MXene/Bi2O3 Nanocomposites as Supercapacitors for Portable Electronic Devices
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41220418
PubMed Central
PMC12598869
DOI
10.1021/acs.energyfuels.5c04057
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
2D MXene nanosheets often encounter challenges such as aggregation and restacking, which can significantly decrease their performance in supercapacitor applications. Herein, we prepared the Bi2O3 nanoflowers decorated MXene electrode via the coprecipitation method. The insertion of Bi2O3 nanoflowers over the MXene nanosheet not only effectively resolves the restacking challenge of the MXene nanosheet but also improves the overall electrochemical performance of the MXene/Bi2O3 nanocomposite. The fabrication of an MXene/Bi2O3//MnCo2O4 supercapacitor device used for powering portable electronic devices confirmed that the lab-scale innovation could be turned into practical energy technologies. This work highlights a room-temperature synthesis strategy for the MXene-based nanocomposite, leading to high-performance, laboratory-scale prototype energy storage devices. Furthermore, this self-assembly process of MXene-metal oxide nanocomposites at room temperature opens new avenues for energy storage applications.
Zobrazit více v PubMed
Simon P., Gogotsi Y.. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020;19:1151–1163. doi: 10.1038/s41563-020-0747-z. PubMed DOI
Zhang C., McKeon L., Kremer M., Park S., Ronan O., Seral-Ascaso A., Barwich S., Coileáin C. Ó., McEvoy N., Nerl H., Anasori B., Coleman J., Gogotsi Y., Nicolosi V.. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019;10:1795. doi: 10.1038/s41467-019-09398-1. PubMed DOI PMC
Ko T., Ye H., Murali G., Lee S., Park Y., Lee J., Lee J., Yun D., Gogotsi Y., Kim S., Kim S., Jeong Y., Park S., In I.. Functionalized MXene ink enables Environmentally Stable Printed Electronics. Nat. Commun. 2024;15:3459. doi: 10.1038/s41467-024-47700-y. PubMed DOI PMC
Yu M., Peng Y., Wang X., Ran F.. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 2023;33:2301877. doi: 10.1002/adfm.202301877. DOI
Qorbani M., Chen K., Chen L.. Hybrid and Asymmetric Supercapacitors: Achieving Balanced Stored Charge across Electrode Materials. Small. 2024;20:2400558. doi: 10.1002/smll.202400558. PubMed DOI
Wang J., Ma J., Zhuang Z., Liang Z., Jia K., Ji G., Zhou G., Cheng H.. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 2024;123:1327–1363. doi: 10.1021/acs.chemrev.3c00884. PubMed DOI
Girirajan M., Bojarajan A., Pulidindi I., Hui K., Sangaraju S.. An insight into the Nanoarchitecture of Electrode materials on the performance of Supercapacitors. Coord. Chem. Rev. 2024;518:216080. doi: 10.1016/j.ccr.2024.216080. DOI
Tang G., Liang J., Wu W.. Transition metal selenides for supercapacitors. Adv. Funct. Mater. 2024;34:2310399. doi: 10.1002/adfm.202310399. DOI
Gu H., Kwon N., Lee K., Jin X., Hwang S.. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coord. Chem. Rev. 2020;421:213439. doi: 10.1016/j.ccr.2020.213439. DOI
Hu M., Zhang H., Hu T., Fan B., Wang X., Li Z.. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI
Islam M., Afroj S., Karim N.. Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano. 2023;17:18481–18493. doi: 10.1021/acsnano.3c06181. PubMed DOI PMC
Zhu Y., Rajouâ K., Vot S. L., Fontaine O., Simon P., Favier F.. Modifications of MXene layers for supercapacitors. Nano Energy. 2020;73:104734. doi: 10.1016/j.nanoen.2020.104734. DOI
