FireProtDB 2.0: large-scale manually curated database of the protein stability data

. 2026 Jan 06 ; 54 (D1) : D409-D418.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41263104

Grantová podpora
RECETOX
e-INFRA
LM2023069 ELIXIR
90254 ELIXIR
LM2023055 ELIXIR
25-18233M Czech Ministry of Education, Youth and Sports, and Grant Agency
857560 TEAMING European Union's Horizon 2020 research and innovation programme
101136607 European Union Centre of Excellence CLARA
CA21162 COST Action COZYME
FIT-S-23-8209 Brno University of Technology

Thermostable proteins are crucial in numerous biomedical and biotechnological applications. However, naturally occurring proteins have evolved to function in mild conditions, and laboratory experiments aiming at improving protein stability have proven laborious and expensive. Computational methods overcome this issue by providing a cheap and scalable alternative. Despite significant progress, their reliability is still hindered by the availability of high-quality data. FireProtDB 2.0 (http://loschmidt.chemi.muni.cz/fireprotdb) is a large-scale database aggregating stability data from multiple sources. The second version builds upon its predecessor, retaining its original functionality while introducing a new approach to data storage and maintenance. The new scheme enables the introduction of both absolute and relative data types connected with measurements of wild-types, mutants, protein domains, and de novo designed proteins. Furthermore, while the original database was limited to single-point mutations, more complex data such as insertions, deletions, and multiple-point mutations are now available. As a result, the inclusion of large-scale mutagenesis has increased the size of the database from 16 000 to almost 5 500 000 experiments. Moreover, the updated abstract scheme is fully expandable with any new measurements and annotations without the need for any restructuring. Finally, the tracking of history together with fixed identifiers is in accordance with the FAIR principles.

Zobrazit více v PubMed

Modarres HP, Mofrad MR. Sanati-Nezhad A. Protein thermostability engineering. RSC Adv. 2016;6:115252–70. 10.1039/C6RA16992A. DOI

Daniel RM, Dines M, Petach HH. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996;317:1–11. 10.1042/bj3170001. PubMed DOI PMC

Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991;202:715–28. 10.1111/j.1432-1033.1991.tb16426.x. PubMed DOI

Gao D, Narasimhan DL, Macdonald Jet al. Thermostable variants of cocaine esterase for long-time protection against cocaine toxicity. Mol Pharmacol. 2009;75:318–23. https://molpharm.aspetjournals.org/content/75/2/318.short. PubMed PMC

Ferdjani S, Ionita M, Roy Bet al. Correlation between thermostability and stability of glycosidases in ionic liquid. Biotechnol Lett. 2011;33:1215–9. 10.1007/s10529-011-0560-5. PubMed DOI

Polizzi KM, Bommarius AS, Broering JMet al. Stability of biocatalysts. Curr Opin Chem Biol. 2007;11:220–5. 10.1016/j.cbpa.2007.01.685. PubMed DOI

Qiu Y, Huang T, Cai YD. Review of predicting protein stability changes upon variations. Proteomics. 2024;24:2300371. 10.1002/pmic.202300371. PubMed DOI

Leaver-Fay A, Tyka M, Lewis SMet al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545–74. 10.1016/B978-0-12-381270-4.00019-6. PubMed DOI PMC

Delgado J, Reche R, Cianferoni Det al. FoldX force field revisited, an improved version. Bioinformatics. 2025;41:btaf064. 10.1093/bioinformatics/btaf064. PubMed DOI PMC

Lehmann M, Loch C, Middendorf Aet al. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein Eng. 2002;15:403–11. 10.1093/protein/15.5.403. PubMed DOI

Musil M, Khan RT, Beier Aet al. FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief Bioinform. 2020;22:1–11.https://academic.oup.com/bib/article/22/4/bbaa337/6042664. PubMed PMC

Diaz DJ, Gong C, Ouyang-Zhang Jet al. Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations. Nat Commun. 2024;15:6170. 10.1038/s41467-024-49780-2. PubMed DOI PMC

