Thymic Dendritic Cells Revisited
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PO1 AI035296
National Institute of Allergy and Infectious Diseases
R01 AI179749
NIAID NIH HHS - United States
JUNIOR STAR 25-16606M
Grantová Agentura České Republiky
P01 AI035296
NIAID NIH HHS - United States
PRIMUS/25/MED/006
Charles University
RO1 AI179749
National Institute of Allergy and Infectious Diseases
PubMed
41251667
PubMed Central
PMC12626115
DOI
10.1111/imr.70076
Knihovny.cz E-zdroje
- Klíčová slova
- T cells, cell lineages and subsets, thymus, tissues, tolerance,
- MeSH
- buněčná diferenciace MeSH
- dendritické buňky * imunologie metabolismus MeSH
- imunologická tolerance MeSH
- klonální delece MeSH
- lidé MeSH
- prezentace antigenu MeSH
- regulační T-lymfocyty * imunologie MeSH
- thymus * imunologie cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Central tolerance in the thymus ensures that the developing T cell repertoire is safe yet effective against infections. This process relies greatly on antigen presentation by both stromal and hematopoietic antigen-presenting cells (APCs), with dendritic cells (DCs) playing a particularly critical role. Thymic DCs acquire a broad spectrum of self-antigens, including tissue-restricted antigens (TRAs), inflammation-associated antigens (ISAs), and peripheral antigens imported via circulation or immigrating DCs. These diverse inputs allow DCs to mediate clonal deletion, regulatory T cell (Treg) induction, and other agonist selection outcomes. In this review, we revisit thymic DCs, outlining their ontogeny, transcriptional control, and functional specialization. We compare thymic DC1 and DC2 subsets with their peripheral counterparts, highlighting their distinct localizations, maturation cues, and division of labor: DC1 excel in cross-presentation and Treg generation, while DC2 preferentially drive clonal deletion. We also highlight the heterogeneity of DC2s, which consist of four distinct subsets based on their transcriptional and phenotypic programs. We further examine plasmacytoid DCs, transitional DCs, monocytes, and macrophages, which contribute to tolerance through apoptotic cell clearance, antigen transfer, and lineage diversion of thymocytes. Finally, we discuss the role of homeostatic maturation, sterile inflammatory cues, and thymic immigration in shaping APC diversity. Together, these insights underscore the heterogeneity of thymic APCs, the complexity of thymic DC biology, and its vital importance in enforcing immune self-tolerance.
Zobrazit více v PubMed
Ashby K. M. and Hogquist K. A., “A Guide to Thymic Selection of T Cells,” Nature Reviews. Immunology 24, no. 2 (2024): 103–117, 10.1038/s41577-023-00911-8. PubMed DOI
Lee S. T., Georgiev H., Breed E. R., Ruscher R., and Hogquist K. A., “MHC Class I on Murine Hematopoietic APC Selects Type A IEL Precursors in the Thymus,” European Journal of Immunology 51, no. 5 (2021): 1080–1088, 10.1002/eji.202048996. PubMed DOI PMC
Vignali D. A. A., Collison L. W., and Workman C. J., “How Regulatory T Cells Work,” Nature Reviews. Immunology 8, no. 7 (2008): 523–532, 10.1038/nri2343. PubMed DOI PMC
Anderson M. S., Venanzi E. S., Klein L., et al., “Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein,” Science 298, no. 5597 (2002): 1395–1401, 10.1126/science.1075958. PubMed DOI
