FGF2 supports NANOG expression via pyruvate dehydrogenase-dependent histone acetylation under low oxygen conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41230500
PubMed Central
PMC12602506
DOI
10.3389/fcell.2025.1623814
PII: 1623814
Knihovny.cz E-zdroje
- Klíčová slova
- FGF2, ROS - reactive oxygen species, histone acetylation, nanog, pluripotency, pyruvate dehydrogenase - PDH,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The safe and effective application of human pluripotent stem cells (hPSCs) in research and regenerative medicine requires precise control over pluripotency and cell fate. Pluripotency is characterized by high histone acetylation and aerobic glycolysis, while differentiation involves metabolic remodeling and reduced acetylation. Pyruvate dehydrogenase (PDH) links these processes by converting glycolytic pyruvate into acetyl coenzyme A (Ac-CoA), the key substrate for histone acetylation. METHODS: We investigated how PDH activity regulates histone acetylation and pluripotency maintenance under physiologically relevant oxygen levels (5% and 21% O₂). PDH contribution to histone acetylation was assessed using a specific PDH inhibitor, followed by rescue experiments with acetyl-CoA precursors. hPSCs were exposed to variations in FGF2 signaling and reactive oxygen species (ROS) using H₂O₂ treatment to evaluate redox-dependent modulation of PDH and downstream effects on pluripotency factors. Protein levels and post-translational modifications were analyzed by Western blotting and quantitative PCR, relative metabolite concentrations by LC-MS, and ROS levels by fluorescence microscopy. RESULTS: Active PDH promoted global histone H3 acetylation and upregulated the expression of the pluripotency factor NANOG, specifically under 5% O₂. Mechanistic analysis revealed a novel FGF2-MEK1/2-ERK1/2-ROS signaling axis that regulates PDH activity through redox-sensitive mechanisms. This regulatory pathway was oxygen-dependent and absent under atmospheric oxygen levels (21% O₂). DISCUSSION: These findings identify PDH as a redox-sensitive metabolic switch connecting cellular metabolism with the epigenetic control of pluripotency by modulating Ac-CoA availability. CONCLUSION: Our study highlights the importance of oxygen tension, ROS homeostasis, and growth factor signaling in shaping the metabolic-epigenetic landscape of hPSCs, with implications for optimizing stem cell culture and differentiation protocols.
Department of Biochemistry Faculty of Medicine Masaryk University Brno Czechia
Department of Biochemistry Faculty of Science Masaryk University Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czechia
International Clinical Research Center St Anne's University Hospital Brno Czechia
Zobrazit více v PubMed
Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P. W., Beighton G., et al. (2007). Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat. Biotechnol. 25 (7), 803–816. 10.1038/nbt1318 PubMed DOI
Bell K. F. S., Al-Mubarak B., Martel M. A., McKay S., Wheelan N., Hasel P., et al. (2015). Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun. 2015 6 (1), 7066–15. 10.1038/ncomms8066 PubMed DOI PMC
Carter B., Zhao K. (2020). The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 22 (4), 235–250. 10.1038/s41576-020-00300-0 PubMed DOI PMC
Cerniglia G. J., Dey S., Gallagher-Colombo S. M., Daurio N. A., Tuttle S., Busch T. M., et al. (2015). The PI3K/Akt pathway regulates oxygen metabolism PubMed DOI PMC
