The Influence of Genome Composition and Temperature on the Hatching Success and Development of the Offspring of Allotriploid Cobitis (Pisces: Cobitidae) Females
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UMO-2021/41/B/NZ8/03231
NATIONAL SCIENCE CENTRE (NCN) in Poland
PubMed
41226702
PubMed Central
PMC12608267
DOI
10.3390/ijms262110669
PII: ijms262110669
Knihovny.cz E-zdroje
- Klíčová slova
- body length, genomic identification, hybridization, larvae abnormalities, larvae development, loaches, polyploidization,
- MeSH
- genom * MeSH
- larva genetika růst a vývoj MeSH
- máloostní MeSH
- polyploidie MeSH
- teplota * MeSH
- triploidie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hybridization and polyploidization are key evolutionary forces shaping fish biodiversity. But their interaction with environmental factors, such as temperature, remains poorly understood. This study examined how maternal genome composition and incubation water temperature influence the hatching success, ploidy structure, morphology and early growth of polyploid Cobitis larvae. Crosses were performed using triploid Cobitis females with three genomic compositions (EEN, EET and ETN), representing combinations of genomes from C. elongatoides (E), C. taenia (T) and C. tanaitica (N), and diploid C. taenia males as sperm donors. Fertilized eggs were incubated at 18 °C, 22 °C and 28 °C. Triploid and tetraploid offspring occurred in comparable proportions on average across all groups, but developmental abnormalities were significantly more observed in tetraploid larvae. Females with EET and ETN genomes achieved higher hatching success than those with the EEN genome. Temperature had a pronounced effect on developmental timing and success: hatching occurred earliest at 28 °C, but survival decreased and abnormalities were most frequent. These results highlight genome- and temperature-dependent trade-offs in early development of Cobitis hybrids, providing new insight into reproductive dynamics and the potential resilience of polyploid systems under climate warming.
Zobrazit více v PubMed
Alix M., Kjesbu O.S., Anderson K.C. From gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 2020;97:607–632. doi: 10.1111/jfb.14439. PubMed DOI
Qiang J., Duan X.-J., Zhu H.-J., He J., Tao Y.-F., Bao J.-W., Zhu X.-W., Xu P. Some ‘White’ Oocytes Undergo Atresia and Fail to Mature during the Reproductive Cycle in Female Genetically Improved Farmed Tilapia (Oreochromis niloticus) Aquaculture. 2021;534:736278. doi: 10.1016/j.aquaculture.2020.736278. DOI
Pino M.E., Braanaas M.F., Balseiro P., Kraugerud M., Pedrosa C., Imsland A.K.D., Handeland S.O. Constant High Temperature Promotes Early Changes in Testis Development Associated with Sexual Maturation in Male Atlantic Salmon (Salmo salar L.) Post-Smolts. Fishes. 2022;7:341. doi: 10.3390/fishes7060341. DOI
Calvo-Rodríguez L., Ortiz-Delgado J.B., Cañón L., de Paz P., Fernández I., Riesco M.F. Current summer heat waves impair rainbow trout (Oncorhynchus mykiss) spermatogenesis: Implications for future fish farming management practices in South Europe. Aquaculture. 2025;596:741716. doi: 10.1016/j.aquaculture.2024.741716. DOI
Tinkir M., Memiş D., Cheng Y., Xin M., Rodina M., Gela D., Tučková V., Linhart O. Level of in Vitro Storage of the European Catfish (Silurus glanis L.) Eggs at Different Temperatures. Fish Physiol. Biochem. 2021;47:163–171. doi: 10.1007/s10695-020-00902-9. PubMed DOI