Jiang Y., Lao J., Dai G., Ye Z.. Advanced Insights on MXenes: Categories, Properties, Synthesis, and Applications in Alkali Metal Ion Batteries. ACS Nano. 2024;18:14050–14084. doi: 10.1021/acsnano.3c12543. PubMed DOI
Song Z., Wang Z., Yu R.. Strategies for Advanced Supercapacitors Based on 2D Transition metal Dichalcogenides: from material design to device Setup. Small Methods. 2024;8:2300808. doi: 10.1002/smtd.202300808. PubMed DOI
Deshmukh S., Ghosh K., Pykal M., Otyepka M., Pumera M.. Laser-induced MXene-functionalized graphene nano architectonics-based micro supercapacitor for health monitoring application. ACS Nano. 2023;17:20537–20550. doi: 10.1021/acsnano.3c07319. PubMed DOI PMC
Novčić K. A., Iffelsberger C., Palacios-Corella M., Pumera M.. Solvents dramatically influence the atomic composition and catalytic properties of Ti3C2Tx MXenes. J. Mater. Chem. A. 2023;11:13419–13431. doi: 10.1039/d3ta01441j. DOI
Subramanyam S., Suman, Phor L., Chaudhary V., Kaushik V., Kumar P., Chahal S.. Progress in MXene synthesis approaches for energy systems: A comprehensive review. J. Energy Storage. 2024;92:112043. doi: 10.1016/j.est.2024.112043. DOI
Ghosh K., Ng S., Lazar P., Padinjareveetil A., Michalička J., Pumera M.. 2D Germanane-MXene heterostructures for cations intercalation in energy storage applications. Adv. Funct. Mater. 2024;34:2308793. doi: 10.1002/adfm.202308793. DOI
Shinde N., Pumera M.. High Performance MXene/MnCo2O4 Supercapacitor Device for Powering Small Robotics. ACS Appl. Electron. Mater. 2024;6:7339–7345. doi: 10.1021/acsaelm.4c01204. PubMed DOI PMC
Huang H., Yang W.. MXene-based Micro-supercapacitors: Ink Rheology, Microelectrode design and integrated system. ACS Nano. 2024;18:4651–4682. doi: 10.1021/acsnano.3c10246. PubMed DOI
Rong C., Su T., Li Z., Chu T., Zhu M., Yan Y., Zhang B., Xuan F.. Elastic Properties and Tensile Strength of 2D Ti3C2Tx MXene monolayers. Nat. Commun. 2024;15:1566. doi: 10.1038/s41467-024-45657-6. PubMed DOI PMC
Vaghasiya J., Mayorga-Martinez C., Pumera M.. Smart Energy Bricks: Ti3C2@Polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021;31:2106990. doi: 10.1002/adfm.202106990. DOI
Vyskočil J., Mayorga-Martinez C., Szőkölová K., Dash A., Gonzalez-Julian J., Sofer Z., Pumera M.. 2D Stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. ChemElectroChem. 2019;6:3982–3986. doi: 10.1002/celc.201900643. DOI
Ghosh K., Pumera M.. MXene and MoS3–x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021;5:2100451. doi: 10.1002/smtd.202100451. PubMed DOI
Xia Q. X., Shinde N. M., Yun J., Zhang T., Mane R., Mathur S., Kim K.. Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta. 2018;271:351–360. doi: 10.1016/j.electacta.2018.03.168. DOI
Yetiman S., Peçenek H., Dokan F., Sanduvaç S., Onses M. S., Yılmaz E., Sahmetlioglu E.. Unlocking the Potential of Bismuth-Based Materials in Supercapacitor Technology: A Comprehensive Review. ChemElectroChem. 2024;11:e202300819. doi: 10.1002/celc.202300819. DOI
Shinde N., Ghule B., Raut S., Narwade S., Pak J., Mane R.. Hopping Electrochemical Supercapacitor Performance of Ultrathin BiOCl Petals Grown by a Room-Temperature Soft-Chemical Process. Energy Fuels. 2021;35:6892–6897. doi: 10.1021/acs.energyfuels.1c00308. DOI
Wang T., Cheng C., Guan Z., Tao T., Xiao Q., Zhu J.. Chemical reduction-induced defect-rich Bismuth oxide-reduced graphene oxide anode for high-performance supercapacitors. J. Colloid Interface Sci. 2025;677:45–54. doi: 10.1016/j.jcis.2024.07.213. PubMed DOI
