Sc(III) Complexes of 1,4,7-Triazacyclononane-1,4,7-triacetic Acid and Its Monoamides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41222197
PubMed Central
PMC12648657
DOI
10.1021/acs.inorgchem.5c04142
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Scandium(III) complexes with H3nota and its N-ethyl (H2L1) and N,N-diethyl (H2L2) monoamides were studied in the solid state and solution. Potentiometric measurements showed high stabilities of the binary ScIII complexes with the ligands (log K[Sc(L)] = 19.50, 16.64, and 17.94 for H3nota, H2L1 and H2L,2 respectively) and weak coordination of the second ligand molecule under the ligand excess. The chemical model was confirmed by 45Sc NMR. Multinuclear NMR spectroscopy was used to study the ternary ScIII-ligand-oxalate systems. The results showed the presence of species with 2:1 and 1:1 [Sc(L)]-to-oxalate stoichiometry. Ternary complexes with the nota-monoamides form two isomers differing in the position of oxalate versus amide pendant arm. In the solid state, the [Sc(L)] complexes form oligomers interconnected through ligand carboxylate groups. Crystallization from solutions containing H2O2 or oxalate anions yielded ternary complexes. In all binary and ternary complexes, the ScIII ion is octacoordinated with the N3O4O1 coordination mode. All of the carboxylate groups of the ligands are coordinated in the O4-plane. The apical position is occupied by an oxygen atom of water, peroxide, or carboxylate anion. The apical Sc-O bonds are usually longer compared to those of the oxygen atoms forming the O4-plane.
Zobrazit více v PubMed
Pniok M., Kubíček V., Havlíčková J., Kotek J., Sabatie-Gogová A., Plutnar J., Huclier-Markai S., Hermann P.. Thermodynamic and Kinetic Study of Scandium(III) Complexes of DTPA and DOTA: A Step Toward Scandium Radiopharmaceuticals. Chem.-Eur. J. 2014;20:7944–7955. doi: 10.1002/chem.201402041. PubMed DOI
Aldrich K. E., Popov I. A., Root H. D., Batista E. R., Greer S. M., Kozimor S. A., Lilley L. M., Livshits M. Y., Mocko V., Janicke M. T., Scott B. L., Stein B. W., Yang P.. Synthesis, solid-state, solution, and theoretical characterization of an “in-cage” scandium-NOTA complex. Dalton Trans. 2022;51:9994–10005. doi: 10.1039/D1DT03887G. PubMed DOI
Vaughn B. A., Ahn S. H., Aluicio-Sarduy E., Devaraj J., Olson A. P., Engle J., Boros E.. Chelation with a twist: a bifunctional chelator to enable room temperature radiolabeling and targeted PET imaging with scandium-44. Chem. Sci. 2020;11:333–342. doi: 10.1039/C9SC04655K. PubMed DOI PMC
Vaughn B., Koller A., Chen Z., Ahn S. H., Loveless C., Cingoranelli S., Yang Y., Cirri A., Johnson C., Lapi S., Chapman K., Boros E.. Homologous Structural, Chemical, and Biological Behavior of Sc and Lu Complexes of the Picaga Bifunctional Chelator: Toward Development of Matched Theranostic Pairs for Radiopharmaceutical Applications. Bioconjugate Chem. 2021;32:1232–1241. doi: 10.1021/acs.bioconjchem.0c00574. PubMed DOI
Whetter J. N., Vaughn B. A., Koller A. J., Boros E.. An Unusual Pair: Facile Formation and In Vivo Validation of Robust Sc–18F Ternary Complexes for Molecular Imaging. Angew. Chem., Int. Ed. 2022;61:e202114203. doi: 10.1002/anie.202114203. PubMed DOI
