Unraveling the variation, phylogeny, and taxonomy of Lactuca spp. for germplasm management and breeding
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_PrF_2025_001
Univerzita Palackého v Olomouci
NPGZ-M/03-023
Ministerstvo Zemědělství
PubMed
41204990
DOI
10.1007/s00425-025-04851-6
PII: 10.1007/s00425-025-04851-6
Knihovny.cz E-zdroje
- Klíčová slova
- Biogeography, Domestication, Genetic variation, Genotyping, Lettuce, Phenotyping,
- MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- salát (hlávkový) * genetika klasifikace fyziologie MeSH
- šlechtění rostlin * MeSH
- zemědělské plodiny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review describes the taxonomy, phylogeny, and diversity of wild Lactuca spp. and their relationship to cultivated lettuce (Lactuca sativa). The value of the different species as sources of useful variation for a range of economically important traits is detailed and the case is made for the conservation of more accessions in global genebanks. The integration of knowledge from research using the wild and domesticated species is highlighted. Lettuce (Lactuca sativa L.) is an annual species in the family Asteraceae (formerly Compositae). It is a widely cultivated leafy vegetable and one of the oldest domesticated crops. In addition to their high nutritional value, lettuce plants are aesthetically pleasing. A range of lettuce morphotypes has been developed to suit various production systems, meet the demands of the processing industry, and to satisfy consumer demand. Disease- and pest-resistant cultivars are a priority, as pesticide application is often not possible because of potential pesticide-related health risks due to lettuce's relatively short cultivation period. Wild Lactuca species closely related to lettuce were first utilized in breeding programs in the early twentieth century in USA and later in Europe. They continue to play a vital role in modern breeding as sources of resistance to important diseases and pests, tolerance to abiotic stresses (e.g., salinity, drought, temperature), and sources of variation in leaf taste, structure, and secondary-metabolite composition. The importance of wild Lactuca species in lettuce crop improvement extends beyond the close relatives of the crop. A thorough understanding of the taxonomy and phylogenetic relationships within the genus Lactuca provides insight into the history of domestication of lettuce, the management of genebank collections, and the utilization of germplasm in breeding and genetic studies. This knowledge aids identification and functional analysis of key genes and development of molecular markers for lettuce improvement. Current research supports the classification of L. serriola L. as the direct progenitor of cultivated lettuce, with the Middle East and Egypt identified as two centers of domestication. Lactuca virosa L. and L. saligna L. have also been utilized in lettuce breeding over the past 20-30 years and there has been an increased interest in exploiting other Lactuca species in recent years. Despite their importance, wild Lactuca species remain underrepresented in public-sector genebanks, with only a limited number of accessions available. Challenges, such as incomplete biogeographic and ecological data and frequent miss-identification of accessions, hinder the effective management and use of the collections in breeding programs. Recent studies have advanced our understanding of relationships within the subtribe Lactucinae, but the taxonomy of this lineage remains unresolved. The current taxonomic classification recognizes 73 Lactuca spp.; however, further research is needed to confirm species delineation and refine their classification. This paper proposes two potential approaches to address the unresolved taxonomy of Lactucinae: either recognizing each monophyletic unit as a distinct genus or adopting a broader definition of the genus Lactuca to encompass its diverse lineages.
Zobrazit více v PubMed
Abdel Bar FM, Abdel Fatah NH, Amen Y, Halim AF, Saad H-EA (2023) Genus Lactuca (Asteraceae): a comprehensive review. Rec Nat Prod 17(2):201–231. https://doi.org/10.25135/rnp.350.2205-2474 DOI
An G, Simko I, Chen J, Yu C, Lavelle D, Zhang W, Michelmore RW, Kuang H (2021) Hypersensitivity to triforine in lettuce is triggered by TNL gene through the disease-resistance pathway. Plant Biotechnol J 19(11):2144–2146. https://doi.org/10.1111/pbi.13679 PubMed DOI PMC
Anderson EC, Thompson E (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160(3):1217–1229. https://doi.org/10.1093/genetics/160.3.1217 PubMed DOI PMC
Araruna K, Carlos B (2010) Anti-inflammatory activities of triterpene lactones from Lactuca sativa. Phytopharmacology 1(1):1–6
Avelar RIS, Mendes MHA, de Souza DC, Ferraz RM, de Resende KFM, de Melo CE, Martins AD, Gavilanes ML, Bittencourt WJM, Resende LV (2024) Anatomical, karyotypic, and nuclear DNA content studies in four morphotypes of wild lettuce. Ciênc Agrotec (Sci Agrotechnol) 48:e008324. https://doi.org/10.1590/1413-7054202448008324 DOI
Babcock EB, Stebbins GL (1938) The American species of Crepis: their interrelationships and distribution as affected by polyploidy and apomixis. Carnegie Institution of Washington, Washington. https://lccn.loc.gov/39000697
Ballou SM, Omand KA, Karberg J, Bonifacino JM, Mandel JR (2023) A harried past for a glabrous lettuce: resurrection of Lactuca sanguinea Bigelow (Cichorieae), the wood lettuce from Nantucket Island, Massachusetts, USA. Capitulum 2(2):59–68. https://doi.org/10.53875/capitulum.02.2.05 DOI
Baron T, Jouhet J, Schilling M, Cussac M, Charles F, Vidal V, Chervin C, Sallanon H (2024) Postharvest lipidomics of lettuce leaves. Postharvest Biol Technol 212:112869. https://doi.org/10.1016/j.postharvbio.2024.112869 DOI
Barrière V, Lecompte F, Nicot PC, Maisonneuve B, Tchamitchian M, Lescourret F (2014) Lettuce cropping with less pesticides. A review. Agron Sustain Dev 34(1):175–198. https://doi.org/10.1007/s13593-013-0158-5 DOI
Beharav A (2021) Lactuca georgica, a new wild source of resistance to downy mildew: comparative study to other wild lettuce relatives. Eur J Plant Pathol 160(6):127–136. https://doi.org/10.1007/s10658-021-02228-5 DOI
Beharav A (2023) Lactuca georgica Grossh. is a wild species belonging to the secondary lettuce gene pool: additional evidence, obtained by KASP genotyping. Genet Resour Crop Evol 70(2):1289–1304. https://doi.org/10.1007/s10722-022-01502-7 DOI
Beharav A, Ben-David R, Malarz J, Stojakowska A, Michalska K, Doležalová I, Lebeda A, Kisiel W (2010) Variation of sesquiterpene lactones in Lactuca aculeata natural populations from Israel, Jordan and Turkey. Biochem Syst Ecol 38(4):602–611. https://doi.org/10.1016/j.bse.2010.07.007 DOI
Beharav A, Stojakowska A, Ben-David R, Malarz J, Michalska K, Kisiel W (2015) Variation of sesquiterpene lactone contents in Lactuca georgica natural populations from Armenia. Genet Resour Crop Evol 62(3):431–441. https://doi.org/10.1007/s10722-014-0171-9 DOI
Beharav A, Hellier B, Richardson KL, Lebeda A, Kisha T (2018a) Genetic relationships and structured diversity of Lactuca georgica germplasm from Armenia and the Russian Federation among other members of Lactuca L., subsection Lactuca L., assessed by TRAP markers. Genet Resour Crop Evol 65(2):1963–1978. https://doi.org/10.1007/s10722-018-0669-7 DOI
Beharav A, Khalifa S, Nevo E (2018b) New insights into the range, morphology, and natural hybridization of wild Lactuca aculeata in Israel. Isr J Plant Sci 65(3–4):175–185. https://doi.org/10.1163/22238980-00001045 DOI
Beharav A, Stojakowska A, Nevo E, Lebeda A (2023) New insights gained from collections of wild Lactuca relatives in the gene bank of the Institute of Evolution, University of Haifa. Isr J Plant Sci 70(3–4):121–146. https://doi.org/10.1163/22238980-bja1007 DOI
Behçet L, Yapar Y (2020) Lactuca anatolica (Asteraceae: Lactucinae), a new species from Anatolia (Turkey). Phytotaxa 455(4):287–294. https://doi.org/10.11646/phytotaxa.455.4.6 DOI
Bell JL, Burke JC, Neff MM (2015) Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.). J Agric Food Chem 63(2):593–602. https://doi.org/10.1021/jf503934v PubMed DOI
Bergmeier E, Meyer S (2021) Lactuca aculeata (Asteraceae), a crop wild relative new to Europe. Fl Medit 31:53–58. https://doi.org/10.7320/FlMedit31.053 DOI
Bhattarai K, Ogden AB, Pandey S, Sandoya GV, Shi A, Nankar AN, Jayakodi M, Huo H, Jiang T, Tripodi P, Dardick C (2025) Improvement of crop production in controlled environment agriculture through breeding. Front Plant Sci 15:1524601. https://doi.org/10.3389/fpls.2024.1524601 PubMed DOI PMC
Bhellum BL (2015) Lactuca pygmaea (Asteraceae, Cichorieae) - a new species from India. Curr Life Sci 1(1):1–5
Bhellum BL, Singh B (2015) Taxonomic novelties of the genus Lactuca L. in Jammu and Kashmir (India): diversity, phenology and distribution. Curr Life Sci 1(3):93–102
Bicknell R, Catanach A, Hand M, Koltunow A (2016) Seeds of doubt: Mendel’s choice of Hieracium to study inheritance, a case of right plant, wrong trait. Theor Appl Genet 129(12):2253–2266. https://doi.org/10.1007/s00122-016-2788-x PubMed DOI PMC
