MXene/Bi2O3 Nanocomposites as Supercapacitors for Portable Electronic Devices

. 2025 Nov 06 ; 39 (44) : 21583-21589. [epub] 20251027

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41220418

2D MXene nanosheets often encounter challenges such as aggregation and restacking, which can significantly decrease their performance in supercapacitor applications. Herein, we prepared the Bi2O3 nanoflowers decorated MXene electrode via the coprecipitation method. The insertion of Bi2O3 nanoflowers over the MXene nanosheet not only effectively resolves the restacking challenge of the MXene nanosheet but also improves the overall electrochemical performance of the MXene/Bi2O3 nanocomposite. The fabrication of an MXene/Bi2O3//MnCo2O4 supercapacitor device used for powering portable electronic devices confirmed that the lab-scale innovation could be turned into practical energy technologies. This work highlights a room-temperature synthesis strategy for the MXene-based nanocomposite, leading to high-performance, laboratory-scale prototype energy storage devices. Furthermore, this self-assembly process of MXene-metal oxide nanocomposites at room temperature opens new avenues for energy storage applications.

Zobrazit více v PubMed

Simon P., Gogotsi Y.. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020;19:1151–1163. doi: 10.1038/s41563-020-0747-z. PubMed DOI

Zhang C., McKeon L., Kremer M., Park S., Ronan O., Seral-Ascaso A., Barwich S., Coileáin C. Ó., McEvoy N., Nerl H., Anasori B., Coleman J., Gogotsi Y., Nicolosi V.. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019;10:1795. doi: 10.1038/s41467-019-09398-1. PubMed DOI PMC

Ko T., Ye H., Murali G., Lee S., Park Y., Lee J., Lee J., Yun D., Gogotsi Y., Kim S., Kim S., Jeong Y., Park S., In I.. Functionalized MXene ink enables Environmentally Stable Printed Electronics. Nat. Commun. 2024;15:3459. doi: 10.1038/s41467-024-47700-y. PubMed DOI PMC

Yu M., Peng Y., Wang X., Ran F.. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 2023;33:2301877. doi: 10.1002/adfm.202301877. DOI

Qorbani M., Chen K., Chen L.. Hybrid and Asymmetric Supercapacitors: Achieving Balanced Stored Charge across Electrode Materials. Small. 2024;20:2400558. doi: 10.1002/smll.202400558. PubMed DOI

Wang J., Ma J., Zhuang Z., Liang Z., Jia K., Ji G., Zhou G., Cheng H.. Toward direct regeneration of spent lithium-ion batteries: a next-generation recycling method. Chem. Rev. 2024;123:1327–1363. doi: 10.1021/acs.chemrev.3c00884. PubMed DOI

Girirajan M., Bojarajan A., Pulidindi I., Hui K., Sangaraju S.. An insight into the Nanoarchitecture of Electrode materials on the performance of Supercapacitors. Coord. Chem. Rev. 2024;518:216080. doi: 10.1016/j.ccr.2024.216080. DOI

Tang G., Liang J., Wu W.. Transition metal selenides for supercapacitors. Adv. Funct. Mater. 2024;34:2310399. doi: 10.1002/adfm.202310399. DOI

Gu H., Kwon N., Lee K., Jin X., Hwang S.. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coord. Chem. Rev. 2020;421:213439. doi: 10.1016/j.ccr.2020.213439. DOI

Hu M., Zhang H., Hu T., Fan B., Wang X., Li Z.. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020;49:6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI

Islam M., Afroj S., Karim N.. Scalable production of 2D material heterostructure textiles for high-performance wearable supercapacitors. ACS Nano. 2023;17:18481–18493. doi: 10.1021/acsnano.3c06181. PubMed DOI PMC

Zhu Y., Rajouâ K., Vot S. L., Fontaine O., Simon P., Favier F.. Modifications of MXene layers for supercapacitors. Nano Energy. 2020;73:104734. doi: 10.1016/j.nanoen.2020.104734. DOI

Jiang Y., Lao J., Dai G., Ye Z.. Advanced Insights on MXenes: Categories, Properties, Synthesis, and Applications in Alkali Metal Ion Batteries. ACS Nano. 2024;18:14050–14084. doi: 10.1021/acsnano.3c12543. PubMed DOI

Song Z., Wang Z., Yu R.. Strategies for Advanced Supercapacitors Based on 2D Transition metal Dichalcogenides: from material design to device Setup. Small Methods. 2024;8:2300808. doi: 10.1002/smtd.202300808. PubMed DOI