Qiang J., Tao Y.F., Zhu J.H., Lu S.Q., Zao Z.M., Ma J.L., He J., Xu P. Effects of heat stress on follicular development and atresia in Nile tilapia (Oreochromis niloticus) during one reproductive cycle and its potential regulation by autophagy and apoptosis. Aquaculture. 2022;555:738171. doi: 10.1016/j.aquaculture.2022.738171. DOI
Zhang M.-Z., Li G.-L., Zhu C.-H., Deng S.-P. Effects of Fish Oil on Ovarian Development in Spotted Scat (Scatophagus argus) Anim. Reprod. Sci. 2013;141:90–97. doi: 10.1016/j.anireprosci.2013.06.020. PubMed DOI
Zhang S., Wang X., Li J., Wen H., Likang L. Effects of temperature on gonadal differentiation of black rockfish (Sebastes schlegelii) and its mechanism. J. Fish. China. 2019;43:1569–1580. doi: 10.11964/jfc.20180611335. DOI
Nakatani Y., Shingate P., Ravi V., Pillai N., Prasad A., McLysaght A., Venkatesh B. Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nat. Commun. 2021;12:4489. doi: 10.1038/s41467-021-24573-z. PubMed DOI PMC
Yu D., Ren Y., Uesaka M., Beavan A., Muffato M., Shen J., Li Y., Sato I., Wan W., Clark J., et al. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat. Ecol. Evol. 2024;8:519–535. doi: 10.1038/s41559-023-02299-z. PubMed DOI PMC
Yang L., Naylor G., Mayden R. Deciphering Reticulate Evolution of the Largest Group of Polyploid Vertebrates, the Subfamily Cyprininae (Teleostei: Cypriniformes) Mol Phylogenet Evol. 2021;166:107323. doi: 10.1016/j.ympev.2021.107323. PubMed DOI
Mable B., Alexandrou M., Taylor M. Genome duplication in amphibians and fish: An extended synthesis. J. Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI
Mezzasalma M., Brunelli E., Odierna G., Guarino F.M. Evolutionary and Genomic Diversity of True Polyploidy in Tetrapods. Animals. 2023;13:1033. doi: 10.3390/ani13061033. PubMed DOI PMC
Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC
Bartoš O., Röslein J., Kotusz J., Paces J., Pekárik L., Petrtýl M., Halačka K., Štefková Kašparová E., Mendel J., Boroń A., et al. The Legacy of Sexual Ancestors in Phenotypic Variability, Gene Expression, and Homoeolog Regulation of Asexual Hybrids and Polyploids. Mol. Biol. Evol. 2019;36:1902–1920. doi: 10.1093/molbev/msz114. PubMed DOI PMC
Mezhzherin S.V., Tsyba A.O. Genomic structure and diversity of European polyploid spined loaches (Cypriniformes, Cobitidae) in a situation of genetic instability. J. Fish. Biol. 2025:1–12. doi: 10.1111/jfb.70215. PubMed DOI
Zhao R., Wang Y., Zou L., Luo Y., Tan H., Yao J., Zhang M., Liu S. Hox Genes Reveal Variations in the Genomic DNA of Allotetraploid Hybrids Derived from Carassius auratus Red Var. (Female) × Cyprinus carpio L. (Male) BMC Genet. 2020;21:24. doi: 10.1186/s12863-020-0823-z. PubMed DOI PMC
Froese R., Pauly D., editors. FishBase. World Wide Web Electronic Publication. 2025. [(accessed on 1 August 2025)]. Available online: www.fishbase.org.
Janko K., Flajšhans M., Choleva L., Bohlen J., Šlechtová V., Rábová M., Lajbner Z., Šlechta V., Ivanova P., Dobrovolov I., et al. Diversity of European Spined Loaches (Genus Cobitis L.): An Update of the Geographic Distribution of the Cobitis taenia Hybrid Complex with a Description of New Molecular Tools for Species and Hybrid Determination. J. Fish Biol. 2007;71:387–408. doi: 10.1111/j.1095-8649.2007.01663.x. DOI
Boroń A., Grabowska A., Jablonska O., Kirtiklis L., Duda S., Juchno D. Chromosomal rDNA Distribution Patterns in Clonal Cobitis Triploid Hybrids (Teleostei, Cobitidae): Insights into Parental Genomic Contributions. Genes. 2025;16:68. doi: 10.3390/genes16010068. PubMed DOI PMC