Boukema I, Stavelikova H, van Hintum TJL (2001) The international Lactuca database. In: Maggioni L, Spellman O (eds) Report of a network coordinating group on vegetables. Ad hoc meeting, 26–27 May 2000, Vila Real, Portugal. International Plant Genetic Resources Institute, Rome, pp 58–59. https://research.wur.nl/en/publications/leafy-vegetables-genetic-resources
Bouymajane A, Filali FR, Moujane S, El Majdoub YO, Otzen P, Channaoui S, Ed-Dra A, Bouddine T, Sellam K, Boughrous AA, Miceli N, Altemimi AB, Cacciola F (2024) Phenolic compound, antioxidant, antibacterial, and in silico studies of extracts from the aerial parts of Lactuca saligna L. Molecules 29(3):596. https://doi.org/10.3390/molecules29030596 PubMed DOI PMC
Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, Portland
Brücková K, Sytar O, Živčák M, Brestič M, Lebeda A (2016) The effect of growth conditions on flavonols and anthycyanins accumulation in green and red lettuce. J Cent Eur Agric 17(4):986–997. https://doi.org/10.5513/JCEA01/17.4.1802 DOI
Cao S, Sawettalake N, Li P, Fan S, Shen L (2024a) DNA methylation variations underlie lettuce domestication and divergence. Genome Biol 25(1):158. https://doi.org/10.1186/s13059-024-03310-x PubMed DOI PMC
Cao S, Sawettalake N, Shen L (2024b) Gapless genome assembly and epigenetic profiles reveal gene regulation of whole-genome triplication in lettuce. Gigascience 13:giae043. https://doi.org/10.1093/gigascience/giae043 PubMed DOI PMC
Cao S, Sawettalake N, Shen L (2025) Lactuca super-pangenome provides insights into lettuce genome evolution and domestication. Nat Commun 16(1):7257. https://doi.org/10.1038/s41467-025-62641-w PubMed DOI PMC
Chadha A, Florentine S (2021) Biology, ecology, distribution and control of invasive weed, Lactuca serriola L. (wild lettuce): a global review. Plants 10(10):2157. https://doi.org/10.3390/plants10102157 PubMed DOI PMC
Chadwick M, Swann JR, Gawthrop F, Michelmore R, Scaglione D, Jose-Truco M, Wagstaff C (2024) Mapping taste and flavour traits to genetic markers in lettuce Lactuca sativa. Food Chem: Mol Sci 9:100215. https://doi.org/10.1016/j.fochms.2024.100215 DOI
Chen YS, Xu LS, Ke R, Harris Aj, Li H-M (2021) Lihengia: a new genus of Asteraceae distinct from Dubyaea. Taxon 70(3):620–634. https://doi.org/10.1002/tax.12428 DOI
Chen H, Chen J, Zhai R, Lavelle D, Jia Y, Tang Q, Zhu T, Wang M, Geng Z, Zhu J, Feng H, An J, Liu J, Li W, Deng S, Wang W, Zhang W, Zhang X, Luo G, Wang X, Kumar Sahu S, Liu H, Michelmore R, Yang W, Wei T, Kuang H (2025) Dissecting the genetic architecture of key agronomic traits in lettuce using a MAGIC population. Genome Biol 26(1):67. https://doi.org/10.1186/s13059-025-03541-6 PubMed DOI PMC
Cho M-S, Yun SA, Crawford DJ, Santos-Guerra A, Kim S-C (2013) Origin and evolution of woody sow-thistles in the Macaronesian Islands revisited: four decades after the revision of Sonchus (Asteraceae). Vieraea 41:217–232. https://doi.org/10.31939/vieraea.2013.41.16 DOI
Cho E, Gurdon C, Zhao R, Peng H, Poulev A, Raskin I, Simko I (2023) Phytochemical and agronomic characterization of high-flavonoid lettuce lines grown under field conditions. Plants 12(19):3467. https://doi.org/10.3390/plants12193467 PubMed DOI PMC
Chu R, Xu XM, Lu ZW, Ma YG, Cheng H, Zhu SX, Bakker FT, Schranz ME, Wei Z (2022) Plastome-based phylogeny and biogeography of Lactuca L. (Asteraceae) support revised lettuce gene pool categories. Front Plant Sci 13:978417. https://doi.org/10.3389/fpls.2022.978417 PubMed DOI PMC
Cicek SS, Mangoni A, Hanschen FS, Agerbirk N, Zidorn C (2024) Essentials in the acquisition, interpretation, and reporting of plant metabolite profiles. Phytochemistry 220:114004. https://doi.org/10.1016/j.phytochem.2024.114004 PubMed DOI
Cobben MMP, van Treuren R, Castañeda-Álvarez NP, Khoury CK, Kik C, van Hintum TJL (2015) Robustness and accuracy of Maxent niche modelling for Lactuca species distributions in light of collecting expeditions. Plant Genet Resour Charact Util 13(2):153–161. https://doi.org/10.1017/S1479262114000847 DOI
Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc Lond B Biol Sci 363(1491):557–572. https://doi.org/10.1098/rstb.2007.2170 DOI
Concepcion R, Lauguico S, Siphengphet K, Alejandrino J, Dadios E, Bandala A (2020) Variety classification of Lactuca sativa seeds using single-kernel RGB images and spectro-textural-morphological feature-based machine learning. In: Proceedings of IEEE 12th international conference on humanoid, nanotechnology, information technology, communication and control, environment, and Management (HNICEM). IEEE, pp 1–6. https://doi.org/10.1109/hnicem51456.2020.9400015
Crop Wild Relative Data. Section of the U.S. National Plant Germplasm System. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearchcwr . Assessed 9 Sept 2024.
D’Andrea L, Felber F, Guadagnuolo R (2008) Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environ Biosaf Res 7(2):61–71. https://doi.org/10.1051/ebr:2008006 DOI
da Silveira AJ, Finzi RR, Cabral Neto LD, Maciel GM, Beloti IF, Jacinto ACP (2019) Genetic dissimilarity between lettuce genotypes with different levels of carotenoids biofortification. Nativa 7(6):656–660. https://doi.org/10.31413/nativa.v7i6.7331 DOI
Damerum A, Chapman MA, Taylor G (2020) Innovative breeding technologies in lettuce for improved post-harvest quality. Postharvest Bio Technol 168:111266. https://doi.org/10.1016/j.postharvbio.2020.111266 DOI
Davey MR, Anthony P (2011) Lactuca, Chapter 8. In: Kole Ch (ed) Wild crop relatives: genomic and breeding resources. Vegetables. Springer, Heidelberg, pp 115–128 DOI
de Vries IM (1990) Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae). Plant Syst Evol 171(1–4):233–248. https://doi.org/10.1007/BF00940608 DOI
de Vries IM (1997) Origin and domestication of Lactuca sativa L. Genet Resour Crop Evol 44(2):165–174. https://doi.org/10.1023/A:1008611200727 DOI
de Vries IM, van Raamsdonk LWD (1994) Numerical morphological analysis of lettuce cultivars and species (Lactuca sect. Lactuca, Asteraceae). Plant Syst Evol 193(1–4):125–141 DOI
Dias EF, Kilian N, Silva L, Schaefer H, Carine M, Rudall PJ, Santos-Guerra A, Moura M (2018) Phylogeography of the Macaronesian lettuce species Lactuca watsoniana and L. palmensis (Asteraceae). Biochem Genet 56(4):315–340. https://doi.org/10.1007/s10528-018-9847-8 PubMed DOI
Doležalová I, Lebeda A, Křístková E (2001) Prickly lettuce (Lactuca serriola L.) germplasm collecting and distribution study in Slovenia and Sweden. Plant Genet Resour Newslet 128:41–44
Doležalová I, Křístková E, Lebeda A, Vinter V (2002a) Description of morphological characters of wild Lactuca L. spp. genetic resources (English-Czech version). Hortic Sci (Prague) 29(2):56–83. https://doi.org/10.17221/4461-HORTSCI DOI
Doležalová I, Lebeda A, Janeček J, Číhalíková J, Křístková E, Vránová O (2002b) Variation in chromosome numbers and nuclear DNA contents in genetic resources of Lactuca L. species (Asteraceae). Genet Resour Crop Evol 49(4):383–395. https://doi.org/10.1023/A:1020610129424 DOI
Doležalová I, Křístková E, Lebeda A, Vinter V, Astley D, Boukema IW (2003a) Basic morphological descriptors for genetic resources of wild Lactuca spp. Plant Genet Resour Newslet 134:1–9
Doležalová I, Lebeda A, Dziechciarková M, Křístková E, Astley D, van de Wiel CCM (2003b) Relationships among morphological characters, isozymes polymorphism and DNA variability—the impact on Lactuca germplasm taxonomy. Czech J Genet Plant Breed 39(2):59–67. https://doi.org/10.17221/3721-CJGPB DOI
Doležalová I, Lebeda A, Tiefenbachová I, Křístková E (2004) Taxonomic reconsideration of some Lactuca spp. germplasm maintained in world genebank collections. Acta Hortic 634:193–201. https://doi.org/10.17660/ActaHortic.2004.634.23 DOI
Dulloo ME, Maxted N (2019) Editorial special issue: plant genetic resources conservation and utilization—crop wild relatives. Plant Genet Resour Charact Util 17(2):101–102. https://doi.org/10.1017/S1479262118000606 DOI
Dziechciarková M, Lebeda A, Doležalová I, Astley D (2004) Characterization of Lactuca spp. germplasm by protein and molecular markers—a review. Plant Soil Environ 50(2):47–58. https://doi.org/10.17221/3680-PSE DOI
Eenink AH (1980) Plant characteristics for distinction of diploid, triploid and tetraploid lettuce. Sci Hortic 12(2):109–115. https://doi.org/10.1016/0304-4238(80)90117-X DOI
Einset J (1944) Cytological basis for sterility in induced autotetraploid lettuce (Lactuca sativa L.). Am J Bot 31(6):336–342. https://doi.org/10.1002/j.1537-2197.1944.tb08039.x DOI
El-Esawi MA, Sammour R (2014) Karyological and phylogenetic studies in the genus Lactuca L. (Asteraceae). Cytologia 79(2):269–275. https://doi.org/10.1508/cytologia.79.269 DOI
El-Mallah MH, El-Shami SM (2012) Evaluation of the oil produced from lettuce crops cultivated under different irrigation conditions. Grasas Aceites 63(4):423–431. https://doi.org/10.3989/gya.023212 DOI
Engler DE, Grogan RG (1984) Variation in lettuce plants regenerated from protoplasts. J Hered 75(6):426–430. https://doi.org/10.1093/oxfordjournals.jhered.a109978 DOI