Deshmukh S., Ghosh K., Pykal M., Otyepka M., Pumera M.. Laser-induced MXene-functionalized graphene nano architectonics-based micro supercapacitor for health monitoring application. ACS Nano. 2023;17:20537–20550. doi: 10.1021/acsnano.3c07319. PubMed DOI PMC

Novčić K. A., Iffelsberger C., Palacios-Corella M., Pumera M.. Solvents dramatically influence the atomic composition and catalytic properties of Ti3C2Tx MXenes. J. Mater. Chem. A. 2023;11:13419–13431. doi: 10.1039/d3ta01441j. DOI

Subramanyam S., Suman, Phor L., Chaudhary V., Kaushik V., Kumar P., Chahal S.. Progress in MXene synthesis approaches for energy systems: A comprehensive review. J. Energy Storage. 2024;92:112043. doi: 10.1016/j.est.2024.112043. DOI

Ghosh K., Ng S., Lazar P., Padinjareveetil A., Michalička J., Pumera M.. 2D Germanane-MXene heterostructures for cations intercalation in energy storage applications. Adv. Funct. Mater. 2024;34:2308793. doi: 10.1002/adfm.202308793. DOI

Shinde N., Pumera M.. High Performance MXene/MnCo2O4 Supercapacitor Device for Powering Small Robotics. ACS Appl. Electron. Mater. 2024;6:7339–7345. doi: 10.1021/acsaelm.4c01204. PubMed DOI PMC

Huang H., Yang W.. MXene-based Micro-supercapacitors: Ink Rheology, Microelectrode design and integrated system. ACS Nano. 2024;18:4651–4682. doi: 10.1021/acsnano.3c10246. PubMed DOI

Rong C., Su T., Li Z., Chu T., Zhu M., Yan Y., Zhang B., Xuan F.. Elastic Properties and Tensile Strength of 2D Ti3C2Tx MXene monolayers. Nat. Commun. 2024;15:1566. doi: 10.1038/s41467-024-45657-6. PubMed DOI PMC

Vaghasiya J., Mayorga-Martinez C., Pumera M.. Smart Energy Bricks: Ti3C2@Polymer electrochemical energy storage inside bricks by 3D printing. Adv. Funct. Mater. 2021;31:2106990. doi: 10.1002/adfm.202106990. DOI

Vyskočil J., Mayorga-Martinez C., Szőkölová K., Dash A., Gonzalez-Julian J., Sofer Z., Pumera M.. 2D Stacks of MXene Ti3C2 and 1T-Phase WS2 with enhanced capacitive behavior. ChemElectroChem. 2019;6:3982–3986. doi: 10.1002/celc.201900643. DOI

Ghosh K., Pumera M.. MXene and MoS3–x coated 3D-printed hybrid electrode for solid-state asymmetric supercapacitor. Small Methods. 2021;5:2100451. doi: 10.1002/smtd.202100451. PubMed DOI

Xia Q. X., Shinde N. M., Yun J., Zhang T., Mane R., Mathur S., Kim K.. Bismuth Oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta. 2018;271:351–360. doi: 10.1016/j.electacta.2018.03.168. DOI

Yetiman S., Peçenek H., Dokan F., Sanduvaç S., Onses M. S., Yılmaz E., Sahmetlioglu E.. Unlocking the Potential of Bismuth-Based Materials in Supercapacitor Technology: A Comprehensive Review. ChemElectroChem. 2024;11:e202300819. doi: 10.1002/celc.202300819. DOI

Shinde N., Ghule B., Raut S., Narwade S., Pak J., Mane R.. Hopping Electrochemical Supercapacitor Performance of Ultrathin BiOCl Petals Grown by a Room-Temperature Soft-Chemical Process. Energy Fuels. 2021;35:6892–6897. doi: 10.1021/acs.energyfuels.1c00308. DOI

Wang T., Cheng C., Guan Z., Tao T., Xiao Q., Zhu J.. Chemical reduction-induced defect-rich Bismuth oxide-reduced graphene oxide anode for high-performance supercapacitors. J. Colloid Interface Sci. 2025;677:45–54. doi: 10.1016/j.jcis.2024.07.213. PubMed DOI

Kumar P., Nechikott A., Nayak P., Alagarasan D., Naik R.. Superior Performance of 2D layered Bimetallic Bismuth and Copper Oxytellurides for Supercapacitor Applications. ACS Appl. Energy Mater. 2024;7:8478–8488. doi: 10.1021/acsaem.4c01420. DOI

