Genomic and phenotypic insights into the expanding phylogenetic landscape of the Cryptococcus genus
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 AI039115
NIAID NIH HHS - United States
R01 AI050113
NIAID NIH HHS - United States
R01 AI133654
NIAID NIH HHS - United States
PubMed
41212923
PubMed Central
PMC12633873
DOI
10.1371/journal.pgen.1011945
PII: PGENETICS-D-25-00869
Knihovny.cz E-zdroje
- MeSH
- Cryptococcus * genetika klasifikace patogenita MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genom fungální * MeSH
- genomika MeSH
- lidé MeSH
- molekulární evoluce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The fungal genus Cryptococcus includes several life-threatening human pathogens as well as diverse saprobic species whose genome architecture, ecology, and evolutionary history remain less well characterized. Understanding how some lineages evolved into major pathogens remains a central challenge and may be advanced by comparisons with their nonpathogenic counterparts. Integrative approaches have become essential for delimiting species and reconstructing evolutionary relationships, particularly in lineages with cryptic diversity or extensive chromosomal rearrangements. Here, we formally characterize six Cryptococcus species representing distinct evolutionary lineages, comprising both newly discovered and previously recognized but unnamed taxa, through a combination of phylogenomic analyses, divergence metrics, chromosomal comparisons, mating assays, and phenotypic profiling. Among pathogenic taxa, we formally name Cryptococcus hyracis sp. nov., corresponding to the previously characterized VGV lineage within the C. gattii complex. In parallel, we describe five saprobic, nonpathogenic species isolated from fruit, soil, and bark beetle galleries, spanning four phylogenetic clades. We identify a strong ecological association with bark beetles for Cryptococcus porticicola sp. nov., the only newly described nonpathogenic species with multiple sequenced strains from diverse sites. In this species, we detect strain-level chromosomal variation and evidence of sexual reproduction, along with population-level signatures of recombination. Across the genus, chromosome-level comparisons reveal extensive structural variation, including species- and strain-specific rearrangements that may restrict gene flow. We also identify multiple instances of chromosome number reduction, often accompanied by genomic signatures consistent with centromere inactivation or loss of centromeric identity. Comparative metabolic profiling with Biolog phenotype microarrays reveals clade-level differentiation and distinct substrate preferences, which may reflect metabolic divergence and habitat-specific diversification. Notably, we confirm that thermotolerance is restricted to clinically relevant taxa. These findings refine the species-level taxonomy of Cryptococcus, broaden its known genomic and ecological diversity, and strengthen the framework for investigating speciation, adaptation, and the emergence of pathogenicity within the genus.
Department of Agricultural Food and Environmental Sciences University of Perugia Perugia Italy
Department of Infectious Disease Epidemiology Imperial College London London United Kingdom
G K Skryabin Institute of Biochemistry and Physiology of Microorganisms PSCBR RAS Pushchino Russia
Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures Braunschweig Germany
Zobrazit více v PubMed
Vuillemin P. Les blastomycètes pathogènes. Rev Gen Sci Pures Appl. 1901;12:732–51.
Barnett JA. A history of research on yeasts 14: medical yeasts part 2, PubMed DOI
Busse O. Über parasitäre zelleinschlüsse und ihre züchtung. Zentralbl Bakteriol. 1894;16:175–80.
Sanfelice F. Contributo alla morfologia e biologia dei blastomiceti che si sviluppano nei succhi di alcuni frutti. Ann Igien. 1894;4:463–95.