Enke N, Gemeinholzer B (2008) Babcock revisited: New insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon 57(3):756–768. https://doi.org/10.1002/tax.573008 DOI
Erdogan MK, Gundogdu R, Toy Y, Gecibesler IH, Yapar Y, Behcet L, Zengin G (2024) Comparison of anticancer, antioxidant, enzyme inhibitory effects and phytochemical contents between edible lettuce (Lactuca sativa) and a new wild species (Lactuca anatolica). Chem Biodivers 21(9):e202400552. https://doi.org/10.1002/cbdv.202400552 PubMed DOI
Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x PubMed DOI PMC
FAOSTAT Food and Agriculture Statistics (2024) Food and Agriculture Statistics | FAO | Food and Agriculture Organization of the United Nations. https://www.fao.org/food-agriculture-statistics/en/ . 19 Apr 2024
Feráková V (1977) The genus Lactuca in Europe. Komenský University Press, Bratislava
Fertet A, Graindorge S, Koechler S, de Boer G-J, Guilloteau-Fonteny E, Gualberto JM (2021) Sequence of the mitochondrial genome of Lactuca virosa suggests an unexpected role in Lactuca sativa’s evolution. Front Plant Sci 12:697136. https://doi.org/10.3389/fpls.2021.697136 PubMed DOI PMC
Foolad MR (2007) Molecular mapping, marker-assisted selection and map based cloning in tomato. In: Varshney RK, Tuberosa R (eds) Genomics applications in crops, vol 2. Springer, Dordrecht, pp 307–356
Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) (2009) Systematics, evolution, and biogeography of compositae. International Association for Plant Taxonomy, Institute of Botany, University of Vienna, Vienna
García RM, Parra-Quijano M, Iriondo JM (2017) A multispecies collecting strategy for crop wild relatives based on complementary areas with a high density of ecogeographical gaps. Crop Sci 57(3):1059–1069. https://doi.org/10.2135/cropsci2016.10.0860 DOI
Giesbers AKJ, den Boer E, Braspenning DNJ, Bouten TPH, Specken JW, van Kaauwen MPW, Visser RGF, Niks R, Jeuken MJW (2018) Bidirectional backcrosses between wild and cultivated lettuce identify loci involved in nonhost resistance to downy mildew. Theor Appl Genet 131(8):1761–1776. https://doi.org/10.1007/s00122-018-3112-8 PubMed DOI PMC
Guarino L, Ramanatha Rao V, Reid R (1995) Collecting plant genetic diversity, technical guidelines. CAB International, Wallingford
Güzel ME, Kilian N, Gultepe M, Kendemir A, Coskuncelebi K (2018) Contributions to the taxonomy of Lactuca (Asteraceae) in Turkey. Turk J Bot 42(2):197–207. https://doi.org/10.3906/bot-1707-29 DOI
Güzel ME, Coşkunçelebi K, Kilian N, Makbul S, Gültepe M (2021) Phylogeny and systematics of the Lactucinae (Asteraceae) focusing on their SW Asian centre of diversity. Plant Syst Evol 307(1):7. https://doi.org/10.1007/s00606-020-01719-y DOI
Hancock JF (2004) Plant evolution and the origin of crop species. CABI Publishing, Wallingford
Hand M, Vít P, Krahulcová A, Johnson SD, Oelkers K, Siddons H, Chrtek JrJ, Fehrer J, Koltunow AMG (2015) Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity 114(1):17–26. https://doi.org/10.1038/hdy.2014.61 PubMed DOI
Harlan JR (1971) Agricultural origins: centers and noncenters. Science 174(4008):468–474 PubMed DOI
Harlan JR (1986) Lettuce and the sycomore: sex and romance in ancient Egypt. Econ Bot 40(1):4–15 DOI
Harsha SN, Anilakumar KR (2013) Anxiolytic property of Lactuca sativa, effect of anxiety behaviour induced by novel food and height. Asian Pac J Trop Med 6(7):532–536. https://doi.org/10.1016/S1995-7645(13)60091-7 PubMed DOI
Hartman Y, Hooftman DAP, Schranz ME, van Tienderen PH (2013) Qtl analysis reveals the genetic architecture of domestication traits in crisphead lettuce. Genet Resour Crop Evol 60(4):1487–1500. https://doi.org/10.1007/s10722-012-9937-0 DOI
Hassan MN, Mekkawy SA, Mahdy M, Salem KFM, Tawfik E (2021) Recent molecular and breeding strategies in lettuce (Lactuca spp.). Genet Resour Crop Evol 68(8):3055–3079. https://doi.org/10.1007/s10722-021-01246-w DOI
Hatami E, Jones KE, Kilian N (2022) New insights into the relationships within subtribe Scorzonerinae (Cichorieae, Asteraceae) using hybrid capture phylogenomics (Hyb-Seq). Front Plant Sci 13:851716. https://doi.org/10.3389/fpls.2022.851716 PubMed DOI PMC
Hawkes JG (1983) The diversity of crop plants. Harvard University Press, Cambridge DOI
Hedrick UP (1972) Sturtevant’s edible plants of the world. Dover Press, New York
Ilgün S, Akkol EK, Ilhan M, Polat DC, Kilic AB, Coskun M, Sobarzo-Sánchez E (2020) Sedative effects of latexes obtained from some Lactuca L. species growing in Turkey. Molecules 25(7):1587. https://doi.org/10.3390/molecules25071587 PubMed DOI PMC
Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Missouri Bot Gard 86(2):590–643. https://doi.org/10.2307/2666186 DOI
Jeffrey C (1966) Notes in Compositae I. The Cichorieae in east tropical Africa. Kew Bull 18(3):427–486. https://doi.org/10.2307/4115797 DOI
Jemelková M, Kitner M, Křístková E, Beharav A, Lebeda A (2015) Biodiversity of Lactuca aculeata germplasm assessed by SSR and AFLP markers, and resistance variation to Bremia lactucae. Biochem Syst Ecol 61:344–356. https://doi.org/10.1016/j.bse.2015.07.003 DOI
Jemelková M, Kitner M, Křistková E, Doležalová I, Lebeda A (2018) Genetic variability and distance between Lactuca serriola L. populations from Sweden and Slovenia assessed by SSR and AFLP markers. Acta Bot Croat 77(2):172–180. https://doi.org/10.2478/botcro-2018-0019 DOI
Jeuken MJW, Pelgrom K, Stam P, Lindhout P (2008) Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population. Theor Appl Genet 116(6):845–857. https://doi.org/10.1007/s00122-008-0718-2 PubMed DOI PMC
Jochems PGM, Heming B, Lapin D, Moonen NEL, Van den Ackerveken G, Masereeuw R (2022) Bioengineered intestinal tubules as a tool to test intestinal biological efficacy of lettuce species. NPJ Sci Food 6(1):58. https://doi.org/10.1038/s41538-022-00175-x PubMed DOI PMC
Jones KE, Schilling EE, Dias EF, Kilian N (2018) Northern hemisphere disjunctions in Lactuca (Cichorieae, Asteraceae): independent Eurasia to North America migrations and allopolyploidization. Willdenowia 48(2):259–284. https://doi.org/10.3372/wi.48.48206 DOI
Jones KE, Fér T, Schmickl RE, Dikow RB, Funk VA, Herrando-Moraira S, Johnston PR, Kilian N, Siniscalchi CM, Susanna A, Slovák M, Thapa R, Watson LE, Mandel JR (2019) An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. Applic Plant Sci 7(10):e11295. https://doi.org/10.1002/aps3.11295 DOI
Katinas L, Tellería MC, Susanna A, Ortiz S (2008) Warionia (Asteraceae): a relict genus of Cichorieae? An Jard Bot Madrid 65(2):367–381. https://doi.org/10.3989/ajbm.2008.v65.i2.299 DOI
Katz SH, Weaver WW (2003) Encyclopedia of food and culture. Schribner, New York
Keimer L (1924) Die Gartenpflanzen in Alten Aegypten. Hoffmann und Campe, Hamburg
Kell SP, Ford-Lloyd BV, Magos Brehm J, Iriondo JM, Maxted N (2017) Broadening the base, narrowing the task: prioritizing crop wild relative taxa for conservation action. Crop Sci 57(3):1042–1058. https://doi.org/10.2135/cropsci2016.10.0873 DOI
Kesseli R, Ochoa O, Michelmore R (1991) Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome 34(3):430–436. https://doi.org/10.1139/g91-065 DOI
Khoury CK, Achicanoy HA, Bjorkman AD, Navarro-Racines C, Guarino L, Flores-Palacios X, Engels JMM, Wiersema JH, Dempewolf H, Sotelo S, Ramírez-Villegas J, Castaňeda-Álvarez NP, Fowler C, Jarvis A, Rieseberg LH, Struik PC (2016) Origins of food crops connect countries worldwide. Proc R Soc B 283(1832):20160792. https://doi.org/10.1098/rspb.2016.0792 DOI PMC
Khoury CK, Brush S, Costich DE, Curry HA, de Haan S, Engels JMM, Guarino L, Hoban S, Mercer KL, Miller AJ, Nabhan GP, Perales HR, Richards C, Riggins C, Thormann I (2022) Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol 233(1):84–118. https://doi.org/10.1111/nph.17733 PubMed DOI
Kilian N, Gemeinholzer B, Lack HW (2009a) Tribe Cichorieae. In: Funk VA et al (eds) Systematics, evolution, and biogeography of the compositae. International Association for Plant Taxonomy, Vienna, pp 343–383
Kilian N, Hand R, von Raab-Straube E (General Editors) (2009b) Cichorieae systematics portal. http://cichorieae.e-taxonomy.net/portal/ (continuously updated)
Kilian N, Hand R, Hadjikyriakou GN, Christodoulou ChS, Bou Dagher-Kharrat M (2017a) Astartoseris (Cichorieae, Asteraceae), a new, systematically isolated monospecific genus accommodating lactuca triquetra endemic to Lebanon and Cyprus. Willdenowia 47(2):115–125. https://doi.org/10.3372/wi.47.47203 DOI
Kilian N, Sennikov A, Wang Z-H, Gemeinholzer B, Zhang J-W (2017b) Sub-parathethyan origin and middle to late Miocene principal diversification of the Lactucinae (Compositae: Cichorieae) inferred from molecular phylogenetics, divergence-dating and biogeographic analysis. Taxon 66(3):675–703. https://doi.org/10.12705/663.9 DOI
Kim MJ, Moon Y, Tou JC, Mou B, Waterland NL (2016) Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J Food Compos Anal 49:19–34. https://doi.org/10.1016/j.jfca.2016.03.004 DOI