Zhu W., Shen D.. Synthesis of Bi2O3/hierarchical Porous Carbon composites for Supercapacitor Application. J. Energy Storage. 2024;79:110118. doi: 10.1016/j.est.2023.110118. DOI

Li Z., Wang L., Sun D., Zhang Y., Liu B., Hu Q., Zhou A.. Synthesis and thermal stability of two-dimensional carbide MXeneTi3C2 . Mater. Sci. Eng., B. 2015;191:33–40. doi: 10.1016/j.mseb.2014.10.009. DOI

Roy C., De S., Banerjee P., Pradhan S., Bhattacharyya S.. Investigating suitable medium for the long-duration storage of Ti2CTx MXene. J. Alloys Compd. 2023;938:168471. doi: 10.1016/j.jallcom.2022.168471. DOI

Shi T., Feng Y., Peng T., Yuan B.. Sea urchin-shaped Fe2O3 coupled with 2D MXene Nanosheets as negative electrode for High-performance Asymmetric supercapacitors. Electrochim. Acta. 2021;381:138245. doi: 10.1016/j.electacta.2021.138245. DOI

Zhang X., Liu H., Lu X., Xu R., Niu Y.. α-Fe2O3@C/MXene Composites with Core-shell Structures applied as Electrodes for Pseudo Supercapacitors. J. Alloys Compd. 2024;983:173522. doi: 10.1016/j.jallcom.2024.173522. DOI

Zou R., Quan H., Pan M., Zhou S., Chen D., Luo X.. Self-assembled MXene (Ti3C2Tx)/α-Fe2O3 Nanocomposite as Negative electrode Material for Supercapacitors. Electrochim. Acta. 2018;292:31–38. doi: 10.1016/j.electacta.2018.09.149. DOI

Wang Y., Wang X., Li X., Liu R., Bai Y., Xiao H., Liu Y., Yuan G.. Intercalating Ultrathin MoO3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices. Nano-Micro Lett. 2020;12:115. doi: 10.1007/s40820-020-00450-0. PubMed DOI PMC

Ashraf I., Ahmad S., Dastan D., Wang C., Garmestani H., Iqbal M.. Fabrication of Ionic liquid-based D-Ti3C2/MoO3 Hybrid electrode system for Efficient Energy Storage Applications. Electrochim. Acta. 2022;429:141036. doi: 10.1016/j.electacta.2022.141036. DOI

Liu S., Zeng T., Zhang Y., Wan Q., Yang N.. Coupling W18O49/Ti3C2Tx MXene Pseudocapacitive Electrodes with Redox Electrolytes to Construct High-Performance Asymmetric Supercapacitors. Small. 2022;18:2204829. doi: 10.1002/smll.202204829. PubMed DOI

Zhao J., Liu F., Li W.. Phosphate Ion-Modified RuO2/Ti3C2 Composite as a High-Performance Supercapacitor Material. Nanomaterials. 2019;9:377. doi: 10.3390/nano9030377. PubMed DOI PMC

Jiang Q., Kurra N., Alhabeb M., Gogotsi Y., Alshareef H.. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Adv. Energy Mater. 2018;8:1703043. doi: 10.1002/aenm.201703043. DOI

Xia Q., Shinde N., Yun J., Zhang T., Mane R., Mathur S., Kim K.. Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta. 2018;271:351–360. doi: 10.1016/j.electacta.2018.03.168. DOI

Akir S., Fomekong R., Chacko L., Dekanovský L., Mazanek V., Sturala J., Koňakov D., Sofer Z.. Nanoengineering Bismuth-modified Vanadium Carbide MXene for enhanced Electrochemical Performance in neutral electrolyte: A pathway toward high-performance supercapacitors. J. Energy Storage. 2024;85:110962. doi: 10.1016/j.est.2024.110962. DOI

Garlapati K., Martha K., Panigrahi B.. VOx Anchored Ti3C2Tx MXene Heterostructures for high-performance 2.2 V Supercapacitors. J. Power Sources. 2024;605:234503. doi: 10.1016/j.jpowsour.2024.234503. DOI

Moniruzzaman M., Maity C., De S., Kim M., Kim J.. SnO2 Nanosphere/Carbon Dot-Embedded Ti3C2Tx MXene Nanocomposites for High-Performance Binder-Free Asymmetric Supercapacitor Electrodes. ACS Appl. Nano Mater. 2024;7:6636–6649. doi: 10.1021/acsanm.4c00550. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...