 10.1126/sciadv.aax8358. PubMed DOI PMC

Zivanovic J, et al. Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab. 2019;30(6):1152–1170.e13. doi: 10.1016/j.cmet.2019.10.007. PubMed DOI PMC

Tiranti V. An almost final solution to the ethylmalonic acid syndrome. Paper presented at: ERDIM Scientific and DPT Meeting; October 22–23, 2009; San Diego, California, USA. https://www.erndim.org/wp-content/uploads/2021/08/A-final-solution-to-the-ethylmalonic-acid-syndrome.pdf Accessed September 4, 2025.

Tiranti V, et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet. 2004;74(2):239–252. doi: 10.1086/381653. PubMed DOI PMC

Landry AP, et al. Hydrogen sulfide oxidation by sulfide quinone oxidoreductase. Chembiochem. 2021;22(6):949–960. doi: 10.1002/cbic.202000661. PubMed DOI PMC

Kožich V, et al. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H2S homeostasis. Redox Biol. 2022;58:102517. doi: 10.1016/j.redox.2022.102517. PubMed DOI PMC

Feng G, et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 1998;282(5392):1321–1324. doi: 10.1126/science.282.5392.1321. PubMed DOI

Lee HJ, et al. Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum Mol Genet. 2002;11(26):3309–3317. doi: 10.1093/hmg/11.26.3309. PubMed DOI

Jakubiczka-Smorag J, et al. Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients. Hum Genet. 2016;135(7):813–826. doi: 10.1007/s00439-016-1676-4. PubMed DOI

Belaidi AA, et al. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Biochem J. 2015;469(2):211–221. doi: 10.1042/BJ20140768. PubMed DOI

Ditrói T, et al. Comprehensive analysis of how experimental parameters affect H2S measurements by the monobromobimane method. Free Radic Biol Med. 2019;136:146–158. doi: 10.1016/j.freeradbiomed.2019.04.006. PubMed DOI

Libiad M, et al. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem. 2014;289(45):30901–30910. doi: 10.1074/jbc.M114.602664. PubMed DOI PMC

Hildebrandt TM, et al. Proteome adaptations in Ethe1-deficient mice indicate a role in lipid catabolism and cytoskeleton organization via post-translational protein modifications. Biosci Rep. 2013;33(4):52. doi: 10.1042/BSR20130051. PubMed DOI PMC

Dominy JE, et al. Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochem J. 2006;394(pt 1):267–273. doi: 10.1042/BJ20051510. PubMed DOI PMC

Ono K, et al. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med. 2014;77:82–94. doi: 10.1016/j.freeradbiomed.2014.09.007. PubMed DOI PMC

Artaud I, Galardon E. A persulfide analogue of the nitrosothiol SNAP: formation, characterization and reactivity. Chembiochem. 2014;15(16):2361–2364. doi: 10.1002/cbic.201402312. PubMed DOI

Cuevasanta E, et al. Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J Biol Chem. 2015;290(45):26866–26880. doi: 10.1074/jbc.M115.672816. PubMed DOI PMC

Dóka É, et al. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv. 2016;2(1):e1500968. doi: 10.1126/sciadv.1500968. PubMed DOI PMC

Wedmann R, et al. Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci. 2016;7(5):3414–3426. doi: 10.1039/C5SC04818D. PubMed DOI PMC

Zhang D, et al. Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem Int Ed Engl. 2014;53(2):575–581. doi: 10.1002/anie.201305876. PubMed DOI PMC

Petrovic D, et al. Ergothioneine improves healthspan of aged animals by enhancing cGPDH activity through CSE-dependent persulfidation. Cell Metab. 2025;37(2):542–556.e14. doi: 10.1016/j.cmet.2024.12.008. PubMed DOI

Braymer JJ, et al. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res. 2021;1868(1):118863. doi: 10.1016/j.bbamcr.2020.118863. PubMed DOI

Li P, et al. Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria. Nat Commun. 2022;13(1):4339. doi: 10.1038/s41467-022-32006-8. PubMed DOI PMC

Kruse I, et al. Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria. Biochem J. 2018;475(2):495–509. doi: 10.1042/BCJ20170559. PubMed DOI PMC

Tiranti V, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15(2):200–205. doi: 10.1038/nm.1907. PubMed DOI