Zhou Y, Pan Q, Pires DEVet al. DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res. 2023;51:W122. 10.1093/nar/gkad472. PubMed DOI PMC

Chen CW, Lin MH, Liao CCet al. iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J. 2020;18:622–30. 10.1016/j.csbj.2020.02.021. PubMed DOI PMC

Musil M, Konegger H, Hon Jet al. Computational design of stable and soluble biocatalysts. ACS Catal. 2019;9:1033–54. 10.1021/acscatal.8b03613. DOI

Frenz CM. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions. Proteins. 2005;59:147–51. 10.1002/prot.20400. PubMed DOI

Yang Y, Ding X, Zhu Get al. ProTstab – predictor for cellular protein stability. BMC Genomics. 2019;20:804. 10.1186/s12864-019-6138-7. PubMed DOI PMC

Fang X, Huang J, Zhang Ret al. Convolution neural network-based prediction of protein thermostability. J Chem Inf Model. 2019;59:4833–43. 10.1021/acs.jcim.9b00220. PubMed DOI

Buyanov I, Sarycheva A, Popov P. OrgNet: orientation-gnostic protein stability assessment using convolutional neural networks. Bioinformatics. 2025;41:i458–65. 10.1093/bioinformatics/btaf252. PubMed DOI PMC

Jiang F, Li M, Dong Jet al. A general temperature-guided language model to design proteins of enhanced stability and activity. Sci Adv. 2024;10:1–19. https://www.science.org/doi/full/10.1126/sciadv.adr2641?utm_source=chatgpt.com. PubMed DOI PMC

Jung F, Frey K, Zimmer Det al. DeepSTABp: a deep learning approach for the prediction of thermal protein stability. Int J Mol Sci. 2023;24:7444. 10.3390/ijms24087444. PubMed DOI PMC

Gong J, Jiang L, Chen Yet al. THPLM: a sequence-based deep learning framework for protein stability changes prediction upon point variations using pretrained protein language model. Bioinformatics. 2023;39:btad646. 10.1093/bioinformatics/btad646. PubMed DOI PMC

Sanavia T, Birolo G, Montanucci Let al. Limitations and challenges in protein stability prediction upon genome variations: towards future applications in precision medicine. Comput Struct Biotechnol J. 2020;18:1968–79. 10.1016/j.csbj.2020.07.011. PubMed DOI PMC

Montanucci L, Martelli PL, Ben-Tal Net al. A natural upper bound to the accuracy of predicting protein stability changes upon mutations. Bioinformatics. 2018;35:1513–17. 10.48550/arXiv.1809.10389, PubMed DOI

Sasidharan NP, Vihinen M. VariBench: a benchmark database for variations. Hum Mutat. 2013;34:42–9. 10.1002/humu.22204. PubMed DOI

Stourac J, Dubrava J, Musil Met al. FireProtDB: database of manually curated protein stability data. Nucleic Acids Res. 2021;49:D319–24. 10.1093/nar/gkaa981. PubMed DOI PMC

Yang Y, Urolagin S, Niroula Aet al. PON-tstab: protein variant stability predictor. importance of training data quality. Int J Mol Sci. 2018;19:1009. 10.3390/ijms19041009. PubMed DOI PMC

Chu AE, Lu T, Huang PS. Sparks of function by PubMed DOI PMC

Kortemme T. PubMed DOI PMC

Tsuboyama K, Dauparas J, Chen Jet al. Mega-scale experimental analysis of protein folding stability in biology and design. Nature. 2023;620:434–44. 10.1038/s41586-023-06328-6. PubMed DOI PMC

Nikam R, Kulandaisamy A, Harini Ket al. ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Res. 2021;49:D420–4. 10.1093/nar/gkaa1035. PubMed DOI PMC

Beltran A, Jiang X, Shen Yet al. Site-saturation mutagenesis of 500 human protein domains. Nature. 2025;637:885–94. 10.1038/s41586-024-08370-4. PubMed DOI PMC

Stourac J Protein engineering group. https://loschmidt.chemi.muni.cz/peg/ (26 August 2025, date last accessed).