Cesi G., Walbrecq G., Zimmer A., Kreis S., Haan C. (2017). ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol. Cancer 16 (1), 1–16. 10.1186/S12943-017-0667-Y/FIGURES/9 PubMed DOI PMC
Chen G., Gulbranson D. R., Yu P., Hou Z., Thomson J. A. (2012). Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30 (4), 623–630. 10.1002/stem.1021 PubMed DOI PMC
Cheung P., Tanner K. G., Cheung W. L., Sassone-Corsi P., Denu J. M., Allis C. D. (2000). Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5 (6), 905–915. 10.1016/S1097-2765(00)80256-7 PubMed DOI
Chiarugi P., Cirri P. (2003). Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 28 (9), 509–514. 10.1016/S0968-0004(03)00174-9 PubMed DOI
Choi H. W., Kim J. H., Chung M. K., Hong Y. J., Jang H. S., Seo B. J., et al. (2015). Mitochondrial and metabolic remodeling during reprogramming and differentiation of the reprogrammed cells. Https//Home.Liebertpub.Com/Scd 24 (11), 1366–1373. 10.1089/SCD.2014.0561 PubMed DOI
Cui P., Zhang P., Zhang Y., Sun L., Cui G., Guo X., et al. (2020). HIF-1α/Actl6a/H3K9ac axis is critical for pluripotency and lineage differentiation of human induced pluripotent stem cells. FASEB J. Official Publ. Fed. Am. Soc. Exp. Biol. 34 (4), 5740–5753. 10.1096/FJ.201902829RR PubMed DOI
Dvorak P., Dvorakova D., Koskova S., Vodinska M., Najvirtova M., Krekac D., et al. (2005). Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells Dayt. Ohio 23 (8), 1200–1211. 10.1634/stemcells.2004-0303 PubMed DOI
Eiselleova L., Matulka K., Kriz V., Kunova M., Schmidtova Z., Neradil J., et al. (2009). A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27 (8), 1847–1857. 10.1002/stem.128 PubMed DOI PMC
Fischer B., Bavister B. D. (1993). Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reproduction Fertil. 99 (2), 673–679. 10.1530/jrf.0.0990673 PubMed DOI
Fojtík P., Beckerová D., Holomková K., Šenfluk M., Rotrekl V. (2021). Both hypoxia-inducible factor 1 and MAPK signaling pathway attenuate PI3K/AKT PubMed DOI PMC
Folmes C. D. L., Nelson T. J., Martinez-Fernandez A., Arrell D. K., Lindor J. Z., Dzeja P. P., et al. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell metab. 14 (2), 264–271. 10.1016/j.cmet.2011.06.011 PubMed DOI PMC
Forman H. J., Bernardo A., Davies K. J. A. (2016). What is the concentration of hydrogen peroxide in blood and plasma? Archives Biochem. Biophysics 603, 48–53. 10.1016/J.ABB.2016.05.005 PubMed DOI
Formenti F., Constantin-Teodosiu D. (2010). Regulation of human metabolism by hypoxia-inducible factor. Proc. The. 10.1073/pnas.1002339107/-/DCSupplemental PubMed DOI PMC
Forristal C. E., Wright K. L., Hanley N. A., Oreffo R. O. C., Houghton F. D. (2010). Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reprod. Camb. Engl. 139 (1), 85–97. 10.1530/REP-09-0300 PubMed DOI PMC
Forristal C. E., Christensen D. R., Chinnery F. E., Petruzzelli R., Parry K. L., Sanchez-Elsner T., et al. (2013). Environmental oxygen tension regulates the energy metabolism and self-renewal of human embryonic stem cells. PLoS ONE 8 (5), 62507. 10.1371/journal.pone.0062507 PubMed DOI PMC
Fumarola C., Cretella D., La Monica S., Bonelli M. A., Alfieri R., Caffarra C., et al. (2017). Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism. Oncotarget 8 (54), 91841–91859. 10.18632/ONCOTARGET.19279 PubMed DOI PMC