Kitner M, Lebeda A, Doležalová I, Maras M, Křístková E, Nevo E, Pavlíček T, Meglic V, Beharav A (2008) AFLP analysis of Lactuca saligna germplasm collections from four European and three Middle Eastern countries. Isr J Plant Sci 56(3):185–193. https://doi.org/10.1560/IJPS.56.3.185 DOI
Kitner M, Majeský L, Křístková E, Jemelková M, Lebeda A, Beharav A (2015) Genetic structure and diversity in natural populations of three predominantly self-pollinating wild Lactuca species in Israel. Genet Resour Crop Evol 62(7):991–1008. https://doi.org/10.1007/s10722-014-0203-5 DOI
Koopman WJM (2000) Identifying lettuce species (Lactuca subsect. Lactuca, Asteraceae): a practical application of flow cytometry. Euphytica 116(2):151–159 DOI
Koopman WJM, DeJong JH (1996) A numerical analysis of karyotypes and DNA amounts in lettuce cultivars and species (Lactuca subsect. Lactuca, Compositae). Acta Bot Neerl 45(2):211–222. https://doi.org/10.1111/j.1438-8677.1996.tb00510.x DOI
Koopman WJM, De Jong JH, De Vries IM (1993) Chromosome banding patterns in lettuce species (Lactuca sect. Lactuca, Compositae). Plant Syst Evol 185(3–4):249–257. https://doi.org/10.1007/BF00937661 DOI
Koopman WJM, Guetta E, van de Wiel CCM, Vosman B, van den Berg RG (1998) Phylogenetic relationships among Lactuca (Asteraceae) species and related genera based on ITS-1 DNA sequences. Am J Bot 85(11):1517–1530. https://doi.org/10.2307/2446479 PubMed DOI
Koopman WJM, Zevenbergen MJ, van den Berg RG (2001) Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. Am J Bot 88(10):1881–1887. https://doi.org/10.2307/3558364 PubMed DOI
Koopman WJM, Hadam J, Doležel J (2002) Evolution of DNA content and base composition in Lactuca (Asteraceae) and related genera. In: Koopman WJM: Zooming in on the lettuce genome: species relationships in Lactuca s. l. inferred from chromosomal and molecular characters. Ph.D. thesis, Wageningen University, Wageningen, the Netherlands, pp 97–124
Koopman WJM (2002) Zooming in on the lettuce genome: species relationships in Lactuca s. l. inferred from chromosomal and molecular characters. Ph.D. thesis, Wageningen University, Wageningen, the Netherlands
Krahulcová A, Rotreklová O, Krahulec F, Rosenbaumová R, Plačková I (2009) Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations. Folia Geobot 44(3):281–306. https://doi.org/10.1007/s12224-009-9041-1 DOI
Krak K, Caklová P, Chrtek J, Fehrer J (2013) Reconstruction of phylogenetic relationships in a highly reticulate group with deep coalescence and recent speciation (Hieracium, Asteraceae). Heredity 110(2):138–151. https://doi.org/10.1038/hdy.2012.100 PubMed DOI
Křístková E, Lebeda A (2019) Eco-geography and distribution of wild Lactuca spp. In: Lebeda A, Křístková E (eds) Eucarpia leafy vegetables 2019, 9th international conference on genetics and breeding of leafy vegetables. Programme and Proceedings of Abstracts. Jola, v.o.s., Kostelec na Hané, Czech Republic, pp 33–34
Křístková E, Doležalová I, Lebeda A, Vinter V, Novotná A (2008) Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Hort Sci (Prague) 35(3):113–129. https://doi.org/10.17221/4/2008-HORTSCI DOI
Křístková E, Lebeda A, Kitner M, Vafková B, Matoušková Z, Doležalová I, Beharav A (2012) Phenotypes of the natural interspecific hybrids in the genus Lactuca. Úroda 60(9):28–31 (scientific supplement)
Křístková E, Lebeda A, Novotná A, Doležalová I, Berka T (2014) Morphological variation of Lactuca serriola L. achenes as a function of their geographic origin. Acta Bot Croat 73(1):1–19. https://doi.org/10.2478/botcro-2013-0020 DOI
Křivánková T, Kitner M, Mieslerová B, Hroneš M, Křístková E, Pavlíček T, Vaculná L, Čurná A, Majeská Čudějková M, Lebeda A (2025) Geographic distribution, species spectrum and variation of powdery mildew in the genus Lactuca. Mycol Progr 24(1):62. https://doi.org/10.1007/s11557-025-02076-1 DOI
Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876. https://doi.org/10.1146/annurev.ecolsys.38.091206.095504 DOI
Kumar A, Kaushik P (2023) A review on high-throughput phenotyping for vegetable crops. J Bot Res 6(1):170–175. https://doi.org/10.36959/771/575 DOI
Kürschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105(2):449–453. https://doi.org/10.1073/pnas.0708588105 PubMed DOI PMC
Kwon S-J, Truco M-J, Hu J (2012) LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting. Mol Breed 29(4):887–901. https://doi.org/10.1007/s11032-011-9623-5 DOI
Kwon S, Simko I, Hellier B, Mou B, Hu J (2013) Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines. Crop J 1(1):25–33. https://doi.org/10.1016/j.cj.2013.07.014 DOI
Labokas J, Maxted N, Kell S, Magos Brehm J, Iriondo JM (2018) Development of national crop wild relative conservation strategies in European countries. Genet Resour Crop Evol 65(5):1385–1403. https://doi.org/10.1007/s10722-018-0621-x DOI
Lack HW (2007) Cichorieae. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, vol 8. Flowering plants, eudicots, asterales. Springer, Berlin, pp 180–199
Lai Z, Kane NC, Kozik A, Hodgins KA, Dlugosh KM, Barker MS, Matvienko M, Yu Q, Turner KG, Pearl SA, Bell GDM, Zou Y, Grassa C, Guggisberg A, Adams KL, Anderson JV, Horvath DP, Kesseli RV, Burke JM, Michelmore RW, Rieseberg LH (2012) Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. Amer J Bot 99(2):209–218. https://doi.org/10.3732/ajb.1100313 DOI
Lal B, Bhandari S, Upadhyay A, Singh P, Singh VP (2024) Lettuce: a dive into its nutritional value and economic significance. AGBIR 40(2):954–956. https://doi.org/10.35248/0970-1907.24.40.954-956 DOI
Lebeda A, Astley D (1999) World genetic resource of Lactuca spp., their taxonomy and biodiversity. In: Lebeda A, Křístková E (eds) Eucarpia leafy vegetables ‘99, proceedings of the Eucarpia meeting of leafy vegetables genetics and breeding. Palacký University, Olomouc, Czech Republic, pp 81–94
Lebeda A, Boukema IW (1991) Further investigation of the specificity of interactions between wild Lactuca spp. and Bremia lactucae isolates from Lactuca serriola. J Phytopathol 133(1):57–64. https://doi.org/10.1111/j.1439-0434.1991.tb00137.x DOI
Lebeda A, Boukema IW (2001) Leafy vegetables genetic resources. In: Maggioni L, Spellman O (eds) report of a network coordinating group on vegetables. Ad hoc meeting, 26–27 May 2000, Vila Real, Portugal. International Plant Genetic Resources Institute, Rome, pp 48–57. https://research.wur.nl/en/publications/leafy-vegetables-genetic-resources
Lebeda A, Burdon JJ (2023) Studying wild plant pathosystems to understand crop plant pathosystems: status, gaps, challenges and perspectives. Phytopathology 113(3):365–380. https://doi.org/10.1094/PHYTO-01-22-0018-PER PubMed DOI
Lebeda A, Křístková E (2023) Prickly and opium lettuces in Central Chile and Mendoza district (Argentina). In: van den Ackerveken G (ed) EUCARPIA 2023. 10th Eucarpia leafy vegetable conference, August 28–31, 2023, Utrecht, the Netherlands, book of abstracts. EUCARPIA and Utrecht University, Utrecht, p 19
Lebeda A, Pink DAC, Astley D (2002) Aspects of the interactions between wild Lactuca spp. and related genera and lettuce downy mildew (Bremia lactucae). In: Spencer-Phillips PTN, Gisi U, Lebeda A (eds) Advances in Downy Mildew Research. Kluwer Academic Publishers, Dordrecht, pp 85–117 DOI
Lebeda A, Doležalová I, Astley D (2004a) Representation of wild Lactuca spp. (Asteraceae, Lactuceae) in world genebank collections. Genet Resour Crop Evol 51(2):167–174. https://doi.org/10.1023/B:GRES.0000020860.66075.f7 DOI
Lebeda A, Doležalová I, Feráková V, Astley D (2004b) Geographical distribution of wild Lactuca species (Asteraceae, Lactuceae). Bot Rev 70(3):328–356. https://doi.org/10.1663/0006-8101(2004)070[0328:GDOWLS]2.0.CO;2 DOI
Lebeda A, Doležalová I, Křístková E, Dehmer KJ, Astley D, van de Wiel CCM, van Treuren R (2007a) Acquisition and ecological characterization of Lactuca serriola L. germplasm collected in the Czech Republic, Germany, the Netherlands and United Kingdom. Genet Resour Crop Evol 54(3):555–562. https://doi.org/10.1007/s10722-006-0012-6 DOI
Lebeda A, Ryder EJ, Grube R, Doležalová I, Křístková E (2007b) Lettuce (Asteraceae; Lactuca spp.), chapter 9. In: Singh R (ed) Genetic resources, chromosome engineering, and crop improvement series, volume 3—vegetable crops. CRC Press, Boca Raton, pp 377–472
Lebeda A, Petrželová I, Maryška Z (2008) Structure and variation in the wild-plant pathosystem: Lactuca serriola - Bremia lactucae. Eur J Plant Pathol 122(1):127–146. https://doi.org/10.1007/s10658-008-9291-4 DOI
Lebeda A, Doležalová I, Křístková E, Kitner M, Petrželová I, Mieslerová B, Novotná A (2009) Wild Lactuca germplasm for lettuce breeding: current status, gaps and challenges. Euphytica 170(1–2):15–34. https://doi.org/10.1007/s10681-009-9914-7 DOI
Lebeda A, Doležalová I, Kitner M, Novotná A, Šmachová P, Widrlechner MP (2011) North American Continent—a new source of wild Lactuca spp. germplasm variability for future lettuce breeding. Acta Hortic 918:475–482. https://doi.org/10.17660/ActaHortic.2011.918.59 DOI
Lebeda A, Doležalová I, Novotná A (2012a) Wild and weedy Lactuca species, their distribution, ecogeography and ecobiology in USA and Canada. Genet Resour Crop Evol 59(8):1805–1822. https://doi.org/10.1007/s10722-012-9805-y DOI
