FireProtDB 2.0: large-scale manually curated database of the protein stability data
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
RECETOX
e-INFRA
LM2023069
ELIXIR
90254
ELIXIR
LM2023055
ELIXIR
25-18233M
Czech Ministry of Education, Youth and Sports, and Grant Agency
857560 TEAMING
European Union's Horizon 2020 research and innovation programme
101136607
European Union Centre of Excellence CLARA
CA21162
COST Action COZYME
FIT-S-23-8209
Brno University of Technology
PubMed
41263104
PubMed Central
PMC12807726
DOI
10.1093/nar/gkaf1211
PII: 8329105
Knihovny.cz E-zdroje
- MeSH
- databáze proteinů * MeSH
- datové kurátorství MeSH
- internet MeSH
- proteiny * chemie genetika MeSH
- software MeSH
- stabilita proteinů MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny * MeSH
Thermostable proteins are crucial in numerous biomedical and biotechnological applications. However, naturally occurring proteins have evolved to function in mild conditions, and laboratory experiments aiming at improving protein stability have proven laborious and expensive. Computational methods overcome this issue by providing a cheap and scalable alternative. Despite significant progress, their reliability is still hindered by the availability of high-quality data. FireProtDB 2.0 (http://loschmidt.chemi.muni.cz/fireprotdb) is a large-scale database aggregating stability data from multiple sources. The second version builds upon its predecessor, retaining its original functionality while introducing a new approach to data storage and maintenance. The new scheme enables the introduction of both absolute and relative data types connected with measurements of wild-types, mutants, protein domains, and de novo designed proteins. Furthermore, while the original database was limited to single-point mutations, more complex data such as insertions, deletions, and multiple-point mutations are now available. As a result, the inclusion of large-scale mutagenesis has increased the size of the database from 16 000 to almost 5 500 000 experiments. Moreover, the updated abstract scheme is fully expandable with any new measurements and annotations without the need for any restructuring. Finally, the tracking of history together with fixed identifiers is in accordance with the FAIR principles.
International Clinical Research Centre St Anne's University Hospital Brno 602 00 Brno Czech Republic
Zobrazit více v PubMed
Modarres HP, Mofrad MR. Sanati-Nezhad A. Protein thermostability engineering. RSC Adv. 2016;6:115252–70. 10.1039/C6RA16992A. DOI
Daniel RM, Dines M, Petach HH. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996;317:1–11. 10.1042/bj3170001. PubMed DOI PMC
Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991;202:715–28. 10.1111/j.1432-1033.1991.tb16426.x. PubMed DOI
Gao D, Narasimhan DL, Macdonald Jet al. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol Pharmacol. 2009;75:318–23. https://molpharm.aspetjournals.org/content/75/2/318.short. PubMed PMC
Ferdjani S, Ionita M, Roy Bet al. Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnol Lett. 2011;33:1215–9. 10.1007/s10529-011-0560-5. PubMed DOI
Polizzi KM, Bommarius AS, Broering JMet al. Stability of biocatalysts. Curr Opin Chem Biol. 2007;11:220–5. 10.1016/j.cbpa.2007.01.685. PubMed DOI
Qiu Y, Huang T, Cai YD. Review of predicting protein stability changes upon variations. Proteomics. 2024;24:2300371. 10.1002/pmic.202300371. PubMed DOI
Leaver-Fay A, Tyka M, Lewis SMet al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545–74. 10.1016/B978-0-12-381270-4.00019-6. PubMed DOI PMC
Delgado J, Reche R, Cianferoni Det al. FoldX force field revisited, an improved version. Bioinformatics. 2025;41:btaf064. 10.1093/bioinformatics/btaf064. PubMed DOI PMC
Lehmann M, Loch C, Middendorf Aet al. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein Eng. 2002;15:403–11. 10.1093/protein/15.5.403. PubMed DOI