Geary L., Labonne C. (2018). FGF mediated mapk and pi3k/akt signals make distinct contributions to pluripotency and the establishment of neural crest. ELife 7, e33845. 10.7554/eLife.33845 PubMed DOI PMC
Goda N., Kanai M. (2012). Hypoxia-inducible factors and their roles in energy metabolism. Int. J. Hematol. 95 (5), 457–463. 10.1007/s12185-012-1069-y PubMed DOI
Gottlob K., Majewski N., Kennedy S., Kandel E., Robey R. B., Hay N. (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes and Dev. 15 (11), 1406–1418. 10.1101/GAD.889901 PubMed DOI PMC
Guo Y., Einhorn L., Kelley M., Hirota K., Yodoi J., Reinbold R., et al. (2004). Redox regulation of the embryonic stem cell transcription factor Oct-4 by thioredoxin. STEM CELLS 22 (3), 259–264. 10.1634/STEMCELLS.22-3-259 PubMed DOI
Haghighi F., Dahlmann J., Nakhaei-Rad S., Lang A., Kutschka I., Zenker M., et al. (2018). bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun. Signal. 16 (1), 96. 10.1186/s12964-018-0307-1 PubMed DOI PMC
Hattori N., Imao Y., Nishino K., Hattori N., Ohgane J., Yagi S., et al. (2007). Epigenetic regulation of nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12 (3), 387–396. 10.1111/J.1365-2443.2007.01058.X PubMed DOI
Hayashi Y., Ohnuma K., Furue M. K. (2019). Pluripotent stem cell heterogeneity. Adv. Exp. Med. Biol. 1123, 71–94. 10.1007/978-3-030-11096-3_6 PubMed DOI
Hedley D. W., Hallahan A. R., Tripp E. H. (1990). Flow cytometric measurement of glutathione content of human cancer biopsies. Br. J. Cancer 61 (1), 65–68. 10.1038/BJC.1990.14 PubMed DOI PMC
Hitosugi T., Fan J., Chung T. W., Lythgoe K., Wang X., Xie J., et al. (2011). Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell 44 (6), 864–877. 10.1016/j.molcel.2011.10.015 PubMed DOI PMC
Horne G. A., Stewart H. J. S., Dickson J., Knapp S., Ramsahoye B., Chevassut T. (2014). Nanog requires BRD4 to maintain murine embryonic stem cell pluripotency and is suppressed by bromodomain inhibitor JQ1 together with Lefty1. Stem Cells Dev. 24 (7), 879–891. 10.1089/SCD.2014.0302 PubMed DOI PMC
Huang F., Abmayr S. M., Workman J. L. (2016). Regulation of KAT6 acetyltransferases and their roles in cell cycle progression, stem cell maintenance, and human disease. Regul. KAT6 Acetyltransferases Their Roles Cell Cycle Progression, Stem Cell Maintenance, Hum. Dis. 36, 1900–1907. 10.1128/MCB.00055-16 PubMed DOI PMC
Jin Q., Yu L. R., Wang L., Zhang Z., Kasper L. H., Lee J. E., et al. (2011). Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30 (2), 249–262. 10.1038/EMBOJ.2010.318 PubMed DOI PMC
Jo C., Park S., Oh S., Choi J., Kim E. K., Youn H. D., et al. (2020). Histone acylation marks respond to metabolic perturbations and enable cellular adaptation. Exp. and Mol. Med. 52 (12), 2005–2019. 10.1038/s12276-020-00539-x PubMed DOI PMC
Kalmar T., Lim C., Hayward P., Muñoz-Descalzo S., Nichols J., Garcia-Ojalvo J., et al. (2009). Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLOS Biol. 7 (7), e1000149. 10.1371/JOURNAL.PBIO.1000149 PubMed DOI PMC
Karagiota A., Kanoura A., Paraskeva E., Simos G., Chachami G. (2022). Pyruvate dehydrogenase phosphatase 1 (PDP1) stimulates HIF activity by supporting histone acetylation under hypoxia. FEBS J. 290, 2165–2179. 10.1111/FEBS.16694 PubMed DOI
Kelly G., Grose R., Zhang J., Zhang J.-S., J-s Z., Mossahebi-Mohammadi M., et al. (2020). FGF signaling pathway: a key regulator of stem cell pluripotency. Cell Dev. Biol. 8, 79. 10.3389/fcell.2020.00079 PubMed DOI PMC