Miller C. N., Proekt I., von Moltke J., et al., “Thymic Tuft Cells Promote an IL‐4‐Enriched Medulla and Shape Thymocyte Development,” Nature 559, no. 7715 (2018): 627–631, 10.1038/s41586-018-0345-2. PubMed DOI PMC
Givony T., Leshkowitz D., Del Castillo D., et al., “Thymic Mimetic Cells Function Beyond Self‐Tolerance,” Nature 622, no. 7981 (2023): 164–172, 10.1038/s41586-023-06512-8. PubMed DOI
Kreslavsky T., “Thymflammation: The Role of a Constitutively Active Inflammatory Network and “Ectopic” Cell Types in the Thymus in the Induction of T Cell Tolerance and Beyond,” Immunological Reviews 332, no. 1 (2025): e70037, 10.1111/imr.70037. PubMed DOI PMC
You Y., Dunst J., Ye K., et al., “Direct Presentation of Inflammation‐Associated Self‐Antigens by Thymic Innate‐Like T Cells Induces Elimination of Autoreactive CD8+ Thymocytes,” Nature Immunology 25 (2024): 1367–1382, 10.1038/s41590-024-01899-6. PubMed DOI PMC
Vobořil M. and Hogquist K. A., “Thymic Interferons: A Little Goes a Long Way,” Immunological Reviews 332, no. 1 (2025): e70038, 10.1111/imr.70038. PubMed DOI PMC
Martinez R. J. and Hogquist K. A., “Sterile Production of Interferons in the Thymus,” Journal of Immunology 214 (2025): vkaf048, 10.1093/jimmun/vkaf048. PubMed DOI PMC
Martinez R. J., Breed E. R., Worota Y., et al., “Type III Interferon Drives Thymic B Cell Activation and Regulatory T Cell Generation,” Proceedings of the National Academy of Sciences 120, no. 9 (2023): e2220120120, 10.1073/pnas.2220120120. PubMed DOI PMC
Ashby K. M., Vobořil M., Salgado O. C., et al., “Sterile Production of Interferons in the Thymus Affects T Cell Repertoire Selection,” Science Immunology 9, no. 97 (2024): eadp1139, 10.1126/sciimmunol.adp1139. PubMed DOI PMC
van Meerwijk J. P. M., Marguerat S., Lees R. K., Germain R. N., Fowlkes B. J., and MacDonald H. R., “Quantitative Impact of Thymic Clonal Deletion on the T Cell Repertoire,” Journal of Experimental Medicine 185, no. 3 (1997): 377–384, 10.1084/jem.185.3.377. PubMed DOI PMC
Ohnmacht C., Pullner A., King S. B. S., et al., “Constitutive Ablation of Dendritic Cells Breaks Self‐Tolerance of CD4 T Cells and Results in Spontaneous Fatal Autoimmunity,” Journal of Experimental Medicine 206, no. 3 (2009): 549–559, 10.1084/jem.20082394. PubMed DOI PMC
Calindi A. and Ehrlich L. I. R., “Intrathymic Regulation of Dendritic Cell Subsets and Their Contributions to Central Tolerance,” Immunological Reviews 332, no. 1 (2025): e70039, 10.1111/imr.70039. PubMed DOI PMC
Maldonado R. A. and von Andrian U. H., “How Tolerogenic Dendritic Cells Induce Regulatory T Cells,” Advances in Immunology 108 (2010): 111–165, 10.1016/B978-0-12-380995-7.00004-5. PubMed DOI PMC
Hasegawa H. and Matsumoto T., “Mechanisms of Tolerance Induction by Dendritic Cells In Vivo,” Frontiers in Immunology 9 (2018): 350, 10.3389/fimmu.2018.00350. PubMed DOI PMC
Koble C. and Kyewski B., “The Thymic Medulla: A Unique Microenvironment for Intercellular Self‐Antigen Transfer,” Journal of Experimental Medicine 206, no. 7 (2009): 1505–1513, 10.1084/jem.20082449. PubMed DOI PMC
Perry J. S. A., Lio C. W. J., Kau A. L., et al., “Distinct Contributions of Aire and Antigen‐Presenting‐Cell Subsets to the Generation of Self‐Tolerance in the Thymus,” Immunity 41, no. 3 (2014): 414–426, 10.1016/j.immuni.2014.08.007. PubMed DOI PMC