Musil M, Khan RT, Beier Aet al. FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief Bioinform. 2020;22:1–11.https://academic.oup.com/bib/article/22/4/bbaa337/6042664. PubMed PMC
Diaz DJ, Gong C, Ouyang-Zhang Jet al. Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations. Nat Commun. 2024;15:6170. 10.1038/s41467-024-49780-2. PubMed DOI PMC
Zhou Y, Pan Q, Pires DEVet al. DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res. 2023;51:W122. 10.1093/nar/gkad472. PubMed DOI PMC
Chen CW, Lin MH, Liao CCet al. iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J. 2020;18:622–30. 10.1016/j.csbj.2020.02.021. PubMed DOI PMC
Musil M, Konegger H, Hon Jet al. Computational design of stable and soluble biocatalysts. ACS Catal. 2019;9:1033–54. 10.1021/acscatal.8b03613. DOI
Frenz CM. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions. Proteins. 2005;59:147–51. 10.1002/prot.20400. PubMed DOI
Yang Y, Ding X, Zhu Get al. ProTstab – predictor for cellular protein stability. BMC Genomics. 2019;20:804. 10.1186/s12864-019-6138-7. PubMed DOI PMC
Fang X, Huang J, Zhang Ret al. Convolution neural network-based prediction of protein thermostability. J Chem Inf Model. 2019;59:4833–43. 10.1021/acs.jcim.9b00220. PubMed DOI
Buyanov I, Sarycheva A, Popov P. OrgNet: orientation-gnostic protein stability assessment using convolutional neural networks. Bioinformatics. 2025;41:i458–65. 10.1093/bioinformatics/btaf252. PubMed DOI PMC
Jiang F, Li M, Dong Jet al. A general temperature-guided language model to design proteins of enhanced stability and activity. Sci Adv. 2024;10:1–19. https://www.science.org/doi/full/10.1126/sciadv.adr2641?utm_source=chatgpt.com. PubMed DOI PMC
Jung F, Frey K, Zimmer Det al. DeepSTABp: a deep learning approach for the prediction of thermal protein stability. Int J Mol Sci. 2023;24:7444. 10.3390/ijms24087444. PubMed DOI PMC
Gong J, Jiang L, Chen Yet al. THPLM: a sequence-based deep learning framework for protein stability changes prediction upon point variations using pretrained protein language model. Bioinformatics. 2023;39:btad646. 10.1093/bioinformatics/btad646. PubMed DOI PMC
Sanavia T, Birolo G, Montanucci Let al. Limitations and challenges in protein stability prediction upon genome variations: towards future applications in precision medicine. Comput Struct Biotechnol J. 2020;18:1968–79. 10.1016/j.csbj.2020.07.011. PubMed DOI PMC
Montanucci L, Martelli PL, Ben-Tal Net al. A natural upper bound to the accuracy of predicting protein stability changes upon mutations. Bioinformatics. 2018;35:1513–17. 10.48550/arXiv.1809.10389, PubMed DOI
Sasidharan NP, Vihinen M. VariBench: a benchmark database for variations. Hum Mutat. 2013;34:42–9. 10.1002/humu.22204. PubMed DOI
Stourac J, Dubrava J, Musil Met al. FireProtDB: database of manually curated protein stability data. Nucleic Acids Res. 2021;49:D319–24. 10.1093/nar/gkaa981. PubMed DOI PMC
Yang Y, Urolagin S, Niroula Aet al. PON-tstab: protein variant stability predictor. importance of training data quality. Int J Mol Sci. 2018;19:1009. 10.3390/ijms19041009. PubMed DOI PMC
Chu AE, Lu T, Huang PS. Sparks of function by PubMed DOI PMC
Tsuboyama K, Dauparas J, Chen Jet al. Mega-scale experimental analysis of protein folding stability in biology and design. Nature. 2023;620:434–44. 10.1038/s41586-023-06328-6. PubMed DOI PMC
Nikam R, Kulandaisamy A, Harini Ket al. ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Res. 2021;49:D420–4. 10.1093/nar/gkaa1035. PubMed DOI PMC
Beltran A, Jiang X, Shen Yet al. Site-saturation mutagenesis of 500 human protein domains. Nature. 2025;637:885–94. 10.1038/s41586-024-08370-4. PubMed DOI PMC
Stourac J Protein engineering group. https://loschmidt.chemi.muni.cz/peg/ (26 August 2025, date last accessed).