Janko K., Kotusz J., De Gelas K., Šlechtová V., Opoldusová Z., Drozd P., Choleva L., Popiołek M., Baláž M. Dynamic Formation of Asexual Diploid and Polyploid Lineages: Multilocus Analysis of Cobitis Reveals the Mechanisms Maintaining the Diversity of Clones. PLoS ONE. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC
Juchno D., Pecio A., Boroń A., Leska A., Jablonska O., Cejko B.I., Kowalski R.K., Judycka S., Przybylski M. Evidence of the Sterility of Allotetraploid Cobitis Loaches (Teleostei, Cobitidae) Using Testes Ultrastructure. J. Exp. Zool. Pt. A. 2017;327:66–74. doi: 10.1002/jez.2071. PubMed DOI
Mezhzherin S.V., Tsyba A.A., Kryvokhyzha D. Cryptic expansion of hybrid polyploid spined loaches Cobitis in the rivers of Eastern Europe. Hydrobiologia. 2022;849:1689–1700. doi: 10.1007/s10750-022-04813-z. DOI
Choleva L., Musilova Z., Kohoutova-Sediva A., Paces J., Rab P., Janko K. Distinguishing between Incomplete Lineage Sorting and Genomic Introgressions: Complete Fixation of Allospecific Mitochondrial DNA in a Sexually Reproducing Fish (Cobitis; Teleostei), despite Clonal Reproduction of Hybrids. PLoS ONE. 2014;9:e80641. doi: 10.1371/journal.pone.0080641. PubMed DOI PMC
Juchno D., Boroń A., Gołaszewski J. Comparative Morphology and Histology of the Ovaries of the Spined Loach Cobitis taenia L. and Natural Allopolyploids of Cobitis (Cobitidae) J. Fish Biol. 2007;70:1392–1411. doi: 10.1111/j.1095-8649.2007.01419.x. DOI
Dedukh D., Majtánová Z., Marta A., Pšenička M., Kotusz J., Klíma J., Juchno D., Boron A., Janko K. Parthenogenesis as a Solution to Hybrid Sterility: The Mechanistic Basis of Meiotic Distortions in Clonal and Sterile Hybrids. Genetics. 2020;215:975–987. doi: 10.1534/genetics.119.302988. PubMed DOI PMC
Marta A., Tichopád T., Bartoš O., Klíma J., Shah M.A., Bohlen V.Š., Bohlen J., Halačka K., Choleva L., Stöck M., et al. Genetic and Karyotype Divergence between Parents Affect Clonality and Sterility in Hybrids. eLife. 2023;12:RP88366. doi: 10.7554/eLife.88366.3. PubMed DOI PMC
Dedukh D., Marta A., Janko K. Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex. Int. J. Mol. Sci. 2021;22:12117. doi: 10.3390/ijms222212117. PubMed DOI PMC
Juchno D., Jabłońska O., Boroń A., Kujawa R., Leska A., Grabowska A., Nynca A., Świgońska S., Król M., Spóz A., et al. Ploidy-Dependent Survival of Progeny Arising from Crosses between Natural Allotriploid Cobitis Females and Diploid C. taenia Males (Pisces, Cobitidae) Genetica. 2014;142:351–359. doi: 10.1007/s10709-014-9779-0. PubMed DOI
Jiang Y., Liu S., Hu J., He G., Liu Y., Chen X., Lei T., Li Q., Yang L., Li W., et al. Polyploidization of Plumbago auriculata Lam. in vitro and its characterization including cold tolerance. Plant Cell Tissue Organ Cult. 2020;140:315–325. doi: 10.1007/s11240-019-01729-w. DOI
Glennon K.L., Niemann H.J., Archibald S. Fire-mediated effects on polyploid biology. Trends Ecol. Evol. 2024;39:424–426. doi: 10.1016/j.tree.2024.02.007. PubMed DOI
Hermaniuk A., Rybacki M., Taylor J.R.E. Low Temperature and Polyploidy Result in Larger Cell and Body Size in an Ectothermic Vertebrate. Physiol. Biochem. Zool. 2016;89:118–129. doi: 10.1086/684974. PubMed DOI
Maciak S., Janko K., Kotusz J., Choleva L., Boroń A., Juchno D., Kujawa R., Kozłowski J., Konarzewski M. Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct. Ecol. 2011;25:1072–1078. doi: 10.1111/j.1365-2435.2011.01870.x. DOI
Jin Y., Liu Z., Yuan X., Jiang Y. Stage-specific Influence of Temperature on the Growth Rate of Japanese Spanish Mackerel (Scomberomorus niphonius) in Early Life. J. Fish Biol. 2022;100:498–506. doi: 10.1111/jfb.14959. PubMed DOI