Lebeda A, Kitner M, Křístková E, Doležalová I, Beharav A (2012b) Genetic polymorphism in Lactuca aculeata populations and occurrence of natural putative hybrids between L. aculeata and L. serriola. Biochem Syst Ecol 42:113–123. https://doi.org/10.1016/j.bse.2012.02.008 DOI
Lebeda A, Křístková E, Kitner M, Mieslerová B, Jemelková M, Pink DAC (2014) Wild Lactuca species, their genetic diversity, resistance to diseases and pests, and exploitation in lettuce breeding. Eur J Plant Pathol 138(3):597–640. https://doi.org/10.1007/s10658-013-0254-z DOI
Lebeda A, Křístková E, Kitner M, Mieslerová B, Jemelková M, Pink DAC (2015) Resistance of wild Lactuca genetic resources to diseases and pests, and their exploitation in lettuce breeding. Acta Hortic 1101:133–139. https://doi.org/10.17660/ActaHortic.2015.1101.20 DOI
Lebeda A, Křístková E, Kitner M, Mieslerová B, Pink DA (2016) Wild Lactuca saligna: a rich source of variation for lettuce breeding. In: Maxted N, Ehsan Dulloo M, Ford-Lloyd BV (eds) Enhancing crop genepool use: capturing wild relative and landrace diversity for crop improvement. CAB International, Wallingford, pp 32–46 DOI
Lebeda A, Křístková E, Doležalová I, Kitner M, Widrlechner MP (2019a) Chapter 5. Wild Lactuca species in North America. In: Greene SL, Williams KA, Khoury CK, Kantar MB, Marek LF (eds) North American crop wild relatives, vol 2. Springer, Cham, pp 131–194. https://doi.org/10.1007/978-3-319-97121-6_5 DOI
Lebeda A, Křístková E, Kitner M, Majeský L, Doležalová I, Khoury CK, Widrlechner MP, Hu J, Carver D, Achicanoy HA, Sosa ChC (2019b) Research gaps and challenges in the conservation and use of North American wild lettuce germplasm. Crop Sci 59(6):2337–2356. https://doi.org/10.2135/cropsci2019.05.0350 DOI
Lebeda A, Křístková E, Khoury CK, Carver D, Sosa ChC (2022a) Distribution and ecology of wild lettuces Lactuca serriola L. and Lactuca virosa L. in central Chile. Hacquetia 21(1):173–186. https://doi.org/10.2478/hacq-2021-0019 DOI
Lebeda A, Křístková E, Kitner M, Widrlechner MP, Maras M, El-Esawi MA (2022b) Egypt as one of the centers of lettuce domestication: morphological and genetic evidence. Euphytica 218(1):10. https://doi.org/10.1007/s10681-021-02960-3 DOI
Lindqvist K (1960a) On the origin of cultivated lettuce. Hereditas 46(3–4):319–350. https://doi.org/10.1111/j.1601-5223.1960.tb03091.x DOI
Lindqvist K (1960b) Cytogenetic studies in the serriola group of Lactuca. Hereditas 46(1–2): 75–151. https://doi.org/10.1111/j.1601-5223.1960.tb03080.x
Liu Y, Chen Y-S, Yang Q-E (2013) Generic status, circumscription, and allopolyploid origin of Faberia (Asteraceae: Cichorieae) as revealed by ITS and chloroplast DNA sequence data. Taxon 62(6):1235–1247. https://doi.org/10.12705/626.14 DOI
Liu Y, Lai YJ, Ye JF, Hu H-H, Peng D-X, Lu L-M, Sun H, Chen Z-D (2023) The sino-Himalayan flora evolved from lowland biomes dominated by tropical floristic elements. BMC Biol 21(1):239. https://doi.org/10.1186/s12915-023-01746-4 PubMed DOI PMC
López-Sepúlveda P, Tremetsberger K, Ortiz MÁ, Baeza CM, Peñailillo P, Stuessy TF (2013) Radiation of the Hypochaeris apargioides complex (Asteraceae: Cichorieae) of southern South America. Taxon 62(3):550–564. https://doi.org/10.12705/623.14 DOI
Luo W, Gonzalez E, Zarei A, Calleja S, Rozzi B, Demieville J, Li H, Truco M-J, Lavelle D, Michelmore R, Dyer JM, Jenks MA, Pauli D (2024) Leaf cuticular wax composition of a genetically diverse collection of lettuce (Lactuca sativa L.) cultivars evaluated under field conditions. Heliyon 10(5):e27226. https://doi.org/10.1016/j.heliyon.2024.e27226 PubMed DOI PMC
Macháčková P, Majeský Ľ, Hroneš M, Bílková L, Hřibová E, Vašut RJ (2022) New insights into ribosomal DNA variation in apomictic and sexual Taraxacum (Asteraceae). Bot J Linn Soc 199(4):790–815. https://doi.org/10.1093/botlinnean/boab094 DOI
Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, Funk VA (2019) A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc Natl Acad Sci USA 116(28):14083–14088. https://doi.org/10.1073/pnas.190387111 PubMed DOI PMC
Matoba H, Mizutani T, Nagano K, Hoshi Y, Uchiyama H (2007) Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas 144(6):235–243. https://doi.org/10.1111/j.2007.0018-0661.02012x PubMed DOI
Maxted N (2003) Conserving the genetic resources of crop wild relatives in European Protected Areas. Biol Conserv 113(3):411–417. https://doi.org/10.1016/S0006-3207(03)00123-X DOI
Maxted N, Vincent H (2021) Review of congruence between global crop wild relative hotspots and centres of crop origin/diversity. Genet Resour Crop Evol 68(4):1283–1297. https://doi.org/10.1007/s10722-021-01114-7 DOI
Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15(8):2673–2685. https://doi.org/10.1007/s10531-005-5409-6 DOI
Maxted N, Kell SP, Ford-Lloyd BV (2008) Crop wild relative conservation and use: establishing the context. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo E, Turok J (eds) Crop wild relative conservation and use. CABI, Wallingford, pp 3–30
Medina-Lozano I, Bertolín JR, Díaz A (2021) Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: vitamin C and anthocyanin content. Food Chem 359:129864. https://doi.org/10.1016/j.foodchem.2021.129864 PubMed DOI
Medina-Lozano I, Bertolín JR, Plieske J, Ganal M, Gnad H, Díaz A (2024) Studies of genetic diversity and genome-wide association for vitamin C content in lettuce (Lactuca sativa L.) using high-throughput SNP arrays. Plant Genome 17(4):e20518. https://doi.org/10.1002/tpg2.20518 PubMed DOI PMC
Mejías JA (1993) Cytotaxonomic studies in the Iberian taxa of the genus Lactuca (Compositae). Bot Helv 103(1):113–130
Mejías JA (1994) Self-fertility and associated flower head traits in the Iberian taxa of Lactuca and related genera (Asteraceae: Lactucaea). Plant Syst Evol 191(3–4):147–160 DOI
Meusel H, Jäger EJ (1992) Vergleichende Chorologie der Zentraleuropäischen Flora. Gustav Fischer Verlag, Jena
Michalska K, Jantas D, Malarz J, Jakubowska K, Paul W, Stojakowska A (2024) Lactuca racemosa Willd., source of antioxidants with diverse chemical structures. Molecules 29(24):5975. https://doi.org/10.3390/molecules29245975 PubMed DOI PMC
Mieslerová B, Kitner M, Křístková E, Majeský L, Lebeda A (2020) Powdery mildews on Lactuca species—a complex view of host–pathogen interactions. Crit Rev Plant Sci 39(1):44–71. https://doi.org/10.1080/07352689.2020.1752439 DOI
Mifsud S, Mifsud O (2020) Revision of the Lactuca species (Asteraceae) occurring in the Maltese Islands. Fl Medit 30:143–154. https://doi.org/10.7320/FlMedit30.14 DOI
Mikel MA (2007) Genealogy of contemporary North American lettuce. HortScience 42(3):489–493. https://doi.org/10.21273/HORTSCI.42.3.489 DOI
Mikel MA (2013) Genetic composition of contemporary proprietary U.S. lettuce (Lactuca sativa L.) cultivars. Genet Resour Crop Evol 60(1):89–96. https://doi.org/10.1007/s10722-012-9818-6 DOI
Minelli A (2018) Plant evolutionary biology. The evolvability of the phenotype. Cambridge University Press, New York DOI
Missio JC, Rivera A, Figàs MR, Casanova C, Camí B, Soler S, Simó J (2018) A comparison of landraces vs. modern varieties of lettuce in organic farming during the winter in the Mediterranean area: an approach considering the viewpoints of breeders, consumers, and farmers. Front Plant Sci 9:1491. https://doi.org/10.3389/fpls.2018.01491 PubMed DOI PMC
Moon S, Hur O, Kim S-H, Lee Y, Oh H, Yi J, Ko H-C, Woo H-J, Ro N, Na Y-W (2024) Genetic diversity and evaluation of agro-morphological traits in lettuce core collection. Plants 13(24):3552. https://doi.org/10.3390/plants13243552 PubMed DOI PMC
Moravec J, Křístková E, Lebeda A (1999) Leafy vegetable growing and breeding in the Czech Republic—history and the present time. In: Lebeda A, Křístková E (eds) Eucarpia leafy vegetables '99. Proceedings of the eucarpia meeting on leafy vegetables genetics and breeding. Olomouc, Czech Republic, 8–11 June, 1999, Palacký University Olomouc, Olomouc, pp 17–32
Mou B (2008) Lettuce. In: Prohens J, Nuez F (eds) Handbook of plant breeding. Vegetables I. Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae. Springer Science, New York, pp 75–116 DOI
Mou B (2011) Mutations in lettuce improvement. Int J Plant Genom 2011:723518. https://doi.org/10.1155/2011/723518 DOI
Muellner-Riehl AN, Schnitzler J, Kissling WD, Mosbrugger V, Rijsdijk KF, Seijmonsbergen AC, Versteegh H, Favre A (2019) Origins of global mountain plant biodiversity: testing the ‘mountain-geobiodiversity hypothesis.’ J Biogeogr 46(12):2826–2838. https://doi.org/10.1111/jbi.13715 DOI
Nandi S, Varotariya K, Luhana S, Kyada AD, Saha A, Roy N, Sharma N, Rambabu D (2024) GWAS for identification of genomic regions and candidate genes in vegetable crops. Funct Integr Genomics 24(6):203 PubMed DOI
Nelson RL (2011) Managing self-pollinated germplasm collections to maximize utilization. Plant Genet Resour Charact Util 9(1):123–133. https://doi.org/10.1017/S147926211000047X DOI
Nguyen CD, Li J, Mou B, Gong H, Huo H (2021) A case study of using an efficient CRISPR/Cas9 system to develop variegated lettuce. Veget Res 1:4. https://doi.org/10.48130/VR-2021-0004 DOI