Rajasingham R, Govender NP, Jordan A, Loyse A, Shroufi A, Denning DW, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis. 2022;22(12):1748–55. doi: 10.1016/S1473-3099(22)00499-6 PubMed DOI PMC
Kwon-Chung KJ. A new genus, PubMed DOI
Velagapudi R, Hsueh Y-P, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of PubMed DOI PMC
Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol. 2000;50 Pt 3:1351–71. doi: 10.1099/00207713-50-3-1351 PubMed DOI
Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res. 2002;2(4):495–517. doi: 10.1111/j.1567-1364.2002.tb00117.x PubMed DOI
Liu X-Z, Wang Q-M, Theelen B, Groenewald M, Bai F-Y, Boekhout T. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol. 2015;81:1–26. doi: 10.1016/j.simyco.2015.08.001 PubMed DOI PMC
Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol. 2015;81:85–147. doi: 10.1016/j.simyco.2015.12.001 PubMed DOI PMC
Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, et al. Cryptococcal meningitis. Nat Rev Dis Primers. 2023;9(1):62. doi: 10.1038/s41572-023-00472-z PubMed DOI
Casalini G, Giacomelli A, Antinori S. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritisation. Lancet Microbe. 2024;5(7):717–24. doi: 10.1016/S2666-5247(24)00042-9 PubMed DOI
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the PubMed DOI
Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S, et al. Same-sex mating and the origin of the Vancouver Island PubMed DOI
Byrnes EJ 3rd, Li W, Ren P, Lewit Y, Voelz K, Fraser JA, et al. A diverse population of PubMed DOI PMC
Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, Billmyre RB, et al. Importance of resolving fungal nomenclature: the case of multiple pathogenic species in the PubMed DOI PMC
Poplin V, Smith C, Caceres DH, Herkert PF, Jegede O, Thompson GR 3rd, et al. Geographical distribution of the PubMed DOI PMC
Farrer RA, Chang M, Davis MJ, van Dorp L, Yang D-H, Shea T, et al. A new lineage of PubMed DOI PMC
Lengeler KB, Cox GM, Heitman J. Serotype AD strains of PubMed DOI PMC
Vogan AA, Khankhet J, Xu J. Evidence for mitotic recombination within the basidia of a hybrid cross of PubMed DOI PMC
Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere. 2017;2(1):e00357-16. doi: 10.1128/mSphere.00357-16 PubMed DOI PMC
Petch T. Notes on entomogenous fungi. Trans Brit Mycol Soc. 1931;16:209–45.
Rodriguez-Carres M, Findley K, Sun S, Dietrich FS, Heitman J. Morphological and genomic characterization of PubMed DOI PMC
Passer AR, Clancey SA, Shea T, David-Palma M, Averette AF, Boekhout T, et al. Obligate sexual reproduction of a homothallic fungus closely related to the PubMed DOI PMC
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, et al. Genetic and genomic analyses reveal boundaries between species closely related to PubMed DOI PMC
Begerow D, Kemler M, Feige A, Yurkov A. Parasitism in yeasts. Yeasts in natural ecosystems: Ecology. Springer International Publishing. 2017. p. 179–210. doi: 10.1007/978-3-319-61575-2_7 DOI
Guterres DC, Ndacnou MK, Saavedra-Tobar LM, Salcedo-Sarmiento S, Colmán AA, Evans HC, et al. PubMed DOI PMC
Coelho MA, David-Palma M, Aylward J, Pham NQ, Visagie CM, Fuchs T, et al. Decoding PubMed DOI PMC
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, et al. The complex evolution and genomic dynamics of mating-type loci in PubMed DOI PMC
Kachalkin AV, Turchetti B, Inácio J, Carvalho C, Mašínová T, Pontes A, et al. Rare and undersampled dimorphic basidiomycetes. Mycol Progress. 2019;18(7):945–71. doi: 10.1007/s11557-019-01491-5 DOI
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, et al. Comparative genomics of the closely related fungal genera PubMed DOI PMC
Desjardins CA, Giamberardino C, Sykes SM, Yu C-H, Tenor JL, Chen Y, et al. Population genomics and the evolution of virulence in the fungal pathogen PubMed DOI PMC
Yurkov AM, Röhl O, Pontes A, Carvalho C, Maldonado C, Sampaio JP. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res. 2016;16(1):fov103. doi: 10.1093/femsyr/fov103 PubMed DOI