Kim J., Tchernyshyov I., Semenza G. L., Dang C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3 (3), 177–185. 10.1016/j.cmet.2006.02.002 PubMed DOI
Kim M. S., Cho H. I., Park S. H., Kim J. H., Chai Y. G., Jang Y. K. (2015). The histone acetyltransferase Myst2 regulates nanog expression, and is involved in maintaining pluripotency and self-renewal of embryonic stem cells. FEBS Lett. 589 (8), 941–950. 10.1016/J.FEBSLET.2015.02.029 PubMed DOI
Kim J. H., Choi T. G., Park S., Yun H. R., Nguyen N. N. Y., Jo Y. H., et al. (2018). Mitochondrial ROS-Derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death Differ. 25 (11), 1921–1937. 10.1038/s41418-018-0165-9 PubMed DOI PMC
Kjartansdóttir K. R., Gabrielsen A., Reda A., Söder O., Bergström-Tengzelius R., Andersen C. Y., et al. (2012). Differentiation of stem cells upon deprivation of exogenous FGF2: a general approach to study spontaneous differentiation of hESCs PubMed DOI PMC
Korotchkina L. G., Patel M. S. (2001). Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J. Biol. Chem. 276 (40), 37223–37229. 10.1074/JBC.M103069200 PubMed DOI
Krutá M., Šeneklová M., Raška J., Salykin A., Zerzánková L., Pešl M., et al. (2014). Mutation frequency dynamics in hprt locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev. 23 (20), 2443–2454. 10.1089/scd.2013.0611 PubMed DOI PMC
Kučera J., Netušilová J., Sladeček S., Lánová M., Vašíček O., Štefková K., et al. (2017). Hypoxia downregulates MAPK/ERK but not STAT3 signaling in ROS-dependent and HIF-1-Independent manners in Mouse embryonic stem cells. PubMed DOI PMC
Lees J. G., Cliff T. S., Gammilonghi A., Ryall J. G., Dalton S., Gardner D. K., et al. (2019). Oxygen regulates human pluripotent stem cell metabolic flux. Stem Cells Int. 2019, 8195614. 10.1155/2019/8195614 PubMed DOI PMC
Levenson J. M., O’Riordan K. J., Brown K. D., Trinh M. A., Molfese D. L., Sweatt J. D. (2004). Regulation of histone acetylation during memory Formation in the hippocampus. J. Biol. Chem. 279 (39), 40545–40559. 10.1074/JBC.M402229200 PubMed DOI
Li M., Izpisua Belmonte J. C. (2018). Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 20 (4), 382–392. 10.1038/s41556-018-0067-6 PubMed DOI PMC
Li J., Wang G., Wang C., Zhao Y., Zhang H., Tan Z., et al. (2007). MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75 (4), 299–307. 10.1111/j.1432-0436.2006.00143.x PubMed DOI
Li Y., Gruber J. J., Litzenburger U. M., Zhou Y., Miao Y. R., LaGory E. L., et al. (2020). Acetate supplementation restores chromatin accessibility and promotes tumor cell differentiation under hypoxia. Cell Death Dis. 11 (2), 102. 10.1038/S41419-020-2303-9 PubMed DOI PMC
Li A. M., He B., Karagiannis D., Li Y., Jiang H., Srinivasan P., et al. (2023). Serine starvation silences estrogen receptor signaling through histone hypoacetylation. Proc. Natl. Acad. Sci. U. S. A. 120 (38), e2302489120. 10.1073/PNAS.2302489120 PubMed DOI PMC
Liemburg-Apers D. C., Willems P. H. G. M., Koopman W. J. H., Grefte S. (2015). Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Archives Toxicol. 89 (8), 1209–1226. 10.1007/S00204-015-1520-Y PubMed DOI PMC
Lin Q., Lee Y. J., Yun Z. (2006). Differentiation arrest by hypoxia. J. Biol. Chem. 281 (41), 30678–30683. 10.1074/jbc.C600120200 PubMed DOI
Liu J., Chen G., Liu Z., Liu S., Cai Z., You P., et al. (2018). Aberrant FGFR tyrosine kinase signaling enhances the warburg effect by reprogramming LDH isoform expression and activity in prostate cancer. Cancer Res. 78 (16), 4459–4470. 10.1158/0008-5472.CAN-17-3226 PubMed DOI PMC