Brissos V, Gonçalves N, Melo EPet al. Improving kinetic or thermodynamic stability of an azoreductase by directed evolution. PLoS One. 2014;9:e87209. 10.1371/journal.pone.0087209. PubMed DOI PMC
Brissos V, Tavares D, Sousa ACet al. Engineering a bacterial DyP-Type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline pH. ACS Catal. 2017;7:3454–65. 10.1021/acscatal.6b03331. DOI
Borges P, Silva D, Silva TFD. Unveiling molecular details behind improved activity at neutral to alkaline pH of an engineered DyP-type peroxidase. Comput Struct Biotechnol J. 2022;20:3899–910. https://www.sciencedirect.com/science/article/pii/S200103702200(3129). PubMed PMC
Simone MD, Alvigini L, Alonso-Cotchico Let al. Rationally guided improvement of NOV1 dioxygenase for the conversion of lignin-derived isoeugenol to vanillin. Biochemistry. 2023;62:419–28.https://pubs.acs.org/doi/full/10.1021/acs.biochem.2c00168. PubMed DOI PMC
De Simone M, Alonso-Cotchico L, Lucas MFet al. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis. J Biotechnol. 2024;391:92–8. 10.1016/j.jbiotec.2024.06.012. PubMed DOI
Rodrigues CF, Borges PT, Scocozza MFet al. Loops around the heme pocket have a critical role in the function and stability of BsDyP from PubMed DOI PMC
Brissos V, Ferreira M, Grass Get al. Turning a hyperthermostable metallo-oxidase into a laccase by directed evolution. ACS Catal. 2015;5:4932–41. 10.1021/acscatal.5b00771. DOI
Brissos V, Borges PT, Núñez-Franco Ret al. Distal mutations shape substrate-binding sites during evolution of a metallo-oxidase into a laccase. ACS Catal. 2022;12:5022–35. 10.1021/acscatal.2c00336. PubMed DOI PMC
Brissos V, Borges PT, Sancho Fet al. Flexible active-site loops fine-tune substrate specificity of hyperthermophilic metallo-oxidases. J Biol Inorg Chem. 2024;29:339–51. 10.1007/s00775-023-02040-y. PubMed DOI PMC
COZYME – pan-european network on computational enzyme engineering. https://cozyme.eu/ (26 August 2025, date last accessed).
The UniProt Consortium . UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. 10.1093/nar/gkac1052. PubMed DOI PMC
Hunter S, Apweiler R, Attwood TKet al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37:D211–5. 10.1093/nar/gkn785. PubMed DOI PMC
Celniker G. Nimrot G, Ashkenazy Het al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem. 2013;5:3:199–206. https://onlinelibrary.wiley.com/doi/full/10.1002/ijch.201200096. (6 August 2025, date last accessed). DOI
Chovancova E, Pavelka A, Benes Pet al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8:e1002708. 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168. 10.1186/1471-2105-10-168. PubMed DOI PMC
Sumbalova L, Stourac J, Martinek Tet al. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018;46:W356–62. 10.1093/nar/gky417. PubMed DOI PMC
Velankar S, Dana JM, Jacobsen Jet al. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Res. 2013;41:D483–9. 10.1093/nar/gks1258. PubMed DOI PMC
64.4. GIN Indexes. PostgreSQL documentation. https://www.postgresql.org/docs/17/gin.html(6 August 2025, date last accessed).
Wilkinson MD, Dumontier M, IjJ Aet al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18. PubMed DOI PMC
Clifford D, Ausloos J. Data protection and the role of fairness. Yearbook Eur Law. 2018;37:130–87. 10.1093/yel/yey004. DOI
Khatun J, Khare SD. Dokholyan NV, Can contact potentials reliably predict stability of proteins?. J Mol Biol. 2004;336:1223–38. 10.1016/j.jmb.2004.01.002. PubMed DOI
Pucci F, Bourgeas R, Rooman M. Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Sci Rep. 2016;6:23257. 10.1038/srep23257. PubMed DOI PMC