Vobořil M., Sulczewski F. B., Martinez R. J., et al., “Thymic Myeloid Cells Are Heterogenous and Include a Novel Population of Transitional Dendritic Cells,” Journal of Experimental Medicine 223 (2025): e20250733, 10.1084/jem.20250733. PubMed DOI PMC
Bonasio R., Scimone M. L., Schaerli P., Grabie N., Lichtman A. H., and von Andrian U. H., “Clonal Deletion of Thymocytes by Circulating Dendritic Cells Homing to the Thymus,” Nature Immunology 7, no. 10 (2006): 1092–1100, 10.1038/ni1385. PubMed DOI
Hinterberger M., Aichinger M., Prazeres da Costa O., Voehringer D., Hoffmann R., and Klein L., “Autonomous Role of Medullary Thymic Epithelial Cells in Central CD4 PubMed DOI
Mouri Y., Ueda Y., Yamano T., Matsumoto M., Tsuneyama K., and Kinashi T., “Mode of Tolerance Induction and Requirement for Aire Are Governed by the Cell Types That Express Self‐Antigen and Those That Present Antigen,” Journal of Immunology 199, no. 12 (2017): 3959–3971, 10.4049/jimmunol.1700892. PubMed DOI
Proietto A. I., van Dommelen S., Zhou P., et al., “Dendritic Cells in the Thymus Contribute to T‐Regulatory Cell Induction,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 50 (2008): 19869–19874, 10.1073/pnas.0810268105. PubMed DOI PMC
Atibalentja D. F., Byersdorfer C. A., and Unanue E. R., “Thymus‐Blood Protein Interactions Are Highly Effective in Negative Selection and Regulatory T Cell Induction,” Journal of Immunology 183, no. 12 (2009): 7909–7918, 10.4049/jimmunol.0902632. PubMed DOI PMC
Cowan J. E., Parnell S. M., Nakamura K., et al., “The Thymic Medulla Is Required for Foxp3+ Regulatory but Not Conventional CD4+ Thymocyte Development,” Journal of Experimental Medicine 210, no. 4 (2013): 675–681, 10.1084/jem.20122070. PubMed DOI PMC
Román E., Shino H., Qin F. X. F., and Liu Y. J., “Cutting Edge: Hematopoietic‐Derived APCs Select Regulatory T Cells in Thymus,” Journal of Immunology 185, no. 7 (2010): 3819–3823, 10.4049/jimmunol.0900665. PubMed DOI PMC
Lanzavecchia A. and Sallusto F., “Regulation of T Cell Immunity by Dendritic Cells,” Cell 106, no. 3 (2001): 263–266, 10.1016/S0092-8674(01)00455-X. PubMed DOI
Cabeza‐Cabrerizo M., Cardoso A., Minutti C. M., Pereira da Costa M., and Reis e Sousa C., “Dendritic Cells Revisited,” Annual Review of Immunology 39 (2021): 131–166, 10.1146/annurev-immunol-061020-053707. PubMed DOI
Yin X., Chen S., and Eisenbarth S. C., “Dendritic Cell Regulation of T Helper Cells,” Annual Review of Immunology 39 (2021): 759–790, 10.1146/annurev-immunol-101819-025146. PubMed DOI
Schulz O., Edwards A. D., Schito M., et al., “CD40 Triggering of Heterodimeric IL‐12 p70 Production by Dendritic Cells In Vivo Requires a Microbial Priming Signal,” Immunity 13, no. 4 (2000): 453–462, 10.1016/S1074-7613(00)00045-5. PubMed DOI
Liu J., Zhang X., Cheng Y., and Cao X., “Dendritic Cell Migration in Inflammation and Immunity,” Cellular & Molecular Immunology 18, no. 11 (2021): 2461–2471, 10.1038/s41423-021-00726-4. PubMed DOI PMC
Wu L. and Shortman K., “Heterogeneity of Thymic Dendritic Cells,” Seminars in Immunology 17, no. 4 (2005): 304–312, 10.1016/j.smim.2005.05.001. PubMed DOI
Li J., Park J., Foss D., and Goldschneider I., “Thymus‐Homing Peripheral Dendritic Cells Constitute Two of the Three Major Subsets of Dendritic Cells in the Steady‐State Thymus,” Journal of Experimental Medicine 206, no. 3 (2009): 607–622, 10.1084/jem.20082232. PubMed DOI PMC