Bohlen J. Reproduction of Spined Loach, Cobitis taenia, (Cypriniformes; Cobitidae) under Laboratory Conditions. J. Appl. Ichthyol. 1999;15:49–53. doi: 10.1046/j.1439-0426.1999.00122.x. DOI
Niu J., Huss M., Vasemägi A., Gårdmark A. Decades of Warming Alters Maturation and Reproductive Investment in Fish. Ecosphere. 2023;14:e4381. doi: 10.1002/ecs2.4381. DOI
Fraz S., Laframboise L., Manzon R., Somers C.M., Wilson J.Y. Embryonic and Larval Development of Yellow Perch (Perca flavescens) and Its Sensitivity to Incubation Temperature. J. Fish Biol. 2024;105:735–751. doi: 10.1111/jfb.15813. PubMed DOI
Sardi A.E., Bégout M.L., Lalles A.L., Cousin X., Budzinski H. Temperature and feeding frequency impact the survival, growth, and metamorphosis success of Solea solea larvae. PLoS ONE. 2023;18:e0281193. doi: 10.1371/journal.pone.0281193. PubMed DOI PMC
Howard C., Taylor J.F., Migaud H., Gutierrez A.P., Bekaert M. Comparison of Diploid and Triploid Atlantic Salmon (Salmo salar) Physiological Embryonic Development. Animals. 2023;13:3352. doi: 10.3390/ani13213352. PubMed DOI PMC
Juchno D., Boroń A., Szlachciak J., Kujawa R. Early Development and Post Embryonic Skeletal Morphology of the Progeny of Spined Loach Cobitis taenia L. (Teleostei, Cobitidae) and its Naturally Occurring Allotriploids. Folia Biol. 2016;64:153–162. doi: 10.3409/fb64_3.153. PubMed DOI
Kočí J., Röslein J., Pačes J., Kotusz J., Halačka K., Koščo J., Fedorčák J., Iakovenko N., Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol. Ecol. 2020;29:3038–3055. doi: 10.1111/mec.15539. PubMed DOI PMC
Wang J., Xiao J., Zeng M., Xu K., Tao M., Zhang C., Duan W., Liu W., Luo K., Liu Y., et al. Genomic Variation in the Hybrids of White Crucian Carp and Red Crucian Carp: Evidence from Ribosomal DNA. Sci. China Life Sci. 2015;58:590–601. doi: 10.1007/s11427-015-4835-2. PubMed DOI
Káldy J., Mozsár A., Fazekas G., Farkas M., Fazekas D.L., Fazekas G.L., Goda K., Gyöngy Z., Kovács B., Semmens K., et al. Hybridization of Russian Sturgeon (Acipenser gueldenstaedtii, Brandt and Ratzeberg, 1833) and American Paddlefish (Polyodon spathula, Walbaum 1792) and Evaluation of Their Progeny. Genes. 2020;11:753. doi: 10.3390/genes11070753. PubMed DOI PMC
Atsumi K., Nomoto K., Machida Y., Ichimura M., Koizumi I. No reduction of hatching rates among F1hybrids of naturally hybridizing three Far Eastern daces, genus Tribolodon (Cypriniformes, Cyprinidae) Ichthyol. Res. 2017;65:165–167. doi: 10.1007/s10228-017-0588-1. DOI
Fu W., Zhang J., Xu W., He S., Long M., Liao Q., Liu J., Peng L., Liu W., Xiao Y. Characteristics of hatching enzymes and egg envelope in cross progenies from crucian carp (Carassius auratus var.) and zebrafish (Barchydanio rerio var.) Reprod. Breed. 2021;1:81–88. doi: 10.1016/j.repbre.2021.04.001. DOI
Wang G., Zhang X., Sun Z., Zhao Y., Du W., Cui J., Hou J., Wang Y. Induction of gyno-tetraploidy in Japanese flounder Paralichthys olivaceus. J. Oceanol. Limnol. 2019;38:288–293. doi: 10.1007/s00343-019-8252-4. DOI
Ren L., Tang C., Li W., Cui J., Tan X., Xiong Y., Chen J., Wang J., Xiao J., Zhou Y., et al. Determination of dosage compensation and comparison of gene expression in a triploid hybrid fish. BMC Genom. 2017;18:38. doi: 10.1186/s12864-016-3424-5. PubMed DOI PMC
Li W., Liu J., Tan H., Luo L., Cui J., Hu J., Wang S., Liu Q., Hu F., Tang C., et al. Asymmetric expression patterns reveal a strong maternal effect and dosage compensation in polyploid hybrid fish. BMC Genom. 2018;19:517. doi: 10.1186/s12864-018-4883-7. PubMed DOI PMC