Lyublinskaya O., Antunes F. (2019). Measuring intracellular concentration of hydrogen peroxide with the use of genetically encoded H2O2 biosensor HyPer. Redox Biol. 24, 101200. 10.1016/J.REDOX.2019.101200 PubMed DOI PMC
Mathieu J., Zhang Z., Nelson A., Lamba D. A., Reh T. A., Ware C., et al. (2013). Hypoxia induces re-entry of committed cells into pluripotency. Stem Cells 31 (9), 1737–1748. 10.1002/stem.1446 PubMed DOI PMC
Meng T. C., Fukada T., Tonks N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases PubMed DOI
Molavian H. R., Kohandel M., Sivaloganathan S. (2016). High concentrations of H2O2 make aerobic glycolysis energetically more favorable for cellular respiration. Front. Physiology 7 (AUG), 362. 10.3389/FPHYS.2016.00362 PubMed DOI PMC
Momtahan N., Crosby C. O., Zoldan J. (2019). The role of reactive oxygen species in PubMed DOI PMC
Moráň L., Pivetta T., Masuri S., Vašíčková K., Walter F., Prehn J., et al. (2019). Mixed copper(II)–phenanthroline complexes induce cell death of ovarian cancer cells by evoking the unfolded protein response. Metallomics 11 (9), 1481–1489. 10.1039/C9MT00055K PubMed DOI
Moussaieff A., Rouleau M., Kitsberg D., Cohen M., Levy G., Barasch D., et al. (2015). Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21 (3), 392–402. 10.1016/J.CMET.2015.02.002 PubMed DOI
Mu X., Yan S., Fu C., Wei A. (2015). The histone acetyltransferase MOF promotes induces generation of pluripotent stem cells. Https//Home.Liebertpub.Com/Cell 17 (4), 259–267. 10.1089/CELL.2014.0102 PubMed DOI
Mullarky E., Cantley L. C. (2015). Diverting glycolysis to combat oxidative stress. Innov. Med., 3–23. 10.1007/978-4-431-55651-0_1 PubMed DOI
Mylonis I., Chachami G., Paraskeva E., Simos G. (2008). Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. J. Biol. Chem. 283 (41), 27620–27627. 10.1074/JBC.M803081200 PubMed DOI
Nagaraj R., Sharpley M. S., Chi F., Braas D., Zhou Y., Kim R., et al. (2017). Nuclear localization of mitochondrial TCA cycle enzymes as a critical step in Mammalian zygotic genome activation. Cell 168 (1–2), 210–223.e11. 10.1016/j.cell.2016.12.026 PubMed DOI PMC
Napolitano G., Fasciolo G., Venditti P. (2021). Mitochondrial management of reactive oxygen species. Antioxidants 10 (11), 1824. 10.3390/ANTIOX10111824 PubMed DOI PMC
Närvä E., Pursiheimo J. P., Laiho A., Rahkonen N., Emani M. R., Viitala M., et al. (2013). Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels. PLoS ONE 8 (11), e78847. 10.1371/journal.pone.0078847 PubMed DOI PMC
Nguyen Q. H., Lukowski S. W., Chiu H. S., Senabouth A., Bruxner T. J. C., Christ A. N., et al. (2018). Single-cell RNA-seq of human induced pluripotent stem cells reveals cellular heterogeneity and cell state transitions between subpopulations. Genome Res. 28 (7), 1053–1066. 10.1101/GR.223925.117 PubMed DOI PMC
Nyunoya T., Monick M. M., Powers L. S., Yarovinsky T. O., Hunninghake G. W. (2005). Macrophages survive hyperoxia PubMed DOI
Okazaki K., Maltepe E. (2006). Oxygen, epigenetics and stem cell fate. Regen. Med. 1 (1), 71–83. 10.2217/17460751.1.1.71 PubMed DOI
Okoh V. O., Felty Q., Parkash J., Poppiti R., Roy D. (2013). Reactive oxygen species PubMed DOI PMC
Östman A., Frijhoff J., Sandin Å., Böhmer F. D. (2011). Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 150 (4), 345–356. 10.1093/jb/mvr104 PubMed DOI