Steenkamp ET, Wingfield MJ, McTaggart AR, Wingfield BD. Fungal species and their boundaries matter – definitions, mechanisms and practical implications. Fungal Biol Rev. 2018;32(2):104–16. doi: doi: 10.1016/j.fbr.2017.11.002 DOI
James TY, Stajich JE, Hittinger CT, Rokas A. Toward a fully resolved fungal tree of life. Annu Rev Microbiol. 2020;74:291–313. doi: 10.1146/annurev-micro-022020-051835 PubMed DOI
Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2024;74(3):006300. doi: 10.1099/ijsem.0.006300 PubMed DOI PMC
Libkind D, Čadež N, Opulente DA, Langdon QK, Rosa CA, Sampaio JP, et al. Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res. 2020;20(6):foaa042. doi: 10.1093/femsyr/foaa042 PubMed DOI
Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. doi: 10.1186/1471-2105-14-60 PubMed DOI PMC
Liu F, Hu Z-D, Yurkov A, Chen X-H, Bao W-J, Ma Q, et al. Saccharomycetaceae: delineation of fungal genera based on phylogenomic analyses, genomic relatedness indices and genomics-based synapomorphies. Persoonia. 2024;52:1–21. doi: 10.3767/persoonia.2024.52.01 PubMed DOI PMC
Janbon G, Ormerod KL, Paulet D, Byrnes EJ 3rd, Yadav V, Chatterjee G, et al. Analysis of the genome and transcriptome of PubMed DOI PMC
Farrer RA, Desjardins CA, Sakthikumar S, Gujja S, Saif S, Zeng Q, et al. Genome evolution and innovation across the four major lineages of PubMed DOI PMC
Yadav V, Sun S, Coelho MA, Heitman J. Centromere scission drives chromosome shuffling and reproductive isolation. Proc Natl Acad Sci U S A. 2020;117(14):7917–28. doi: 10.1073/pnas.1918659117 PubMed DOI PMC
Morrow CA, Lee IR, Chow EWL, Ormerod KL, Goldinger A, Byrnes EJ 3rd, et al. A unique chromosomal rearrangement in the PubMed DOI PMC
Sun S, Yadav V, Billmyre RB, Cuomo CA, Nowrousian M, Wang L, et al. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biol. 2017;15(8):e2002527. doi: 10.1371/journal.pbio.2002527 PubMed DOI PMC
Statzell-Tallman A, Belloch C, Fell JW. PubMed DOI
Metin B, Findley K, Heitman J. The mating type locus ( PubMed DOI PMC
Guerreiro MA, Springer DJ, Rodrigues JA, Rusche LN, Findley K, Heitman J, et al. Molecular and genetic evidence for a tetrapolar mating system in the basidiomycetous yeast PubMed DOI PMC
Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, et al. RNAi is a critical determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci U S A. 2018;115(12):3108–13. doi: 10.1073/pnas.1713725115 PubMed DOI PMC
Schotanus K, Heitman J. Centromere deletion in PubMed DOI PMC
Schotanus K, Yadav V, Heitman J. Epigenetic dynamics of centromeres and neocentromeres in PubMed DOI PMC
Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, et al. Loss of centromere function drives karyotype evolution in closely related PubMed DOI PMC
Narayanan A, Reza MH, Sanyal K. Behind the scenes: Centromere-driven genomic innovations in fungal pathogens. PLoS Pathog. 2024;20(3):e1012080. doi: 10.1371/journal.ppat.1012080 PubMed DOI PMC
Zhu X, Williamson PR. Role of laccase in the biology and virulence of PubMed DOI
Williamson PR. Biochemical and molecular characterization of the diphenol oxidase of PubMed DOI PMC
Lücking R, Aime MC, Robbertse B, Miller AN, Aoki T, Ariyawansa HA, et al. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol. 2021;6(5):540–8. doi: 10.1038/s41564-021-00888-x PubMed DOI PMC
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci Data. 2020;7(1):228. doi: 10.1038/s41597-020-0567-7 PubMed DOI PMC
Kazartsev I, Shorohova E, Kapitsa E, Kushnevskaya H. Decaying DOI
Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, et al. The PubMed DOI PMC
Franco Ortega S, Ferrocino I, Adams I, Silvestri S, Spadaro D, Gullino ML, et al. Monitoring and surveillance of aerial mycobiota of rice paddy through DNA metabarcoding and qPCR. J Fungi (Basel). 2020;6(4):372. doi: 10.3390/jof6040372 PubMed DOI PMC