Ren L., Zhang X., Li J., Yan X., Gao X., Cui J., Tang C., Liu S. Diverse transcriptional patterns of homoeologous recombinant transcripts in triploid fish (Cyprinidae) Sci. China Life Sci. 2021;64:1491–1501. doi: 10.1007/s11427-020-1749-9. PubMed DOI
Wang Y., Li X., Xu W., Wang K., Wu B., Xu M., Chen Y., Miao L., Wang Z., Li Z., et al. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol. 2022;6:1354–1366. doi: 10.1038/s41559-022-01813-z. PubMed DOI PMC
Luo J., Chai J., Wen Y., Tao M., Lin G., Liu X., Ren L., Chen Z., Wu S., Li S., et al. From asymmetrical to balanced genomic diversification during rediploidization: Subgenomic evolution in allotetraploid fish. Sci. Adv. 2020;6:eaaz7677. doi: 10.1126/sciadv.aaz7677. PubMed DOI PMC
Xu M., Liao Z., Brock J., Du K., Li G., Chen Z., Wang Y., Gao Z., Agarwal G., Wei K., et al. Maternal dominance contributes to subgenome differentiation in allopolyploid fishes. Nat. Commun. 2023;14:8357. doi: 10.1038/s41467-023-43740-y. PubMed DOI PMC
Hasan M., Sultana Mely S., Faruk A., Nayeem Hossain M. Climate Change Effects on Hatching Success, Embryonic Development and Larvae Survival of Freshwater Fish: A Critical Review. Int. J. Ecotoxicol. Ecobiol. 2023;16:24. doi: 10.11648/j.ijee.20230804.11. DOI
Ashaf-Ud-Doulah M., Islam S.M.M., Zahangir M.M., Islam M.S., Brown C., Shahjahan M. Increased water temperature interrupts embryonic and larval development of Indian major carp rohu Labeo rohita. Aquacult Int. 2021;29:711–722. doi: 10.1007/s10499-021-00649-x. DOI
Schmitz A.M., Sepulveda Villet O.J. Short term temperature fluctuations affect embryonic and larval development of yellow perch (Perca flavescens) J. Aquac. Mar. Biol. 2021;10:168–176. doi: 10.15406/jamb.2021.10.00318. DOI
Pepin P., Orr D.C., Anderson J.T. Time to Hatch and Larval Size in Relation to Temperature and Egg Size in Atlantic Cod (Gadus morhua) Can. J. Fish. Aquat. Sci. 1997;54:2–10. doi: 10.1139/f96-154. DOI
El-Gamal A.E.-H.E. Effect of Temperature on Hatching and Larval Development and Mucin Secretion in Common Carp, Cyprinus carpio (Linnaeus, 1758) Glob. Vet. 2009;3:80–90.
Dionísio G., Campos C., Valente L.M.P., Conceição L.E.C., Cancela M.L., Gavaia P.J. Effect of Egg Incubation Temperature on the Occurrence of Skeletal Deformities in Solea senegalensis: Effect of Incubation Temperature on Skeletal Deformities of Sole. J. Appl. Ichthyol. 2012;28:471–476. doi: 10.1111/j.1439-0426.2012.01996.x. DOI
De Souza A.M., da Silva Junior F.C., Dantas É.D., Galvão-Pereira M.C., de Medeiros S.R.B., Luchiari A.C. Temperature effects on development and lifelong behavior in zebrafish. Sci. Total Environ. 2025;973:179172. doi: 10.1016/j.scitotenv.2025.179172. PubMed DOI
Rey J., Nguyen T., Singchat W., Punthum T., Kraichak E., Panochit P., Maneeaphai W., Phuonnim A., Sengtrakool S., Sriphairoj K., et al. Impact of higher temperatures on yolk sac absorption and early development in hybrid catfish between Clarias gariepinus and C. macrocephalus. J. World Aquac. Soc. 2025;56:e13119. doi: 10.1111/jwas.13119. DOI
Myers J., Chatakondi N., Dunham R., Butts I. Genetic architecture of early life history traits for channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrid production. Aquaculture. 2020;514:734436. doi: 10.1016/j.aquaculture.2019.734436. DOI