Pan G., Thomson J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 17 (1), 42–49. 10.1038/SJ.CR.7310125 PubMed DOI
Papa S., Choy P. M., Bubici C. (2019). The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 38, 2223–2240. 10.1038/s41388-018-0582-8 PubMed DOI PMC
Papandreou I., Cairns R. a., Fontana L., Lim A. L., Denko N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3 (3), 187–197. 10.1016/j.cmet.2006.01.012 PubMed DOI
Patel M. S., Korotchkina L. G. (2006). Regulation of the pyruvate dehydrogenase complex. Biochem. Soc. Trans. 34 (Pt 2), 217–222. 10.1042/BST20060217 PubMed DOI
Petillo A., Abruzzese V., Koshal P., Ostuni A., Bisaccia F. (2020). Extracellular citrate is a trojan horse for cancer cells. Front. Mol. Biosci. 7, 593866. 10.3389/FMOLB.2020.593866 PubMed DOI PMC
Pieri L., Dominici S., Del Bello B., Maellaro E., Comporti M., Paolicchi A., et al. (2003). Redox modulation of protein kinase/phosphatase balance in melanoma cells: the role of endogenous and γ-glutamyltransferase-dependent H2O2 production. Biochimica Biophysica Acta (BBA) - General Subj. 1621 (1), 76–83. 10.1016/S0304-4165(03)00048-5 PubMed DOI
Rardin M. J., Wiley S. E., Naviaux R. K., Murphy A. N., Jack E. (2009). Monitoring phosphorylation of the pyruvate dehydrogenase complex. Anal. Biochem. 389 (Issue 2), 157–164. 10.1016/j.ab.2009.03.040 PubMed DOI PMC
Richard D. E., Berra E., Gothié E., Roux D., Pouysségur J. (1999). p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J. Biol. Chem. 274 (46), 32631–32637. 10.1074/JBC.274.46.32631 PubMed DOI
Robey R. B., Hay N. (2009). Is Akt the “Warburg kinase”?Akt-energy metabolism interactions and oncogenesis. Seminars Cancer Biol. 19 (1), 25–31. 10.1016/j.semcancer.2008.11.010 PubMed DOI PMC
Samanta D., Semenza G. L. (2017). Maintenance of redox homeostasis by hypoxia-inducible factors. Redox Biol. 13, 331–335. 10.1016/J.REDOX.2017.05.022 PubMed DOI PMC
Saxton R. A., Sabatini D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 168 (6), 960–976. 10.1016/J.CELL.2017.02.004 PubMed DOI PMC
Sciorio R., Smith G. D. (2019). Embryo culture at a reduced oxygen concentration of 5%: a mini review. Zygote 27 (6), 355–361. 10.1017/S0967199419000522 PubMed DOI
Semenza G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13 (2), 167–171. 10.1016/s0955-0674(00)00194-0 PubMed DOI
Semenza G. L. (2011). Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochimica Biophysica Acta - Mol. Cell Res. 1813 (7), 1263–1268. 10.1016/j.bbamcr.2010.08.006 PubMed DOI PMC
Semenza G. L., Jiang B. H., Leung S. W., Passantino R., Concordat J. P., Maire P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271 (51), 32529–32537. 10.1074/jbc.271.51.32529 PubMed DOI
Shen Z., Wu Y., Manna A., Yi C., Cairns B. R., Evason K. J., et al. (2024). Oct4 redox sensitivity potentiates reprogramming and differentiation. Genes Dev. 38 (7–8), 308–321. 10.1101/GAD.351411.123 PubMed DOI PMC
Sies H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619. 10.1016/J.REDOX.2016.12.035 PubMed DOI PMC
Sies H., Jones D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020 21 (7), 363–383. 10.1038/s41580-020-0230-3 PubMed DOI
Sinenko S. A., Starkova T. Y., Kuzmin A. A., Tomilin A. N. (2021). Physiological signaling functions of reactive oxygen species in stem cells: from flies to man. Front. Cell Dev. Biol. 9, 714370. 10.3389/fcell.2021.714370 PubMed DOI PMC