Carballal S, et al. Hydrogen sulfide stimulates lipid biogenesis from glutamine that is dependent on the mitochondrial NAD(P)H pool. J Biol Chem. 2021;297(2):100950. doi: 10.1016/j.jbc.2021.100950. PubMed DOI PMC

Morgan B, et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol. 2013;9(2):119–125. doi: 10.1038/nchembio.1142. PubMed DOI

Minich T, et al. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem. 2006;97(2):373–384. doi: 10.1111/j.1471-4159.2006.03737.x. PubMed DOI

Barayeu U, et al. Hydropersulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nat Chem Biol. 2023;19(1):28–37. doi: 10.1038/s41589-022-01145-w. PubMed DOI PMC

Kunikata H, et al. Development of an anti-oxidative intraocular irrigating solution based on reactive persulfides. Sci Rep. 2022;12(1):19243. doi: 10.1038/s41598-022-21677-4. PubMed DOI PMC

Schwahn BC, et al. Consensus guidelines for the diagnosis and management of isolated sulfite oxidase deficiency and molybdenum cofactor deficiencies. J Inherit Metab Dis. 2024;47(4):598–623. doi: 10.1002/jimd.12730. PubMed DOI

Topcu M, et al. Molybdenum cofactor deficiency: report of three cases presenting as hypoxic-ischemic encephalopathy. J Child Neurol. 2001;16(4):264–270. doi: 10.1177/088307380101600406. PubMed DOI

Semple BD, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106–107:1–16. doi: 10.1016/j.pneurobio.2013.04.001. PubMed DOI PMC

Lagoutte E, et al. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta. 2010;1797(8):1500–1511. doi: 10.1016/j.bbabio.2010.04.004. PubMed DOI

Jackson MR, et al. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry. 2012;51(34):6804–6815. doi: 10.1021/bi300778t. PubMed DOI

Grings M, et al. ETHE1 and MOCS1 deficiencies: Disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts. Sci Rep. 2019;9(1):12651. doi: 10.1038/s41598-019-49014-2. PubMed DOI PMC

Friederich MW, et al. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. J Inherit Metab Dis. 2020;43(5):1024–1036. doi: 10.1002/jimd.12232. PubMed DOI PMC

Marutani E, et al. Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun. 2021;12(1):3108. doi: 10.1038/s41467-021-23363-x. PubMed DOI PMC

Zhang MY, et al. Hydrogen sulfide metabolite, sodium thiosulfate: Clinical applications and underlying molecular mechanisms. Int J Mol Sci. 2021;22(12):6452. doi: 10.3390/ijms22126452. PubMed DOI PMC

Macabrey D, et al. Sodium thiosulfate, a source of hydrogen sulfide, stimulates endothelial cell proliferation and neovascularization. Front Cardiovasc Med. 2022;9:965965. doi: 10.3389/fcvm.2022.965965. PubMed DOI PMC

Saund SS, et al. The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles. Arch Biochem Biophys. 2015;588:15–24. doi: 10.1016/j.abb.2015.10.016. PubMed DOI PMC

Luo S, et al. Protein persulfidation: Recent progress and future directions. Antioxid Redox Signal. 2023;39(13–15):829–852. doi: 10.1089/ars.2022.0064. PubMed DOI

Vignane T, Filipovic MR. Emerging chemical biology of protein persulfidation. Antioxid Redox Signal. 2023;39(1–3):19–39. doi: 10.1089/ars.2023.0352. PubMed DOI PMC

Chu VT, et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 2016;16:4. doi: 10.1186/s12896-016-0234-4. PubMed DOI PMC

Heier CR, DiDonato CJ. Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Hum Mol Genet. 2009;18(7):1310–1322. doi: 10.1093/hmg/ddp030. PubMed DOI PMC

Heier CR, et al. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum Mol Genet. 2010;19(20):3906–3918. doi: 10.1093/hmg/ddq330. PubMed DOI PMC

Duran M. Amino acids. In: Blau N, et al., eds. Laboratory Guide to the Methods in Biochemical Genetics. Springer Heidelberg; 2008:53–90.

Karpievitch YV. Normalization of peak intensities in bottom-up MS-based proteomics using singular value decomposition. Bioinformatics. 2009;25(19):2573–2580. doi: 10.1093/bioinformatics/btp426. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...