Whetter J. N., Śmiłowicz D., Becker K. V., Aluicio-Sarduy E., Kelderman C. A. A., Koller A. J., Glaser O. M., Marlin A., Ahn S. H., Kretowicz M. N., Engle J. W., Boros E.. Phosphonate-Based Aza-Macrocycle Ligands for Low-Temperature, Stable Chelation of Medicinally Relevant Rare Earth Radiometals and Radiofluorination. J. Am. Chem. Soc. 2024;146:33121–33129. doi: 10.1021/jacs.4c11254. PubMed DOI PMC
Shetty D., Choi S. Y., Jeong J. M., Hoigebazar L., Lee Y. S., Lee D. S., Chung J., Lee M. C., Chung Y. K.. Formation and Characterization of Gallium(III) Complexes with Monoamide Derivatives of 1,4,7-Triazacyclononane-1,4,7-triacetic Acid: A Study of the Dependency of Structure on Reaction pH. Eur. J. Inorg. Chem. 2010;2010:5432–5438. doi: 10.1002/ejic.201000748. DOI
Holub J., Meckel M., Kubíček V., Rösch F., Hermann P.. Gallium(III) complexes of NOTA-bis(phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol. Imaging. 2015;10:122–134. doi: 10.1002/cmmi.1606. PubMed DOI
Kubíček V., Böhmová Z., Ševčíková R., Vaněk J., Lubal P., Poláková Z., Michalicová R., Kotek J., Hermann P.. NOTA Complexes with Copper(II) and Divalent Metal Ions: Kinetic and Thermodynamic Studies. Inorg. Chem. 2018;57:3061–3072. doi: 10.1021/acs.inorgchem.7b02929. PubMed DOI
Kubinec J., Širůčková V., Havlíčková J., Kotek J., Kubíček V., Lubal P., Hermann P.. Complexes of NOTA-Monoamides with CuII Ions: Structural, Equilibrium, and Kinetic Study. Eur. J. Inorg. Chem. 2022;2022:e202200173. doi: 10.1002/ejic.202200173. DOI
Kubíček V., Havlíčková J., Kotek J., Tircsó G., Hermann P., Tóth E., Lukeš I.. Gallium(III) Complexes of DOTA and DOTA-Monoamide: Kinetic and Thermodynamic Studies. Inorg. Chem. 2010;49:10960–10969. doi: 10.1021/ic101378s. PubMed DOI
Försterová M., Svobodová I., Lubal P., Táborský P., Kotek J., Hermann P., Lukeš I.. Thermodynamic Study of Lanthanide(III) Complexes with Bifunctional Monophosphinic Acid Analogues of H4dota and Comparative Kinetic Study of Yttrium(III) Complexes. Dalton Trans. 2007;36:535–549. doi: 10.1039/B613404A. PubMed DOI
Notni J., Hermann P., Havlíčková J., Kotek J., Kubíček V., Plutnar J., Loktionova N., Riss P. J., Rösch F., Lukeš I.. A Triazacyclononane-Based Bifunctional Phosphinate Ligand for the Preparation of Multimeric 68Ga Tracers for Positron Emission Tomography. Chem.-Eur. J. 2010;16:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI
Kývala, M. ; Lukeš, I. . International Conference Chemometrics ‘95, Pardubice; Czech Republic, 1995; p 63.
Kývala, M. , Lubal, P. ; Lukeš, I. , IX. Spanish-Italian and Mediterranean Congress on Thermodynamics of Metal Complexes (SIMEC 98), Girona, Spain, 1998. http://www.natur.cuni.cz/_kyvala/opium.html.
Martell, A. E. ; Smith, R. M. . Critical Stability Constants; Plenum Press: New York, 1974–1989; Vol. 1–6.
NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes), Version 7.0, 2003.
Baes, C. F., Jr. ; Mesmer, R. E. . The Hydrolysis of Cations; Wiley: New York, 1976.
Krause L., Herbst-Irmer R., Sheldrick G. M., Stalke D.. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015;48:3–10. doi: 10.1107/S1600576714022985. PubMed DOI PMC
Sheldrick, G. M. SHELXT2018/2: Program for Crystal Structure Solution from Diffraction Data; University of Göttingen: Göttingen, 2018.