Gschwend F, Hartmann M, Mayerhofer J, Hug A-S, Enkerli J, Gubler A, et al. Site and land-use associations of soil bacteria and fungi define core and indicative taxa. FEMS Microbiol Ecol. 2022;97(12):fiab165. doi: 10.1093/femsec/fiab165 PubMed DOI PMC
Sannino C, Borruso L, Mezzasoma A, Battistel D, Ponti S, Turchetti B, et al. Abiotic factors affecting the bacterial and fungal diversity of permafrost in a rock glacier in the Stelvio Pass (Italian Central Alps). Applied Soil Ecology. 2021;166:104079. doi: 10.1016/j.apsoil.2021.104079 DOI
Luis P, Saint-Genis G, Vallon L, Bourgeois C, Bruto M, Marchand C, et al. Contrasted ecological niches shape fungal and prokaryotic community structure in mangroves sediments. Environ Microbiol. 2019;21(4):1407–24. doi: 10.1111/1462-2920.14571 PubMed DOI
Gostinčar C. Towards genomic criteria for delineating fungal species. J Fungi (Basel). 2020;6(4):246. doi: 10.3390/jof6040246 PubMed DOI PMC
Lachance M-A, Lee DK, Hsiang T. Delineating yeast species with genome average nucleotide identity: a calibration of ANI with haplontic, heterothallic PubMed DOI
Boekhout T, Aime MC, Begerow D, Gabaldón T, Heitman J, Kemler M, et al. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Divers. 2021;109(1):27–55. doi: 10.1007/s13225-021-00475-9 PubMed DOI PMC
Billmyre RB, Croll D, Li W, Mieczkowski P, Carter DA, Cuomo CA, et al. Highly recombinant VGII PubMed DOI PMC
Kobayashi Y, Kayamori A, Aoki K, Shiwa Y, Matsutani M, Fujita N, et al. Chromosome-level genome assemblies of PubMed DOI PMC
Greig D, Travisano M, Louis EJ, Borts RH. A role for the mismatch repair system during incipient speciation in PubMed DOI
Liti G, Barton DBH, Louis EJ. Sequence diversity, reproductive isolation and species concepts in PubMed DOI PMC
Priest SJ, Coelho MA, Mixão V, Clancey SA, Xu Y, Sun S, et al. Factors enforcing the species boundary between the human pathogens PubMed DOI PMC
Priest SJ, Yadav V, Roth C, Dahlmann TA, Kück U, Magwene PM, et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of PubMed DOI PMC
Seidl MF, Kramer HM, Cook DE, Fiorin GL, van den Berg GCM, Faino L, et al. Repetitive elements contribute to the diversity and evolution of centromeres in the fungal genus PubMed DOI PMC
Ola M, O’Brien CE, Coughlan AY, Ma Q, Donovan PD, Wolfe KH, et al. Polymorphic centromere locations in the pathogenic yeast PubMed DOI PMC
Bergeron J, Drouin G. The evolution of 5S ribosomal RNA genes linked to the rDNA units of fungal species. Curr Genet. 2008;54(3):123–31. doi: 10.1007/s00294-008-0201-2 PubMed DOI
McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol. 2008;24:131–57. doi: 10.1146/annurev.cellbio.24.110707.175259 PubMed DOI
De Carvalho M, Jia G-S, Nidamangala Srinivasa A, Billmyre RB, Xu Y-H, Lange JJ, et al. The PubMed DOI PMC
Rooney AP, Ward TJ. Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci U S A. 2005;102(14):5084–9. doi: 10.1073/pnas.0409689102 PubMed DOI PMC
Kapitonov VV, Jurka J. A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol. 2003;20(5):694–702. doi: 10.1093/molbev/msg075 PubMed DOI
Lin X, Heitman J. Chlamydospore formation during hyphal growth in PubMed DOI PMC
Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009;458(7236):337–41. doi: 10.1038/nature07743 PubMed DOI PMC
Cadete RM, Melo MA, Dussán KJ, Rodrigues RCLB, Silva SS, Zilli JE, et al. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian forest. PLoS One. 2012;7(8):e43135. doi: 10.1371/journal.pone.0043135 PubMed DOI PMC
Suh S-O, Marshall CJ, McHugh JV, Blackwell M. Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol. 2003;12(11):3137–45. doi: 10.1046/j.1365-294x.2003.01973.x PubMed DOI
Blackwell M. Made for each other: ascomycete yeasts and insects. Microbiol Spectr. 2017;5(3):10.1128/microbiolspec.funk-0081–2016. doi: 10.1128/microbiolspec.FUNK-0081-2016 PubMed DOI PMC
Yurkov AM. Yeasts of the soil - obscure but precious. Yeast. 2018;35(5):369–78. doi: 10.1002/yea.3310 PubMed DOI PMC
