Environmental stability of untreated neutral metalliferous mine drainage sludge after 100 years of weathering
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004605
Johannes Amos Comenius Programme
PubMed
41201696
PubMed Central
PMC12594640
DOI
10.1007/s10653-025-02865-3
PII: 10.1007/s10653-025-02865-3
Knihovny.cz E-zdroje
- Klíčová slova
- Environmental stability, Leaching, Metal(loid)s, Sludge, Technosol,
- MeSH
- hornictví * MeSH
- koncentrace vodíkových iontů MeSH
- odpadní vody * chemie analýza MeSH
- těžké kovy * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- odpadní vody * MeSH
- těžké kovy * MeSH
Untreated neutral metalliferous mine drainage sludge deposited without environmental protection for over a century was studied to assess its long-term stability. The lack of long-term stability data on such untreated sludge represents a critical knowledge gap in mine waste management. We characterized the sludge's mineralogy, chemistry, and metal(loid) mobility using XRD, SEM-EDS, and a suite of leaching tests (deionized water, 0.01 M CaCl2, and pH-static extractions), supported by geochemical modeling. Key findings show that even after ~ 100 years, the sludge's phase composition and metal(loid) content remain largely unchanged, with high concentrations of As, Cd, Pb, and Zn comparable to those in the overlying Technosol. These metal(loid)s form their own phases (e.g., cerussite, smithsonite) or are adsorbed onto goethite and clays, limiting their release under the sludge's natural pH (6.3-7.1). Leaching is primarily confined to the sludge-Technosol interface, where the Technosol's low pH (~ 4) promotes mobilization of Cd, Pb, and Zn (e.g., up to 342 mg kg-1 Zn and 278 mg kg-1 Pb in CaCl2 extracts from the Technosol). These findings are consistent with PHREEQC modeling. A remediation scenario involving raising the Technosol pH to ≥ 7 (e.g., by liming), combined with metal(loid)-binding amendments (amorphous Mn oxide, biochar, zeolite), could reduce metal(loid) migration from the sludge to the Technosol by ~ 99.9% (especially for Cd, Pb, and Zn) and significantly decrease their bioavailability to plants. This study provides the first field-based evidence that untreated neutral mine drainage sludge can remain geochemically stable for over a century, and suggests remediation strategies to ensure environmental safety of such historical mine residues.
Zobrazit více v PubMed
Amanda, N., & Moersidik, S. S. (2019). Characterization of sludge generated from acid mine drainage treatment plants.
Anwar, R., Ahmed, M., Seats, P., Huang, Q., & Lin, L.-S. (2021). Prospect of utilizing coal mine drainage sludge as an iron source for value-creating applications.
Banks, D., Parnachev, V. P., Frengstad, B., Holden, W., Vedernikov, A. A., & Karnachuk, O. V. (2002). Alkaline mine drainage from metal sulphide and coal mines: examples from Svalbard and Siberia. In P. L. Younger & N. S. Robins (Eds.),
Beauchemin, S., Fiset, J.-F., Poirier, G., & Ablett, J. (2010). Arsenic in an alkaline AMD treatment sludge: Characterization and stability under prolonged anoxic conditions.
Blodau, C. (2006). A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. PubMed
Bose, R. S., & Tiwari, M. K. (2019). Mine sludge waste recycling as bio-stimulant for applications in anaerobic wastewater treatment. PubMed
Cabała, J. (2009). Metale ciężkie w środowisku glebowym olkuskiego rejonu eksploatacji rud Zn-Pb. Wydawnictwo Uniwersytetu Śląskiego, Katowice.
Cappuyns, V., & Swennen, R. (2008). The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. PubMed
Carcione, J. M., Gei, D., Yu, T., & Ba, J. (2019). Effect of clay and mineralogy on permeability.
Chen, Y., Yang, W., Liu, H., Wu, Y., Yu, Y., Zhang, J., Wang, B., Yang, L., Wang, S., Zhou, H., & Wu, P. (2025). Acid mine drainage sludge as an iron source modified biochar for Sb (III/V) removal: Mechanisms and adsorption behavior with As (III).
Díaz-Curiel, J., Biosca, B., Arévalo-Lomas, L., Paredes-Palacios, D., & Miguel, M. J. (2024). On the influence of grain size compared with other internal factors affecting the permeability of granular porous media: Redefining the permeability units.
Domènech, C., Ayora, C., & de Pablo, J. (2002). Sludge weathering and mobility of contaminants in soil affected by the Aznalcóllar tailing dam spill (SW Spain).
EN 12457 (1999). Characterization of waste – Leaching – Compliance test for leaching of granular waste materials and sludges, part 2, CEN, Brussels, 1999.
EN 14997 (2015). Characterization of waste – Leaching behaviour tests – Influence of pH on leaching with continuous pH-control, CEN, Brussels, 2015.