Sheldrick G. M.. A short history of SHELX. Acta Crystallogr., Sect. A. 2008;64:112. doi: 10.1107/S0108767307043930. PubMed DOI
C. B., Hübschle , Sheldrick, G. M. ; Dittrich, B. . ShelXle: a Qt graphical user interface for SHELXL; University of Göttingen, Göttingen, 2014. PubMed PMC
Hübschle C. B., Sheldrick G. M., Dittrich B.. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011;44:1281. doi: 10.1107/S0021889811043202. PubMed DOI PMC
Sheldrick G. M.. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Sheldrick, G. M. SHELXL-2017/1: Program for Crystal Structure Refinement from Diffraction Data; University of Göttingen: Göttingen, 2017.
Spek A. L.. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. 2015;71:9–18. doi: 10.1107/S2053229614024929. PubMed DOI
Amin S., Voss D. A. Jr., Horrocks W. DeW. Jr., Lake Ch. H., Churchill M. R., Morrow J. R.. Laser-Induced Luminescence Studies and Crystal Structure of the Europium(III) Complex of 1,4,7,10-Tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane. The Link between Phosphate Diester Binding and Catalysis by Lanthanide(III) Macrocyclic Complexes. Inorg. Chem. 1995;34:3294–3300. doi: 10.1021/ic00116a023. DOI
Kotek J., Rudovský J., Hermann P., Lukeš I.. Three in One: TSA, TSA’, and SA Units in One Crystal Structure of a Yttrium(III) Complex with a Monophosphinated H4dota Analogue. Inorg. Chem. 2006;45:3097–3102. doi: 10.1021/ic060006a. PubMed DOI
Krchová T., Kotek J., Jirák D., Havlíčková J., Císařová I., Hermann P.. Lanthanide(III) complexes of aminoethyl-DO3A as PARACEST contrast agents based on decoordination of the weakly bound amino group. Dalton Trans. 2013;42:15735–15747. doi: 10.1039/c3dt52031e. PubMed DOI
Perdew J. P.. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 1986;33:8822–8827. doi: 10.1103/PhysRevB.33.8822. PubMed DOI
Becke A. D.. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Grimme S., Anthony J., Ehrlich S., Krieg H. A.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
TURBOMOLE V7.6 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007; TURBOMOLE GmbH, 2007. http://www.turbomole.com.
Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot Ch., Skeel R. D., Kalé L., Schulten K.. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289. PubMed DOI PMC
Klamt A., Schuurmann G.. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 1. 1993;2:799–805. doi: 10.1039/P29930000799. DOI
Supkowski R. M., Horrocks W. D.. On the determination of the number of water molecules, q, coordinated to europium(III) ions in solution from luminescence decay lifetimes. Inorg. Chim. Acta. 2002;340:44–48. doi: 10.1016/s0020-1693(02)01022-8. DOI
Nagy G., Szikra D., Trencsenyi G., Fekete A., Garai I., Giani A. M., Negri R., Masciocchi N., Maiocchi A., Uggeri F., Toth I., Aime S., Giovenzana G. B., Baranyai Z.. AAZTA: An Ideal Chelating Agent for the Development of 44Sc PET Imaging Agents. Angew. Chem., Int. Ed. 2017;56:2118–2122. doi: 10.1002/anie.201611207. PubMed DOI
Šimeček J., Schulz M., Notni J., Plutnar J., Kubíček V., Havlíčková J., Hermann P.. Complexation of Metal Ions with TRAP (1,4,7-Triazacyclononane Phosphinic Acid) Ligands and 1,4,7-Triazacyclononane-1,4,7-triacetic Acid: Phosphinate-Containing Ligands as Unique Chelators for Trivalent Gallium. Inorg. Chem. 2012;51:577–590. doi: 10.1021/ic202103v. PubMed DOI