Nogler GA (2006) The lesser-known Mendel: his experiments on Hieracium. Genetics 172(1):1–6. https://doi.org/10.1093/genetics/172.1.1 PubMed DOI PMC
Noumedem JAK, Djeussi DE, Hriteu L, Mihasan M, Kuete V (2017) Chapter 20: Lactuca sativa. In: Kuete V (ed) Medicinal, spices and vegetables from Africa: therapeutic potential against metabolic, inflammatory, infectious and systemic diseases. Academic Press Ltd.-Elsevier Science Ltd., London, pp 437–449. https://doi.org/10.1016/B978-0-12-809286-6.00020-0 DOI
Novotná A, Doležalová I, Lebeda A, Kršková M, Berka T (2011) Morphological variability of achenes of some European populations of Lactuca serriola L. Flora 206(5):473–483. https://doi.org/10.1016/j.flora.2010.09.012 DOI
Oh S, Ahn E, Shi A, Mou B, Park S (2025) Genome-wide association studies in lettuce reveal the interplay of seed age, color, and germination under high temperatures. Sci Rep 15(1):733. https://doi.org/10.1038/s41598-024-84197-3 PubMed DOI PMC
Olennikov DN, Chirikova NK (2024) Phenolic compounds of six unexplored Asteraceae species from Asia: comparison of wild and cultivated plants. Horticulturae 10(5):486. https://doi.org/10.3390/horticulturae10050486 DOI
Oliya BK, Kim MY, Ha J, Lee S-H (2022) Analysis of genetic variability and agronomic performance of Indian lettuce (Lactuca indica L.). Genet Resour Crop Evol 69(3):1313–1327. https://doi.org/10.1007/s10722-021-01306-1 DOI
Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Phill Trans R Soc B Biol Sci 361(1465):173–194. https://doi.org/10.1098/rstb.2005.1737 DOI
Pacak I, Trojak M, Skowron E (2024) The use of UV-A radiation for biofortification of lettuce and basil plants with antioxidant phenolic and flavonoid compounds. Folia Biol Oecol 18(18):110–121. https://doi.org/10.18778/1730-2366.18.14 DOI
Pakravan M, Safavi SR, Zarei R, Tavakoli Z, Ghahremaninejad F, Noroozi M, Bokaee ZN, Alimadadi M, Ghodusian N, Hosseini F, Moradi F (2024) Palynological investigation of some genera of Cichorieae (Asteraceae) in Iran. Microsc Res Tech 87(12):3073–3088. https://doi.org/10.1002/jemt.24663 PubMed DOI
Palomino J, Mejías JA (2023) Morphometrics as a robust tool for disambiguation in plant taxonomy: the case of Lactuca livida, a commonly accepted but never delimited taxon. Plant Biosyst Inter J Deal Asp Plant Biol 157(1):47–60. https://doi.org/10.1080/11263504.2022.2089759 DOI
Panstruga R, Moscou MJ (2020) What is the molecular basis of nonhost resistance? Mol Plant-Microbe Interact 33(11):1253–1264. https://doi.org/10.1094/MPMI-06-20-0161-CR PubMed DOI
Park S, Kumar P, Shi A, Mou B (2021) Population genetics and genome-wide association studies provide insights into the influence of selective breeding on genetic variation in lettuce. Plant Genome 14(2):e20086. https://doi.org/10.1002/tpg2.20086 PubMed DOI
Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco M-J, Crute I, Michelmore R (2016) Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210(3):309–326. https://doi.org/10.1007/s10681-016-1687-1 DOI
Peng H, Simko I (2023) Extending lettuce shelf life through integrated technologies. Curr Opin Biotechnol 81:102951. https://doi.org/10.1016/j.copbio.2023.102951 PubMed DOI
Peng H, Luo Y, Teng Z, Zhou B, Pearlstein D, Wang D, Turner E, Nou X, Wang TTY, Tao Y, Fonseca JM, Simko I (2024) Genome-wide association mapping reveals loci for enzymatic discoloration on cut lettuce. Postharvest Biol Technol 207:112577. https://doi.org/10.1016/j.postharvbio.2023.112577 DOI
Pink DAC, Keane EM (1993) Lettuce, Lactuca sativa L. In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, Oxford, pp 543–571 DOI
Pink H, Talbot A, Graceson A, Graham J, Higgins G, Taylor A, Jackson AC, Truco M, Michelmore R, Yao C, Gawthrop F, Pink D, Hand P, Clarkson JP, Denby K (2022) Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens. Theor Appl Genet 135(7):2481–2500. https://doi.org/10.1101/2022.03.08.483472 PubMed DOI PMC
Potter B (1909) The tale of the flopsy bunnies. Frederick Warne & Co., London
Potter PE, Szatmari P (2009) Global miocene tectonics and the modern world. Earth-Sci Rev 96(4):279–295. https://doi.org/10.1016/j.earscirev.2009.07.003 DOI
Provvidenti R, Robinson RW, Shail W (1980) A sources of resistance to a strain of cucumber mosaic virus in Lactuca saligna L. HortScience 15(4):528–529 DOI
Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457(7231):843–848. https://doi.org/10.1038/nature07895 PubMed DOI
Ren DDW, Tripathi S, Li LKB (2017) Low-cost multispectral imaging for remote sensing of lettuce health. J Appl Remote Sens 11(1):016006. https://doi.org/10.1117/1.JRS.11.016006 DOI
Retallack GJ (2001) Cenozoic expansion of grasslands and climatic cooling. J Geol 109(4):407–426. https://doi.org/10.1086/320791 DOI
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco MJ, Xia R, Zhu S, Xu C, Xu H, Xu X, Cox K, Korf I, Meyers BC, Michelmore RW (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun 8:14953. https://doi.org/10.1038/ncomms14953 PubMed DOI PMC
Riar DS, Rustgi DS, Burke IE, Gill KS, Yenish JP (2011) EST-SSR development from 5 Lactuca species and their use in studying genetic diversity among L. serriola biotypes. J Hered 102(1):17–28. https://doi.org/10.1093/jhered/esq103 PubMed DOI
Rodenburg CM (ed) (1960) Varieties of lettuce. An international monograph. W.E.J. Tjeenk Willink, Zwolle
Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D (2002) Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79(3):337–342. https://doi.org/10.1016/S0308-8146(02)00170-X DOI
Ryder EJ (1986) Lettuce breeding. In: Bassett M (ed) Breeding vegetable crops. AVI Publishing Co., Westport, pp 433–474
Ryder EJ (1999a) Lettuce, endive and cichory. CABI Publishing, Wallingford DOI
Ryder EJ (1999b) Genetics in lettuce breeding: past, present and future. In: Lebeda A, Křístková E (eds) Eucarpia leafy vegetables’99. Proceedings of the Eucarpia meeting on leafy vegetables genetics and breeding. Olomouc, Czech Republic, 8–11 June, 1999, Palacký University Olomouc, Olomouc, pp 225–231
Ryder EJ, McCreight JD (eds) (2014) Vegetable cultivar descriptions for North America lettuce (M-Z), Lists 1–26 Combined. http://cuke.hort.ncsu.edu/cucurbit/wehner/vegcult/lettucemz.html . Accessed 13 Oct 2016
Ryder EJ, Whitaker T (1995) Lettuce, Lactuca sativa (Compositae). In: Smart J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, Harlow, pp 53–56
Salinier J, Lefebvre V, Besombes D, Burck H, Causse M, Daunay MC, Dogimont C, Goussopoulos J, Gros C, Maisonneuve B, McLeod L, Tobal F, Stevens R (2022) The INRAE centre for vegetable germplasm: geographically and phenotypically diverse collections and their use in genetics and plant breeding. Plants 11(3):347. https://doi.org/10.3390/plants11030347 PubMed DOI PMC
Sareedenchai V, Zidorn C (2010) Flavonoids as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Biochem Syst Ecol 38(5):935–957. https://doi.org/10.1016/j.bse.2009.09.006 DOI
Sattler R (2022) Kaplan´s principles of plant morphology: a critical review. Bot Rev 88(2):257–270. https://doi.org/10.1007/s12229-022-09280-8 DOI
Shen F, Qin Y, Wang R, Huang X, Wang Y, Gao T, He J, Zhou Y, Jiao Y, Wei J, Li L, Yang X (2023) Comparative genomics reveals a unique nitrogen-carbon balance system in Asteraceae. Nat Commun 14:4334. https://doi.org/10.1038/s41467-023-40002-9 PubMed DOI PMC
Shi Z, Ge XJ, Kilian N, Kirschner J, Štěpanek J, Sukhorukov AP, Mavrodiev EV, Gottschlich G (2011) Cichorieae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, volume 20–21 (Asteraceae). Science Press/Missouri Botanical Garden Press, Beijing/St. Louis, pp 195–353
Shih C (1988) Revision of Lactuca L. and two new genera of tribe Lactuceae (Compositae) on the mainland of Asia. Acta Phytotaxon Sin 26(5):382–393
Shih C, Kilian N (2011) Cichorieae [excl. Tragopogon, Taraxacum, Hieracium and Pilosella]. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, volume 20–21 (Asteraceae). Science Press, Beijing; Missouri Botanical Garden, St Louis, pp 195–207, 211–270, 325–350
Shukurlu EN, Özek G, Özek T, Vitalini S (2023a) Chemical composition of different plant part from Lactuca serriola L.—focus on volatile compounds and fatty acid profile. Z Naturforsch C 78(7–8):285–291. https://doi.org/10.1515/znc-2022-0236 PubMed DOI
Shukurlu EN, Vitalini S, Iriti M, Garzoli S (2023b) Chemical characterization by GC/MS analysis of Lactuca tatarica (L.) C.A. Mey. aerial parts and seeds. Natur Prod Res 37(6):1377–1381. https://doi.org/10.1080/14786419.2021.2003356 DOI
Shulha O, Zidorn C (2019) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update (2008–2017). Phytochemistry 163:149–177. https://doi.org/10.1016/j.phytochem.2019.02.001 PubMed DOI
Silva JM, Jacinto ACP, Ribeiro ALA, Damascena IR, Ballador LM, Lacerra PH, Vargas PF, Martins GD, Castoldi R (2025) Phenotyping in green lettuce populations through multispectral imaging. Agriculture (Basel) 15(12):1295. https://doi.org/10.3390/agriculture15121295 DOI
Simko I (2009) Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 100(2):256–262. https://doi.org/10.1093/jhered/esn072 PubMed DOI