Ettler, V., Mihaljevič, M., Šebek, O., & Grygar, T. (2007). Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments: Analytical and thermodynamic approaches. PubMed
Ettler, V., Tomášová, Z., Komárek, M., Mihaljevič, M., Šebek, O., & Michálková, Z. (2015). The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: Implication for chemical stabilization of metals and metalloids. PubMed
EUR-Lex, (1986). Council directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. https://eur-lex.europa.eu/eli/dir/1986/278/
EUR-Lex, (1998). Council directive 98/83/EC on the quality of water intented for human consumption. Adopted by the council, on 3 November 1998. http://data.europa.eu/eli/dir/1998/83/oj
EUR-Lex, (2003). Council decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to article 16 of and Annex II to Directive 1999/31/EC. http://data.europa.eu/eli/dec/2003/33(1)/oj
Fathianpour, A., Taheriyoun, M., & Soleimani, M. (2018). Lead and zinc stabilization of soil using sewage sludge biochar: Optimization through response surface methodology.
Galan, E., Carretero, M. I., & Fernandez-Caliani, J. C. (1999). Effects of acid mine drainage on clay minerals suspended in the Tinto River (Río Tinto, Spain). An Experimental Approach.
Ghorbanzadeh, N., Ghanbari, Z., Farhangi, M. B., & Khalili Rad, M. (2022). Zinc bioremediation in soil by two isolated L-asparaginase and urease producing bacteria strains.
Górecka, E. (1996).
Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent.
Hussain, S., Khan, M., Sheikh, T. M. M., Mumtaz, M. Z., Chohan, T. A., Shamim, S., & Liu, Y. (2022). Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight. PubMed PMC
ISO. (2006). ISO 11464: 2006 soil quality—pretreatment of samples for physico-chemical analyses. Geneva, Switzerland: International Organization for Standardization.
Jarošíková, A., Ettler, V., Mihaljevič, M., Drahota, P., Culka, A., & Racek, M. (2018). Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. PubMed
Jarošíková, A., Ettler, V., Mihaljevič, M., Kříbek, B., & Mapani, B. (2017). The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. PubMed
Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: A review. PubMed
Kucha, H., Schroll, E., Stumpfl, E. F. (2001). Direct evidence for bacterial sulfur reduction in Bleiberg-type deposits. In:
Kupich, I., & Girczys, J. (2017). In-situ leaching of limestone in the process of water drainage in Zn-Pb ore mines.
Labus, K., Labus, M., & Mzyk, T. (2021). Historia i przyczyny katastrofy w dawnej kopalni rud żelaza Bibiela (region tarnogórski).
Li, T., Di, Z., Yang, X., & Sparks, D.L. (2011). Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils. PubMed
Liu, M., Iizuka, A., & Shibata, E. (2019). Effect of temperature on phase transformation and leaching behavior of acid mine drainage sludge.
Macías, F., Pérez-López, R., Caraballo, M. A., Cánovas, C. R., & Nieto, J. M. (2017). Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: A contribution for sustainable mining.
Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2009). Arsenic adsorption onto hematite and goethite.
Mayer, W., & Sass-Gustkiewicz, M. (1998). Geochemical characterization of sulphide minerals from the Olkusz lead-zinc ore cluster, Upper Silesia, (Poland), based on laser ablation data.
McCann, J. I., & Nairn, R. W. (2022). Characterization of residual solids from mine water passive treatment oxidation ponds at the Tar Creek Superfund Site, Oklahoma, USA: Potential for reuse or disposal.
McDonald, D. M., Webb, J. A., & Taylor, J. (2006). Chemical stability of acid rock drainage treatment sludge and implications for sludge management. PubMed
Mehdaoui, H. Y., Jouini, M., Lefebvre, J., Neculita, C. M., Pabst, T., & Benzaazoua, M. (2025). Geochemical stability of As-rich residues from a 20-year-old passive field biofilter used for neutral mine drainage treatment.
Michálková, Z., Komárek, M., Šillerová, H., Della Puppa, L., Joussein, E., Bordas, F., Vaněk, A., Vaněk, O., & Ettler, V. (2014). Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. PubMed
Mizerna, K., & Król, A. (2023). The importance of time and other determinants in the assessment of heavy metals release during solid waste management. PubMed PMC
Mohapatra, D., Mishra, D., Chaudhury, G. R., & Das, R. P. (2007). Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. PubMed
Motyka, J., d’Obyrn, K., Juśko, K., & Wójcik, T. (2017). Chemistry of water from the inflows to the “Franciszek” dipheading in the “Pomorzany” Zn-Pb mine in the Olkusz Area (SW Poland).
Murad, E., & Rojík, P. (2005). Iron mineralogy of mine-drainage precipitates as environmental indicators: Review of current concepts and a case study from the Sokolov Basin, Czech Republic.
Neculita, C.-M., Zagury, G. J., & Bussière, B. (2007). Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. PubMed
Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., & Blowes, D. W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California.
Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update.
Novozamsky, I., Lexmond, Th. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants.