Cotton S. A.. Recent advances in the chemistry of scandium. Polyhedron. 1999;18:1691–1715. doi: 10.1016/S0277-5387(99)00039-X. DOI
Cotton S. A., Raithby P. R., Schiffers S., Teat S. J., Warren J. E.. The Synthesis and Structure of a Scandium Nitrate Hydroxy-Bridged Dimeric Complex Supported by Bipyridyl Ligands. Molecules. 2022;27:2024. doi: 10.3390/molecules27062024. PubMed DOI PMC
Wang W., Chang I.-Y., Zakharov L., Cheong P. H.-Y., Keszler D. A.. [Sc2(μ-OH)2(H2O)6(NO3)2](NO3)2: Aqueous Synthesis and Characterization. Inorg. Chem. 2013;52:1807–1811. doi: 10.1021/ic301814z. PubMed DOI
Meermann Ch., Tornroos K. W., Anwander R.. Scandium SALEN Complexes Bearing Chloro, Aryloxo, and Hydroxo Ligands. Inorg. Chem. 2009;48:2561–2570. doi: 10.1021/ic802082b. PubMed DOI
Groom C. R., Bruno I. J., Lightfoot M. P., Ward S. C.. The Cambridge Structural Database. Acta Crystallogr. Sect. B. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC
Bruno I. J., Cole J. C., Edgington P. R., Kessler M., Macrae C. F., McCabe P., Pearson J., Taylor R.. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr., Sect. B. 2002;58:389–397. doi: 10.1107/S0108768102003324. PubMed DOI
Skinner M. E. G., Tyrrell B. R., Ward B. D., Mountford P.. New N- and O-donor ligand environments in organoscandium chemistry. J. Organomet. Chem. 2002;647:145–150. doi: 10.1016/S0022-328X(01)01359-6. DOI
Adam B., Bill E., Bothe E., Goerdt B., Haselhorst G., Hildenbrand K., Sokolowski A., Steenken S., Weyhermuller T., Wieghardt K.. Phenoxyl Radical Complexes of Gallium, Scandium, Iron and Manganese. Chem.Eur. J. 1997;3:308–319. doi: 10.1002/chem.19970030221. PubMed DOI
Benetollo F., Bombieri G., Calabi L., Aime S., Botta M.. Structural variations across the lanthanide series of macrocyclic DOTA complexes: insights into the design of contrast agents for magnetic resonance imaging. Inorg. Chem. 2003;42:148–157. doi: 10.1021/ic025790n. PubMed DOI
Urbanovský P., Kotek J., Císařová I., Hermann P.. The solid-state structures and ligand cavity evaluation of lanthanide(III) complexes of a DOTA analogue with a (dibenzylamino)methylphosphinate pendant arm. Dalton Trans. 2020;49:1555–1569. doi: 10.1039/C9DT04056K. PubMed DOI
Wieghardt K., Bossek U., Chaudhuri P., Herrmann W., Menke B. C., Weiss J.. 1,4,7-Triazacyclononane-N,N’,N’’-triacetate (TCTA), a new hexadentate ligand for divalent and trivalent metal ions. Crystal structures of [CrIII(TCTA)], [FeIII(TCTA)], and Na[CuII(TCTA)].2NaBr.8H2O. Inorg. Chem. 1982;21:4308–4314. doi: 10.1021/ic00142a037. DOI
Boeyens J. C. A., van der Merwe M. J.. The Nonexistent Crystals of Macrocyclic Nickel(III). Structure of the Cobalt(III) Complex of 1,4,7-Triazacyclononane-N,N’,N”-triacetate. Inorg. Chem. 1997;36:3779–3780. doi: 10.1021/ic960605p. PubMed DOI
Craig A. S., Parker D., Adams H., Bailey N. A.. Stability, 71Ga NMR, and crystal structure of a neutral gallium(III) complex of 1,4,7-triazacyclononanetriacetate: a potential radiopharmaceutical? J. Chem. Soc., Chem. Commun. 1989;25:1793–1794. doi: 10.1039/c39890001793. DOI