Smith E. R., Hewitson T. D. (2020). TGF-β1 is a regulator of the pyruvate dehydrogenase complex in fibroblasts. Sci. Rep. 10 (1), 17914. 10.1038/s41598-020-74919-8 PubMed DOI PMC
Sommer D., Coleman S., Swanson S. A., Stemmer P. M. (2002). Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Archives Biochem. Biophysics 404 (2), 271–278. 10.1016/S0003-9861(02)00242-4 PubMed DOI
Sutendra G., Kinnaird A., Dromparis P., Paulin R., Stenson T. H., Haromy A., et al. (2014). A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158 (1), 84–97. 10.1016/J.CELL.2014.04.046 PubMed DOI
Trisciuoglio D., Di Martile M., Del Bufalo D. (2018). Emerging role of histone acetyltransferase in stem cells and cancer. Stem Cells Int. 2018, 8908751. 10.1155/2018/8908751 PubMed DOI PMC
Tsogtbaatar E., Landin C., Minter-Dykhouse K., Folmes C. D. L. (2020). Energy metabolism regulates stem cell pluripotency. Front. Cell Dev. Biol. 8, 87. 10.3389/fcell.2020.00087 PubMed DOI PMC
Varum S., Momcilović O., Castro C., Ben-Yehudah a, Ramalho-Santos J., Navara C. S. (2009). Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res. 3 (2–3), 142–156. 10.1016/j.scr.2009.07.002 PubMed DOI PMC
Varum S., Rodrigues A. S., Moura M. B., Momcilovic O., Easley C. a., Ramalho-Santos J., et al. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PloS One 6 (6), e20914. 10.1371/journal.pone.0020914 PubMed DOI PMC
Wang X. Q., Lo C. M., Chen L., Ngan E. S. W., Xu A., Poon R. Y. C. (2017). CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ. 24 (1), 38–48. 10.1038/cdd.2016.84 PubMed DOI PMC
Wellen K. E., Hatzivassiliou G., Sachdeva U. M., Bui T. V., Cross J. R., Thompson C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Sci. (New York, N.Y.) 324 (5930), 1076–1080. 10.1126/SCIENCE.1164097 PubMed DOI PMC
Wright V. P., Reiser P. J., Clanton T. L. (2009). Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. J. Physiol. 587, 5767–5781. 10.1113/jphysiol.2009.178285 PubMed DOI PMC
Xie Y., Shi X., Sheng K., Han G., Li W., Zhao Q., et al. (2019). PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep. 19 (2), 783–791. 10.3892/MMR.2018.9713 PubMed DOI PMC
Yang W., Zheng Y., Xia Y., Ji H., Chen X., Guo F., et al. (2012). ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14 (12), 1295–1304. 10.1038/NCB2629 PubMed DOI PMC
Yeaman S. J., Hutcheson E. T., Roch T. E., Pettit F. H., Brown J. R., Reed L. J., et al. (1978). Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 17 (12), 2364–2370. 10.1021/BI00605A017 PubMed DOI
Yoshida Y., Takahashi K., Okita K., Ichisaka T., Yamanaka S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell 5 (3), 237–241. 10.1016/j.stem.2009.08.001 PubMed DOI
Yu P., Pan G., Yu J., Thomson J. A. (2011). FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8 (3), 326–334. 10.1016/j.stem.2011.01.001 PubMed DOI PMC
Yucel N., Wang Y. X., Mai T., Porpiglia E., Lund P. J., Markov G., et al. (2019). Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27 (13), 3939–3955.e6. 10.1016/J.CELREP.2019.05.092 PubMed DOI PMC
Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., et al. (2016). ROS and ROS-Mediated cellular signaling. Oxidative Med. Cell. Longev. 2016, 4350965. 10.1155/2016/4350965 PubMed DOI PMC
Zhou D., Jiang L., Jin L., Yao Y., Wang P., Zhu X. (2020). Glucose transporter-1 cooperating with akt signaling promote gastric cancer progression. Cancer Manag. Res. 12, 4151–4160. 10.2147/CMAR.S251596 PubMed DOI PMC
figshare
10.6084/m9.figshare.29651828