Ondrasek, G., Shepherd, J., Rathod, S., Dharavath, R., Rashid, M. I., Brtnicky, M., Shahid, M. S., Horvatinec, J., & Rengel, Z. (2025). Metal contamination: A global environmental issue: Sources, implications & advances in mitigation. PubMed PMC
Onireti, O. O., Lin, C., & Qin, J. (2017). Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils. PubMed
Parkhurst, D.L., Appelo, C.A.J. (2013). Description of input and examples for PHREEQC version 3–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Techniques and Methods, book 6, chap. A43. https://www.usgs.gov/software/phreeqc-version-3
Pierre Louis, A.-M., Yu, H., Shumlas, S. L., Van Aken, B., Schoonen, M. A. A., & Strongin, D. R. (2015). Effect of phospholipid on pyrite oxidation and microbial communities under simulated acid mine drainage (AMD) conditions. PubMed
Rakotonimaro, T. V., Neculita, C. M., Bussière, B., Benzaazoua, M., & Zagury, G. J. (2017). Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: A review. PubMed
Sachdeva, S., Kumar, R., Sahoo, P. K., & Nadda, A. K. (2023). Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. PubMed
Safira, R., Kim, M., Lu, P., & Nguyen, T. (2024). Stability of As- and Mn-sludge after neutral mine water treatment using Fe(VI) vs electrocoagulation. PubMed
Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments.
Sekula, P., Hiller, E., Šottník, P., Jurkovič, Ľ, Klimko, T., & Vozár, J. (2018). Removal of antimony and arsenic from circum-neutral mine drainage in Poproč, Slovakia: A field treatment system using low-cost iron-based material.
Simón, M., Diez, M., González, V., García, I., Martín, F., & de Haro, S. (2010). Use of liming in the remediation of soils polluted by sulphide oxidation: A leaching-column study. PubMed
Skousen, J. G., Sexstone, A., Ziemkiewicz, P. F. (2000). Acid mine drainage control and treatment. In: Reclamation of drastically disturbed lands,
Srivastava, J., Naraian, R., Kalra, S. J. S., & Chandra, H. (2014). Advances in microbial bioremediation and the factors influencing the process.
Stamatopoulos, K., O’Farrell, C., Simmons, M., & Batchelor, H. (2021). In vivo models to evaluate ingestible devices: Present status and current trends. PubMed
Sun, L., Li, S., Gong, P., Song, K., Zhang, H., Sun, Y., Qin, Q., Zhou, B., & Xue, Y. (2022). Stabilization of zinc in agricultural soil originated from commercial organic fertilizer by natural zeolite. PubMed PMC
Swęd, M., & Duczmal - Czernikiewicz, A. (2019). Geochemical and mineralogical characteristics of calamines from the Olkusz zinc and lead ore district (South Poland).
USEPA, (2014). Reference guide to treatment technologies for mining influenced water. EPA 542-R-14-001.
Dziennik Ustaw, (2016) Rozporządzenie ministra środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Poz. 1395.
Viadero, R. C., Wei, X., & Buzby, K. M. (2006). Characterization and dewatering evaluation of acid mine drainage sludge from ammonia neutralization.
Viana, RSR., Chagas, J. K. M., Paz-Ferreiro, J., & de Figueiredo, C. C. (2025). Enhanced remediation of heavy metal-contaminated soils using biochar and zeolite combinations with additives: A meta-analysis. PubMed
Viets, J. G., Leach, D. L., Lichte, F. E., Hopkins, R. T., Gent, C. A., & Powell, J. W. (1996). Paragenetic and minor- and trace-element studies of Mississippi Valley-type ore deposits of the Silesian-Cracow district, Poland.
Wang, X., Lv, P., Zhang, F., Wang, W., Liu, X., Zhang, Q., Mu, J., Huang, X., Bai, L., & Dai, J. (2025). Heavy metal accumulation in maize and wheat in acidic soil: A comparative study.
Wang, Y. R., Tsang, D. C. W., Olds, W. E., & Weber, P. A. (2013). Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater. PubMed
Warr, L. N. (2021). IMA–CNMNC approved mineral symbols.
Yang, Y., Li, Y., Wang, M., Chen, W., & Dai, Y. (2021). Limestone dosage response of cadmium phytoavailability minimization in rice: A trade-off relationship between soil pH and amorphous manganese content. PubMed
Younger, P. L. (2018). Acid mine drainage. In P. T. Bobrowsky & B. Marker (Eds.),
Zamfir, A., Meghea, A., Oprea, O. C., & Mihaly, M. (2025). Sustainable conversion of acid mine drainage sludge into high-quality iron-based pigments through thermal processing.
Zha, F., Ji, C., Xu, L., Kang, B., Yang, C., & Chu, C. (2019). Assessment of strength and leaching characteristics of heavy metal-contaminated soils solidified/stabilized by cement/fly ash. PubMed
Zhang, C., Luo, J., Song, W., Chen, H., & Zhang, S. (2025). Influence of biochar on the partitioning of iron and arsenic from paddy soil contaminated by acid mine drainage. PubMed PMC
Zhang, M., Wang, J., Liu, X., Lv, Y., Yu, B., Gao, B., & Yan, X. (2022). Mine tailings remediation via sulfate-reducing bacteria and iron-reducing bacteria: Heavy metals immobilization and biological sealing.