Huang J., Chen G., Wang Z., Zhang J. Use of response surface methodology to study the combined effects of temperature and salinity on hatching and deformity of the hybrid grouper, Epinephelus fuscoguttatus (♀)× Epinephelus polyphekadion (♂) Aquac. Res. 2018;49:1997–2005. doi: 10.1111/are.13655. DOI
Lee J., Han K., Choi W., Yu T., Kim H., Lee S. Effects of Water Temperature and Salinity on the Growth and Survival of Hybrid Pufferfish Larvae (Takifugu obscurus ♀ × T. rubripes ♂) Aquac. Res. 2024;2024:8511980. doi: 10.1155/2024/8511980. DOI
Bohlen J. Spawning habitat in the spined loach, Cobitis taenia (Cypriniformes: Cobitidae) Ichthyol Res. 2003;50:0098–0101. doi: 10.1007/s102280300016. DOI
Bohlen J., Ritterbusch D. Which factors affect sex ratio of spined loach (genus Cobitis) in Lake Müggelsee? Environ. Biol. Fishes. 2000;59:347–352. doi: 10.1023/A:1007695703991. DOI
Aristarkhova E., Fedoniuk T., Romanchuk L., Latushynskyi S., Kot I. Features of the surface water oxygen regime in the Ukrainian Polesie Region. J. Water Land Dev. 2023;49:104–110. doi: 10.24425/jwld.2021.137102. DOI
Fraser G., Bestgen K., Winkelman D., Thompson K. Temperature—Not Flow—Predicts Native Fish Reproduction with Implications for Climate Change. Trans. Am. Fish. Soc. 2019;148:509–527. doi: 10.1002/tafs.10151. DOI
Koenigbauer S., Cubbage M., Warren L., Tellier J., Selz O., Sass G., Höök T. Fish reproductive phenology shifts with increasing temperature and year. Biol. Lett. 2025;21:20240240. doi: 10.1098/rsbl.2024.0240. PubMed DOI PMC
Pankhurst N., Munday P. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011;62:1015–1026. doi: 10.1071/MF10269. DOI
Servili A., Canário A., Mouchel O., Muñoz-Cueto J. Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen. Comp. Endocrinol. 2020;291:113439. doi: 10.1016/j.ygcen.2020.113439. PubMed DOI
Lema S., Luckenbach J., Yamamoto Y., Housh M. Fish reproduction in a warming world: Vulnerable points in hormone regulation from sex determination to spawning. Philos. Trans. R. Soc. B. 2024;379:20220516. doi: 10.1098/rstb.2022.0516. PubMed DOI PMC
Mitra A., Abdel-Gawad F., Bassem S., Barua P., Assisi L., Parisi C., Temraz T., Vangone R., Kajbaf K., Kumar V., et al. Climate Change and Reproductive Biocomplexity in Fishes: Innovative Management Approaches towards Sustainability of Fisheries and Aquaculture. Water. 2023;15:725. doi: 10.3390/w15040725. DOI
Choleva L., Janko K., De Gelas K., Bohlen J., Šlechtová V., Rábová M., Ráb P. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution. 2012;66:2191–2203. doi: 10.1111/j.1558-5646.2012.01589.x. PubMed DOI
Luo K., Xiao J., Liu S., Wang J., He W., Hu J., Qin Q., Zhang C., Tao M., Liu Y. Massive Production of All-Female Diploids and Triploids in the Crucian Carp. Int. J. Biol. Sci. 2011;7:487–495. doi: 10.7150/ijbs.7.487. PubMed DOI PMC
Zhou L., Wang Y., Gui J.-F. Genetic Evidence for Gonochoristic Reproduction in Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) as Revealed by RAPD Assays. J. Mol. Evol. 2000;51:498–506. doi: 10.1007/s002390010113. PubMed DOI
Arai K., Fujimoto T. Genomic Constitution and Atypical Reproduction in Polyploid and Unisexual Lineages of the Misgurnus Loach, a Teleost Fish. Cytogenet. Genome Res. 2013;140:226–240. doi: 10.1159/000353301. PubMed DOI
Arai K. Meiosis and gametogenesis in hybrid, polyploid, and clonal fishes: Case studies in the dojo loach Misgurnus anguillicaudatus. Fish. Sci. 2023;89:537–570. doi: 10.1007/s12562-023-01703-8. DOI