Brissos V, Gonçalves N, Melo EPet al. Improving kinetic or thermodynamic stability of an azoreductase by directed evolution. PLoS One. 2014;9:e87209. 10.1371/journal.pone.0087209. PubMed DOI PMC

Brissos V, Tavares D, Sousa ACet al. Engineering a bacterial DyP-Type peroxidase for enhanced oxidation of lignin-related phenolics at alkaline pH. ACS Catal. 2017;7:3454–65. 10.1021/acscatal.6b03331. DOI

Borges P, Silva D, Silva TFD. Unveiling molecular details behind improved activity at neutral to alkaline pH of an engineered DyP-type peroxidase. Comput Struct Biotechnol J. 2022;20:3899–910. https://www.sciencedirect.com/science/article/pii/S200103702200(3129). PubMed PMC

Simone MD, Alvigini L, Alonso-Cotchico Let al. Rationally guided improvement of NOV1 dioxygenase for the conversion of lignin-derived isoeugenol to vanillin. Biochemistry. 2023;62:419–28.https://pubs.acs.org/doi/full/10.1021/acs.biochem.2c00168. PubMed DOI PMC

De Simone M, Alonso-Cotchico L, Lucas MFet al. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis. J Biotechnol. 2024;391:92–8. 10.1016/j.jbiotec.2024.06.012. PubMed DOI

Rodrigues CF, Borges PT, Scocozza MFet al. Loops around the heme pocket have a critical role in the function and stability of BsDyP from PubMed DOI PMC

Brissos V, Ferreira M, Grass Get al. Turning a hyperthermostable metallo-oxidase into a laccase by directed evolution. ACS Catal. 2015;5:4932–41. 10.1021/acscatal.5b00771. DOI

Brissos V, Borges PT, Núñez-Franco Ret al. Distal mutations shape substrate-binding sites during evolution of a metallo-oxidase into a laccase. ACS Catal. 2022;12:5022–35. 10.1021/acscatal.2c00336. PubMed DOI PMC

Brissos V, Borges PT, Sancho Fet al. Flexible active-site loops fine-tune substrate specificity of hyperthermophilic metallo-oxidases. J Biol Inorg Chem. 2024;29:339–51. 10.1007/s00775-023-02040-y. PubMed DOI PMC

COZYME – pan-european network on computational enzyme engineering. https://cozyme.eu/ (26 August 2025, date last accessed).

The UniProt Consortium . UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. 10.1093/nar/gkac1052. PubMed DOI PMC

Hunter S, Apweiler R, Attwood TKet al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37:D211–5. 10.1093/nar/gkn785. PubMed DOI PMC

Celniker G. Nimrot G, Ashkenazy Het al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem. 2013;5:3:199–206. https://onlinelibrary.wiley.com/doi/full/10.1002/ijch.201200096. (6 August 2025, date last accessed). DOI

Chovancova E, Pavelka A, Benes Pet al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol. 2012;8:e1002708. 10.1371/journal.pcbi.1002708. PubMed DOI PMC

Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168. 10.1186/1471-2105-10-168. PubMed DOI PMC

Sumbalova L, Stourac J, Martinek Tet al. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018;46:W356–62. 10.1093/nar/gky417. PubMed DOI PMC

Velankar S, Dana JM, Jacobsen Jet al. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Res. 2013;41:D483–9. 10.1093/nar/gks1258. PubMed DOI PMC

64.4. GIN Indexes. PostgreSQL documentation. https://www.postgresql.org/docs/17/gin.html(6 August 2025, date last accessed).

Wilkinson MD, Dumontier M, IjJ Aet al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18. PubMed DOI PMC

Clifford D, Ausloos J. Data protection and the role of fairness. Yearbook Eur Law. 2018;37:130–87. 10.1093/yel/yey004. DOI

Khatun J, Khare SD. Dokholyan NV, Can contact potentials reliably predict stability of proteins?. J Mol Biol. 2004;336:1223–38. 10.1016/j.jmb.2004.01.002. PubMed DOI

Pucci F, Bourgeas R, Rooman M. Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Sci Rep. 2016;6:23257. 10.1038/srep23257. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...