Simko I (2013) Chapter 14. Marker-assisted selection for disease resistance in lettuce. In: Varshney RV, Tuberosa R (eds) Translational genomics for crop breeding, volume I: biotic stress, first edition. Wiley, Oxford, pp 267–289 DOI
Simko I (2019) Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce. Food Sci Nutr 7(10):1317–1326. https://doi.org/10.1002/fsn3.1196 DOI
Simko I (2020) Genetic variation in response to N, P, or K deprivation in baby leaf lettuce. Horticulturae 6(1):15. https://doi.org/10.3390/horticulturae6010015 DOI
Simko I (2023a) Differentially methylated genomic regions of lettuce seeds relate to divergence across morphologically distinct horticultural types. AoB Plants 15(5):1–9. https://doi.org/10.1093/aobpla/plad060 DOI
Simko I (2023b) Dataset on the single nucleotide variation in diversity panel of 500 lettuce accessions genotyped with tunable genotyping-by-sequencing (tGBS) method. Data Brief 49:109419. https://doi.org/10.1016/j.dib.2023.109419 PubMed DOI PMC
Simko I (2024) Spatio-temporal dynamics of lettuce metabolome: a framework for targeted nutritional quality improvement. Plants 13(23):3316. https://doi.org/10.3390/plants13233316 PubMed DOI PMC
Simko I, Hu J (2008) Population structure in cultivated lettuce and its impact on association mapping. J Am Soc Hort Sci 133(1):61–68. https://doi.org/10.21273/JASHS.133.1.61 DOI
Simko I, Zhao R (2023) Phenotypic characterization, plant growth and development, genome methylation, and mineral elements composition of neotetraploid lettuce (Lactuca sativa L.). Front Plant Sci 14:1296660. https://doi.org/10.3389/fpls.2023.1296660 PubMed DOI PMC
Simko I, Hayes RJ, Truco MJ, Michelmore RW (2011) Mapping a dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids. Euphytica 182(2):157–166. https://doi.org/10.1007/s10681-011-0407-0 DOI
Simko I, Hayes RJ, Mou B, McCreight JD (2014) Lettuce and spinach. In: Smith S, Diers B, Specht J, Carver B (eds) Yield gains in major U.S. field crops. CSSA special publication 33. ASA, CSSA, and SSSA, Madison, pp 53–85. https://doi.org/10.2135/cssaspecpub33.c4 DOI
Simko I, Jia MY, Venkatesh J, Kang BC, Weng YQ, Barcaccia G, Lanteri S, Bhattarai G, Foolad MR (2021) Genomic and marker-assisted improvement of vegetable crops. Crit Rev Plant Sci 40(4):303–365. https://doi.org/10.1080/07352689.2021.1941605 DOI
Skowron E, Trojak M, Pacak I (2024) Effects of UV-B and UV-C spectrum supplementation on the antioxidant properties and photosynthetic activity of lettuce cultivars. Int J Mol Sci 25(17):9298. https://doi.org/10.3390/ijms25179298 PubMed DOI PMC
Sochor M, Manning JC, Šarhanová P, van Herwijnen Z, Lebeda A, Doležalová I (2020) Lactuca dregeana DC. (Asteraceae: Chicorieae)—a South African crop relative under threat from hybridization and climate change. South Afr J Bot 132:146–154. https://doi.org/10.1016/j.sajb.2020.04.012 DOI
Soltis DE, Soltis PS (1989) Allopolyploid speciation in Tragopogon – insights from chloroplast DNA. Am J Bot 76(8):1119–1124. https://doi.org/10.2307/2444824 DOI
Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12(3):243–273. https://doi.org/10.1080/07352689309701903 DOI
Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82(4):485–501. https://doi.org/10.1111/j.1095-8312.2004.00335.x DOI
Spring O, Gomez-Zeledon J, Hadziabdic D, Trigiano RN, Thines M, Lebeda A (2018) Biological characteristics and assessment of virulence diversity in pathosystems of economically important biotrophic oomycetes. Crit Rev Plant Sci 37(6):439–495. https://doi.org/10.1080/07352689.2018.1530848 DOI
Stavelikova H, Boukema IW, van Hintum TJhL (2002) The international Lactuca database. Plant Genet Resour Newslet 130:16–19
Stebbins GL (1937) Critical notes on Lactuca and related genera. J Bot (London) 75:12–18
Stebbins GL (1953) A new classification of the tribe Cichorieae, family Compositae. Madroño 12:65–81
Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Am Natur 91(861):337–354. https://doi.org/10.1086/281999 DOI
Stebbins GL, Babcock EB (1939) The effect of polyploidy and apomixis on the evolution of species in Crepis. J Hered 30(12):519–530. https://doi.org/10.1093/oxfordjournals.jhered.a104649 DOI
Sthapit Kandel J, Simko I, Hayes RJ, Mou B (2025) Concentration and retention of ascorbic acid, carotenoids, and sugars in fresh-cut lettuce in modified atmosphere packaging. Hortic Plant J 11(1):303–313. https://doi.org/10.1016/j.hpj.2023.07.008 DOI
Stojakowska A, Michalska K, Malarz J, Beharav A, Kisiel W (2013) Root tubers of Lactuca tuberosa as a source of antioxidant phenolic compounds and new furofuran lignans. Food Chem 138(2–3):1250–1255. https://doi.org/10.1016/j.foodchem.2012.11.062 PubMed DOI
Stojakowska A, Michalska K, Kłeczek N, Malarz J, Beharav A (2018) Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: a preliminary study. J Food Compos Anal 69:20–24. https://doi.org/10.1016/j.jfca.2018.01.024 DOI
Strother JL (2006) 45. Lactuca. In: Committee E (ed) Flora of North America and north of Mexico, vol 19. Magnoliophyta: Asteridae, part 6: Asteraceae, part 1. Oxford University Press, New York, pp 259–263
Subbarao KV, Davis RM, Gilbertson RL, Raid RN (eds) (2017) Compendium of lettuce diseases and pests, 2nd edn. The American Phytopathological Society, St. Paul
Sun P, Yuan H, Pan J, Wu Z, Li W, Wang X, Kuang H, Chen J (2024) A WOX homolog disrupted by a transposon led to the loss of spines and contributed to the domestication of lettuce. New Phytol 242(6):2857–2871. https://doi.org/10.1111/nph.19738 PubMed DOI
Šuštar-Vozlič J, Ugrinović K, Maras M, Kristkova E, Lebeda A, Meglič V (2021) Morphological and genetic diversity of Slovene lettuce landrace ‘Ljubljanska ledenka.’ Genet Resour Crop Evol 68(1):185–203. https://doi.org/10.1007/s10722-020-00978-5 DOI
Sytar O, Zivcak M, Bruckova K, Brestic M, Hemmerich I, Rauh C, Simko I (2018) Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci Hortic 239:193–204. https://doi.org/10.1016/j.scienta.2018.05.020 DOI
Taylor NG, Kell SP, Holubec V, Parra-Quijano M, Chobot K, Maxted N (2017) A systematic conservation strategy for crop wild relatives in the Czech Republic. Divers Distrib 23(4):448–462. https://doi.org/10.1111/ddi.12539 DOI
Thompson RC, Whitaker TW, Kosar WF (1941) Interspecific genetic relationships in Lactuca. J Agric Res 63:91–107
Thompson RC, Whitaker TW, Bohn GW (1958) Natural cross-pollination in lettuce. Proc Amer Soc Hortic Sci 36:403–409
Tomb AS, Chambers KL, Kyhos DW, Powell AM, Raven PH (1978) Chromosome numbers in the Compositae. XIV. Lactuceae. Am J Bot 65(7):717–721. https://doi.org/10.2307/2442146 DOI
Tremetsberger K, Gemeinholzer B, Zetzsche H, Blackmore S, Kilian N, Talavera S (2013) Divergence time estimation in Cichorieae (Asteraceae) using a fossil-calibrated relaxed molecular clock. Org Divers Evol 13(1):1–13. https://doi.org/10.1007/s13127-012-0094-2 DOI
Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P, Michelmore RW, Peleman J (2007) A high-density integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115(6):735–746. https://doi.org/10.1007/s00122-007-0599-9 PubMed DOI
Tuisl G (1968) Der Verwandtschaftskreis der Gattung Lactuca L. im iranischen Hochland und seinen Randgebieten. Selbstverlag Naturhistorisches Museum Wien, Vienna
Unver T, Gurhan I (2024) Chemical composition and antimicrobial activity of an apolar extract from Lactuca serriola L. leaves. Biochem Syst Ecol 114:104832. https://doi.org/10.1016/j.bse.2024.104832 DOI
UPOV (2024) Guidelines for the conduct of tests for distinctness, uniformity and stability. Lettuce, UPOV Code(s). LACTU_SAT, Lactuca sativa L., TG/13/11 Rev 3, 2024-08-09. International Union for the Protection of New Varieties of Plants, Geneva
Uwimana B, D’Andrea L, Felber F, Hooftman DAP, den Nijs HCM, Smulders MJM, Visser RGF, van de Wiel CCM (2012a) A Bayesian analysis of gene flow from crops to their wild relatives: cultivated (Lactuca sativa L.) and prickly lettuce (L. serriola L.) and the recent expansion of L. serriola in Europe. Mol Ecol 21(11):2640–2654. https://doi.org/10.1111/j.1365-294X.2012.05489.x PubMed DOI
Uwimana B, Smulders MJM, Hooftman DAP, Hartman Y, van Tienderen PH, Jansen J, McHale LK, Michelmore RW, Visser RGF, van de Wiel CCM (2012b) Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations. BMC Plant Biol 12:43. https://doi.org/10.1186/1471-2229-12-43 PubMed DOI PMC
van der Plaat AB, van Treuren R, van Hintum TJL (2021) Realiable genomic strategies for species classification of plant genetic resources. BMC Bioinform 22(1):173. https://doi.org/10.1186/s12859-021-04018-6 DOI
Van Deurs S, Reutimann O, Luqman H, Lifshitz D, Mayzlish-Gati E, Alexander J, Fior S (2025) Genomic signatures of adaptation across a precipitation gradient from niche centre to niche edge. Mol Ecol 34(6):e17696. https://doi.org/10.1111/mec.17696 PubMed DOI
van Herwijnen ZO, Manning JC (2017) A review of the history and taxonomy of the enigmatic southern African endemic wild lettuce Lactuca dregeana DC. (Asteraceae: Lactuceae: Lactucinae). South Afr J Bot 108:352–358. https://doi.org/10.1016/j.sajb.2016.08.016 DOI