Kumar P., Nechikott A., Nayak P., Alagarasan D., Naik R.. Superior Performance of 2D layered Bimetallic Bismuth and Copper Oxytellurides for Supercapacitor Applications. ACS Appl. Energy Mater. 2024;7:8478–8488. doi: 10.1021/acsaem.4c01420. DOI
Zhu W., Shen D.. Synthesis of Bi2O3/hierarchical Porous Carbon composites for Supercapacitor Application. J. Energy Storage. 2024;79:110118. doi: 10.1016/j.est.2023.110118. DOI
Li Z., Wang L., Sun D., Zhang Y., Liu B., Hu Q., Zhou A.. Synthesis and thermal stability of two-dimensional carbide MXeneTi3C2 . Mater. Sci. Eng., B. 2015;191:33–40. doi: 10.1016/j.mseb.2014.10.009. DOI
Roy C., De S., Banerjee P., Pradhan S., Bhattacharyya S.. Investigating suitable medium for the long-duration storage of Ti2CTx MXene. J. Alloys Compd. 2023;938:168471. doi: 10.1016/j.jallcom.2022.168471. DOI
Shi T., Feng Y., Peng T., Yuan B.. Sea urchin-shaped Fe2O3 coupled with 2D MXene Nanosheets as negative electrode for High-performance Asymmetric supercapacitors. Electrochim. Acta. 2021;381:138245. doi: 10.1016/j.electacta.2021.138245. DOI
Zhang X., Liu H., Lu X., Xu R., Niu Y.. α-Fe2O3@C/MXene Composites with Core-shell Structures applied as Electrodes for Pseudo Supercapacitors. J. Alloys Compd. 2024;983:173522. doi: 10.1016/j.jallcom.2024.173522. DOI
Zou R., Quan H., Pan M., Zhou S., Chen D., Luo X.. Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 Nanocomposite as Negative electrode Material for Supercapacitors. Electrochim. Acta. 2018;292:31–38. doi: 10.1016/j.electacta.2018.09.149. DOI
Wang Y., Wang X., Li X., Liu R., Bai Y., Xiao H., Liu Y., Yuan G.. Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices. Nano-Micro Lett. 2020;12:115. doi: 10.1007/s40820-020-00450-0. PubMed DOI PMC
Ashraf I., Ahmad S., Dastan D., Wang C., Garmestani H., Iqbal M.. Fabrication of Ionic liquid-based D-Ti3C2/MoO3 Hybrid electrode system for Efficient Energy Storage Applications. Electrochim. Acta. 2022;429:141036. doi: 10.1016/j.electacta.2022.141036. DOI
Liu S., Zeng T., Zhang Y., Wan Q., Yang N.. Coupling W18O49/Ti3C2Tx MXene Pseudocapacitive Electrodes with Redox Electrolytes to Construct High-Performance Asymmetric Supercapacitors. Small. 2022;18:2204829. doi: 10.1002/smll.202204829. PubMed DOI
Zhao J., Liu F., Li W.. Phosphate Ion-Modified RuO2/Ti3C2 Composite as a High-Performance Supercapacitor Material. Nanomaterials. 2019;9:377. doi: 10.3390/nano9030377. PubMed DOI PMC
Jiang Q., Kurra N., Alhabeb M., Gogotsi Y., Alshareef H.. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Adv. Energy Mater. 2018;8:1703043. doi: 10.1002/aenm.201703043. DOI
Xia Q., Shinde N., Yun J., Zhang T., Mane R., Mathur S., Kim K.. Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta. 2018;271:351–360. doi: 10.1016/j.electacta.2018.03.168. DOI
Akir S., Fomekong R., Chacko L., Dekanovský L., Mazanek V., Sturala J., Koňakov D., Sofer Z.. Nanoengineering Bismuth-modified Vanadium Carbide MXene for enhanced Electrochemical Performance in neutral electrolyte: A pathway toward high-performance supercapacitors. J. Energy Storage. 2024;85:110962. doi: 10.1016/j.est.2024.110962. DOI
Garlapati K., Martha K., Panigrahi B.. VOx Anchored Ti3C2Tx MXene Heterostructures for high-performance 2.2 V Supercapacitors. J. Power Sources. 2024;605:234503. doi: 10.1016/j.jpowsour.2024.234503. DOI
Moniruzzaman M., Maity C., De S., Kim M., Kim J.. SnO2 Nanosphere/Carbon Dot-Embedded Ti3C2Tx MXene Nanocomposites for High-Performance Binder-Free Asymmetric Supercapacitor Electrodes. ACS Appl. Nano Mater. 2024;7:6636–6649. doi: 10.1021/acsanm.4c00550. DOI