Janko K., Bartoš O., Kočí J., Roslein J., Janková Drdová E., Kotusz J., Eisner J., Mokrejš M., Štefková-Kašparová E. Genome Fractionation and Loss of Heterozygosity in Hybrids and Polyploids: Mechanisms, Consequences for Selection, and Link to Gene Function. Mol. Biol. Evol. 2021;38:5255–5274. doi: 10.1093/molbev/msab249. PubMed DOI PMC
Coghlan A.R., Blanchard J.L., Wotherspoon S., Stuart-Smith R.D., Edgar G.J., Barrett N., Audzijonyte A. Mean Reef Fish Body Size Decreases towards Warmer Waters. Ecol. Lett. 2024;27:e14375. doi: 10.1111/ele.14375. PubMed DOI
Lindmark M., Audzijonyte A., Blanchard J.L., Gårdmark A. Temperature Impacts on Fish Physiology and Resource Abundance Lead to Faster Growth but Smaller Fish Sizes and Yields under Warming. Glob. Chang. Biol. 2022;28:6239–6253. doi: 10.1111/gcb.16341. PubMed DOI PMC
Park J.W., Yoo H., Jung H., Park H.J., Bae K., Kang C.K., Lee C. Effects of water temperature changes on the early life stages (egg and larvae) of walleye Pollock (Gadus chalcogrammus)—Laboratory experiments and field applications. J. Exp. Mar. Biol. Ecol. 2024;571:151980. doi: 10.1016/j.jembe.2023.151980. DOI
Miller N.A., Stillman J.H. Physiological Optima and Critical Limits. Nat. Educ. Knowl. 2012;3:1.
Qiang J., Zhong C., Bao J., Liang M., Liang C., Li H., He J., Xu P. The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) J. Therm. Biol. 2019;86:102436. doi: 10.1016/j.jtherbio.2019.102436. PubMed DOI
Hubálek M., Kašpar V., Tichopád T., Rodina M., Flajšhans M. How do suboptimal temperatures affect polyploid sterlet Acipenser ruthenus during early development? J. Fish Biol. 2022;101:77–91. doi: 10.1111/jfb.15072. PubMed DOI
Atkinson D. Temperature and organism size—A biological law for ectotherms? Adv. Ecol. Res. 1994;25:1–58.
Ohlberger J. Climate Warming and Ectotherm Body Size—From Individual Physiology to Community Ecology. Funct. Ecol. 2013;27:991–1001. doi: 10.1111/1365-2435.12098. DOI
Spies I., Canino M., Dorn M., Jimenez-Hidalgo I., Hauser L. Growth Patterns of Larval Walleye Pollock Gadus chalcogrammus from Core and Peripheral Habitat Differ in Response to Temperature. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2022;199:105083. doi: 10.1016/j.dsr2.2022.105083. DOI
Réalis-Doyelle E., Pasquet A., Fontaine P., Teletchea F. Effects of Temperature on the Survival and Development of the Early Life Stages of Northern Pike (Esox lucius) Knowl. Manag. Aquat. Ecosyst. 2022;423:10. doi: 10.1051/kmae/2022007. DOI
Jablonska O., Duda S., Gajowniczek S., Nitkiewicz A., Fopp-Bayat D. Toll-like Receptor Type 2 and 13 Gene Expression and Immune Cell Profiles in Diploid and Triploid Sterlets (Acipenser ruthenus): Insights into Immune Competence in Polyploid Fish. Int. J. Mol. Sci. 2025;26:3986. doi: 10.3390/ijms26093986. PubMed DOI PMC
De Gelas K., Janko K., Volckaert F.A.M., De Charleroy D., Van Houdt J.K.J. Development of Nine Polymorphic Microsatellite Loci in the Spined Loach, Cobitis taenia, and Cross-species Amplification in the Related Species C. elongatoides, C. taurica and C. tanaitica. Mol. Ecol. Resour. 2008;8:1001–1003. doi: 10.1111/j.1755-0998.2008.02135.x. PubMed DOI
Levan A., Fredga K., Sandberg A.A. Nomenclature for Centromeric Position on Chromosomes. Hereditas. 2009;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Jezierska B., Lugowska K., Witeska M., Sarnowski P. Malformations of newly hatched common carp larvae. Electron. J. Pol. Agric. Univ. 2000;3:1.
Alix M., Zarski D., Chardard D., Fontaine P., Schaerlinger B. Deformities in Newly Hatched Embryos of Eurasian Perch Populations Originating from Two Different Rearing Systems. J. Zool. 2017;302:126–137. doi: 10.1111/jzo.12447. DOI