van Treuren R, van Hintum TJL (2001) Identification of intra-accession genetic diversity in selfing crops using AFLP markers: implications for collection management. Genet Resour Crop Evol 48(3):287–295. https://doi.org/10.1023/A:1011272130027 DOI
van Treuren R, Coquin P, Lohwasser U (2012) Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps. Genet Resour Crop Evol 59(6):981–997. https://doi.org/10.1007/s10722-011-9738-x DOI
van Treuren R, van der Arend AJM, Schut JW (2013) Distribution of downy mildew (Bremia lactucae Regel) resistances in a genebank collection of lettuce and its wild relatives. Plant Genet Resour–Character Utilizat 11(1):15–25. https://doi.org/10.1017/S1479262111000761 DOI
van Treuren R, van Eekelen HDLM, Wehrens R, de Vos RCH (2018) Metabolite variation in the lettuce gene pool: towards healthier crop varieties and food. Metabolomics 14(11):146. https://doi.org/10.1007/s11306-018-1443-8 PubMed DOI PMC
van Workum D-JM, Mehrem SL, Snoek BL, Alderkamp MC, Lapin D, Mulder FFM, Van Der Ackerveken G, de Ridder D, Schranz ME, Smit S (2024) Lactuca super-pangenome reduces bias towards reference genes in lettuce research. BMC Plant Biol 24(1):1019. https://doi.org/10.1186/s12870-024-05712-2 PubMed DOI PMC
Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Bot 13:1–366 (Transl. by S. K. Chestitee. Ronald Press, New York)
Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castańeda-Álvarez NP, Guarino L, Eastwood R, León B, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275. https://doi.org/10.1016/j.biocon.2013.08.011 DOI
Vincent H, Hole D, Maxted N (2022) Congruence between global crop wild relative hotspots and biodiversity hotspots. Biol Conserv 265:109432. https://doi.org/10.1016/j.biocon.2021.109432 DOI
Wang H, Lu H (2022) Climate controls on evolution of grassland ecosystems since late Cenozoic: a phytolith perspective. Earth-Sci Rev 231:104059. https://doi.org/10.1016/j.earscirev.2022.104059 DOI
Wang Z-H, Peng H, Kilian N (2013) Molecular phylogeny of the Lactuca alliance (Cichorieae subtribe Lactucinae, Asteraceae) with focus on their Chinese centre of diversity detects potential events of reticulation and chloroplast capture. PLoS ONE 8(12):e82692. https://doi.org/10.1371/journal.pone.0082692 PubMed DOI PMC
Wang G-Y, Meng Y, Deng T, Yang Y-P (2014) Molecular phylogeny of Faberia (Asteraceae: Cichorieae) based on nuclear and chloroplast sequences. Phytotaxa 167(3):223–234. https://doi.org/10.11646/phytotaxa.167.3.1 DOI
Wang K, Jin J, Wang J, Wang X, Sun J, Meng D, Wang X, Wang Y, Guo L (2024a) The complete telomere-to-telomere genome assembly of lettuce. Plant Commun 5:101011. https://doi.org/10.1016/j.xplc.2024.101011 PubMed DOI PMC
Wang L, Yang H, Xu G, Liu Z, Meng F, Shi L-R, Liu X, Zheng Y, Zhang G, Yang X, Chen W, Song C, Zhang B (2024b) Asteraceae genome database: a comprehensive platform for Asteraceae genomics. Front Plant Sci 15:1445365. https://doi.org/10.3389/fpls.2024.1445365 PubMed DOI PMC
Weaver SE, Downs MP (2003) The biology of Canadian weeds.122. Lactuca serriola L. Can J Plant Sci 83(3):619–628. https://doi.org/10.4141/P02-059 DOI
Wei Z, Julkowska MM, Laloe J-O, Hartman Y, de Boer G-J, Michelmore RW, van Tienderen PH, Testerink C, Schranz ME (2014) A mixed-model QTL analysis for salt tolerance in seedlings of crop-wild hybrids of lettuce. Mol Breed 34(3):1389–1400. https://doi.org/10.1007/s11032-014-0123-2 DOI
Wei Z, Zhu S-X, Van den Berg RG, Bakker FT, Schranz ME (2017) Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons. Genet Resour Crop Evol 64:55–71. https://doi.org/10.1007/s10722-015-0332-5 DOI
Wei T, van Treuren R, Liu X, Zhang Z, Chen J, Liu Y, Dong S, Sun P, Yang T, Lan T, Wang X, Xiong Z, Liu Y, Wei J, Lu H, Han S, Chen JC, Ni X, Wang J, Yang H, Xu X, Kuang H, van Hintum T, Liu X, Liu H (2021) Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nat Genet 53(5):752–760. https://doi.org/10.1038/s41588-021-00831-0 PubMed DOI
Wei Z, Chu R, Luan M, Lu Z, Ma Y, Luo X, Lu Y, Xu X, Zhu S (2022) Morphology and micro-morphology of achenes and their taxonomic implications to Lactuca species (Cichorieae; Asteraceae). Taiwania 67(2):171–180. https://doi.org/10.6165/tai.2022.67.171 DOI
Wei J, Dai Z, Zhang Q, Yang L, Zeng Z, Zhou Y, Liu J, Chen B (2025) Seed multispectral imaging combined with machine learning algorithms for distinguishing different varieties of lettuce (Lactuca sativa L.). Food Chemistry: X 27:102399. https://doi.org/10.1016/j.fochx.2025.102399 PubMed DOI
Whitaker TW, Thompson RC (1941) Cytological studies in Lactuca. Bull Torrey Bot Club 68(6):388–394 DOI
Xiong W, Berke L, Michelmore R, van Workum D-JM, Becker FFM, Schijlen E, Bakker LV, Peters S, van Treuren R, Jeuken M, Bouwmeester K, Schranz ME (2023a) The genome of Lactuca saligna, a wild relative of lettuce, provides insight into non-host resistance to the downy mildew Bremia lactucae. Plant J 115(1):108–126. https://doi.org/10.1111/tpj.16212 PubMed DOI
Xiong W, van Workum D-JM, Berke L, Bakker LV, Schijlen E, Becker FFM, van de Geest H, Peters S, Michelmore R, van Treuren R, Jeuken M, Smit S, Schranz E (2023b) Genome assembly and analysis of Lactuca virosa: implications for lettuce breeding. G3 Genes Genomes Genet (Plant Genet Genom) 13(11):204. https://doi.org/10.1093/g3journal/jkad204 DOI
Yamashita H, Wada KC, Inagaki N, Fujimoto Z, Yonemaru J-I, Itoh H (2023) Deciphering transcriptomic signatures explaining the phenotypic plasticity of nonheading lettuce genotypes under artificial light conditions. Plant Cell Envir 46(12):3971–3985. https://doi.org/10.1111/pce.14677 DOI
Yang D, Xu C (2025) When lettuce bolts: natural selection vs artificial selection and beyond. New Phytol 246(3):818–820. https://doi.org/10.1111/nph.20402 PubMed DOI
Yang X, Gil MI, Yang Q, Tomás-Barberán FA (2022) Bioactive compounds in lettuce: highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr Rev Food Sci Food Saf 21(1):4–45. https://doi.org/10.1111/1541-4337.12877 PubMed DOI
Yang N, Yang D-D, Yu X-C, Xu C (2023) Multi-omics-driven development of alternative crops for natural rubber production. J Integr Agric 22(4):959–971. https://doi.org/10.1016/j.jia.2023.03.007 DOI
Yuan QJ, Yang CX (2002) Karyotypes of 10 species of Lactuca and its allied genera in Sichuan. J Southwest Agric Univ 24(1):30–33
Zair W, Maxted N, Magos Brehm J, Amri A (2021) Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genet Resour Crop Evol 68(2):693–709. https://doi.org/10.1007/s10722-020-01017-z DOI
Zeljkovic SC, Štefelová N, Hron K, Doležalová I, Tarkowski P (2023) Preharvest abiotic stress affects the nutritional value of lettuce. Agronomy 13(2):398. https://doi.org/10.3390/agronomy13020398 DOI
Zeven AC, Zhukovsky PM (1975) Dictionary of cultivated plants and their centers of diversity. Excluding ornamentals, forest trees and lower plants. Centre for Agricultural Publishing and Documentation, Wageningen
Zhang J-W, Boufford DE, Sun H (2011a) Parasyncalathium J.W. Zhang, Boufford & H. Sun (Asteraceae, Cichorieae): a new genus endemic to the Himalaya-Hengduan Mountains. Taxon 60(6):1678–1684. https://doi.org/10.1002/tax.606012 DOI
Zhang J-W, Nie ZL, Wen J, Sun H (2011b) Molecular phylogeny and biogeography of three closely related genera, Soroseris, Stebbinsia, and Syncalathium (Asteraceae, Cichorieae), endemic to the Tibetan Plateau, SW China. Taxon 60(1):15–26. https://doi.org/10.1002/tax.601003 DOI
Zhang L, Su EW, Tao R, Zhang W, Chen J, Wu P, Yan C, Jia Y, Larkin RM, Lavelle D, Truco M-J, Chin-Wo SR, Michelmore RW, Kuang H (2017) RNA sequencing provides insights into the evolution of lettuce and the regulation of flavonoid biosynthesis. Nat Commun 8:2264. https://doi.org/10.1038/s41467-017-02445-9 PubMed DOI PMC
Zhang Z, van Treuren R, Yang T, Hu Y, Zhou W, Liu H, Wei T (2023) A comprehensive lettuce variation map reveals the impact of structural variations in agronomic traits. BMC Genom 24(1):659. https://doi.org/10.1186/s12864-023-09739-x DOI
Zhang B, Xue Y, Liu X, Ding H, Yang Y, Wang C, Xu Z, Zhou J, Sun C, Tang J, Li D (2024) A near-complete chromosome-level genome assembly of looseleaf lettuce (Lactuca sativa var. crispa). Sci Data 11(1):961. https://doi.org/10.1038/s41597-024-03830-y PubMed DOI PMC
Zhisheng A, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature 411(6833):62–66. https://doi.org/10.1038/35075035 PubMed DOI
Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69(12):2270–2296. https://doi.org/10.1016/j.phytochem.2019.02.001 PubMed DOI
Zidorn C (2019) Bioprospecting of plant natural products in Schleswig-Holstein (Germany) I: chemodiversity of the Cichoriae tribe (Asteraceae) in Schleswig-Holstein. Phytochemistry Rev 18(4):1223–1253. https://doi.org/10.1007/s11101-019-09609-z DOI
Zohary D (1991) The wild genetic resources of lettuce (Lactuca sativa L.). Euphytica 53(1):31–35. https://doi.org/10.1007/BF00032029 DOI
Zohary D, Hopf M (1993) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, 2nd edn. Clarendon Press, Oxford
Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe and the Mediterranean Basin, 4th edn. Oxford University Press, New York DOI