Kostál V, Zahradnícková H, Simek P, Zelený J. Multiple component system of sugars and polyols in the overwintering spruce bark beetle, PubMed DOI
Feng B, Li Y, Xu B, Liu H, Steenwyk JL, David KT, et al. Unique trajectory of gene family evolution from genomic analysis of nearly all known species in an ancient yeast lineage. Mol Syst Biol. 2025;21(8):1066–89. doi: 10.1038/s44320-025-00118-0 PubMed DOI PMC
David KT, Schraiber JG, Crandall JG, Labella AL, Opulente DA, Harrison M-C, et al. Convergent expansions of keystone gene families drive metabolic innovation in Saccharomycotina yeasts. Proc Natl Acad Sci U S A. 2025;122(23):e2500165122. doi: 10.1073/pnas.2500165122 PubMed DOI PMC
Hu G, Cheng P-Y, Sham A, Perfect JR, Kronstad JW. Metabolic adaptation in PubMed DOI PMC
Price MS, Betancourt-Quiroz M, Price JL, Toffaletti DL, Vora H, Hu G, et al. PubMed DOI PMC
Zhao Y, Lin X. A PAS protein directs metabolic reprogramming during cryptococcal adaptation to hypoxia. mBio. 2021;12(2):e03602-20. doi: 10.1128/mBio.03602-20 PubMed DOI PMC
Missall TA, Moran JM, Corbett JA, Lodge JK. Distinct stress responses of two functional laccases in PubMed DOI PMC
Waterman SR, Hacham M, Panepinto J, Hu G, Shin S, Williamson PR. Cell wall targeting of laccase of PubMed DOI PMC
Pukkila-Worley R, Gerrald QD, Kraus PR, Boily M-J, Davis MJ, Giles SS, et al. Transcriptional network of multiple capsule and melanin genes governed by the PubMed DOI PMC
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol. 2022;7(5):607–19. doi: 10.1038/s41564-022-01112-0 PubMed DOI PMC
Polacheck I, Hearing VJ, Kwon-Chung KJ. Biochemical studies of phenoloxidase and utilization of catecholamines in PubMed DOI PMC
Gusa A, Williams JD, Cho J-E, Averette AF, Sun S, Shouse EM, et al. Transposon mobilization in the human fungal pathogen PubMed DOI PMC
Gusa A, Yadav V, Roth C, Williams JD, Shouse EM, Magwene P, et al. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen PubMed DOI PMC
Mackey AI, Fraunfelter V, Shaltz S, McCormick J, Schroeder C, Perfect JR, et al. Temperature and genetic background drive mobilization of diverse transposable elements in a critical human fungal pathogen. bioRxiv. 2025;:2025.05.19.654958. doi: 10.1101/2025.05.19.654958 PubMed DOI PMC
Sun S, Priest SJ, Heitman J. PubMed DOI PMC
Peterson PP, Choi J-T, Fu C, Cowen LE, Sun S, Bahn Y-S, et al. The PubMed DOI PMC
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. doi: 10.1101/gr.215087.116 PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Steenwyk JL, Buida TJ, Labella AL, Li Y, Shen X-X, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics. 2021;37(16):2325–31. doi: 10.1093/bioinformatics/btab096 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110(10):1281–6. doi: 10.1007/s10482-017-0844-4 PubMed DOI
Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol. 2021;59(5):476–80. doi: 10.1007/s12275-021-1154-0 PubMed DOI
Coombe L, Kazemi P, Wong J, Birol I, Warren RL. Multi-genome synteny detection using minimizer graph mappings. bioRxiv. 2024:2024.02.07.579356. doi: 10.1101/2024.02.07.579356 DOI
Coombe L, Warren RL, Birol I. ntSynt-viz: Visualizing synteny patterns across multiple genomes. bioRxiv. 2025:2025.01.15.633221. doi: 10.1101/2025.01.15.633221 DOI
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10. doi: 10.1093/bioinformatics/btr039 PubMed DOI PMC
Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172(4):2665–81. doi: 10.1534/genetics.105.048975 PubMed DOI PMC
Kurtzman CP, Fell JW, Boekhout T. Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T, editors. The Yeasts: A Taxonomic Study. 5th ed. London: Elsevier; 2011. p. 87–110.
Upadhya R, Probst C, Alspaugh JA, Lodge JK. Measuring stress phenotypes in PubMed DOI PMC
Bengtsson‐Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4(10):914–9. doi: 10.1111/2041-210x.12073 DOI
Vetrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34(13):2292–4. doi: 10.1093/bioinformatics/bty071 PubMed DOI PMC