Guilliams M., Ginhoux F., Jakubzick C., et al., “Dendritic Cells, Monocytes and Macrophages: A Unified Nomenclature Based on Ontogeny,” Nature Reviews. Immunology 14, no. 8 (2014): 571–578, 10.1038/nri3712. PubMed DOI PMC
Zhou T. A., Hsu H. P., Tu Y. H., et al., “Thymic Macrophages Consist of Two Populations With Distinct Localization and Origin,” eLife 11 (2022): e75148, 10.7554/eLife.75148. PubMed DOI PMC
Ng L. G., Liu Z., Kwok I., and Ginhoux F., “Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP‐Derived Monocytes and Neutrophils,” Annual Review of Immunology 41 (2023): 375–404, 10.1146/annurev-immunol-081022-113627. PubMed DOI
Rodrigues P. F. and Tussiwand R., “Novel Concepts in Plasmacytoid Dendritic Cell (pDC) Development and Differentiation,” Molecular Immunology 126 (2020): 25–30, 10.1016/j.molimm.2020.07.006. PubMed DOI
Swiecki M. and Colonna M., “The Multifaceted Biology of Plasmacytoid Dendritic Cells,” Nature Reviews. Immunology 15, no. 8 (2015): 471–485, 10.1038/nri3865. PubMed DOI PMC
Asselin‐Paturel C., Boonstra A., Dalod M., et al., “Mouse Type I IFN‐Producing Cells Are Immature APCs With Plasmacytoid Morphology,” Nature Immunology 2, no. 12 (2001): 1144–1150, 10.1038/ni736. PubMed DOI
Zucchini N., Bessou G., Robbins S. H., et al., “Individual Plasmacytoid Dendritic Cells Are Major Contributors to the Production of Multiple Innate Cytokines in an Organ‐Specific Manner During Viral Infection,” International Immunology 20, no. 1 (2008): 45–56, 10.1093/intimm/dxm119. PubMed DOI PMC
Brasel K., De Smedt T., Smith J. L., and Maliszewski C. R., “Generation of Murine Dendritic Cells From flt3‐Ligand–Supplemented Bone Marrow Cultures,” Blood 96, no. 9 (2000): 3029–3039, 10.1182/blood.V96.9.3029. PubMed DOI
Onai N., Kurabayashi K., Hosoi‐Amaike M., et al., “A Clonogenic Progenitor With Prominent Plasmacytoid Dendritic Cell Developmental Potential,” Immunity 38, no. 5 (2013): 943–957, 10.1016/j.immuni.2013.04.006. PubMed DOI
Rodrigues P. F., Alberti‐Servera L., Eremin A., Grajales‐Reyes G. E., Ivanek R., and Tussiwand R., “Distinct Progenitor Lineages Contribute to the Heterogeneity of Plasmacytoid Dendritic Cells,” Nature Immunology 19, no. 7 (2018): 711–722, 10.1038/s41590-018-0136-9. PubMed DOI PMC
Dress R. J., Dutertre C. A., Giladi A., et al., “Plasmacytoid Dendritic Cells Develop From Ly6D+ Lymphoid Progenitors Distinct From the Myeloid Lineage,” Nature Immunology 20, no. 7 (2019): 852–864, 10.1038/s41590-019-0420-3. PubMed DOI
Shigematsu H., Reizis B., Iwasaki H., et al., “Plasmacytoid Dendritic Cells Activate Lymphoid‐Specific Genetic Programs Irrespective of Their Cellular Origin,” Immunity 21, no. 1 (2004): 43–53, 10.1016/j.immuni.2004.06.011. PubMed DOI
Siegemund S., Shepherd J., Xiao C., and Sauer K., “hCD2‐iCre and Vav‐iCre Mediated Gene Recombination Patterns in Murine Hematopoietic Cells,” PLoS One 10, no. 4 (2015): e0124661, 10.1371/journal.pone.0124661. PubMed DOI PMC
Cisse B., Caton M. L., Lehner M., et al., “Transcription Factor E2‐2 Is an Essential and Specific Regulator of Plasmacytoid Dendritic Cell Development,” Cell 135, no. 1 (2008): 37–48, 10.1016/j.cell.2008.09.016. PubMed DOI PMC
Swiecki M., Wang Y., Riboldi E., et al., “Cell Depletion in Mice That Express Diphtheria Toxin Receptor Under the Control of SiglecH Encompasses More Than Plasmacytoid Dendritic Cells,” Journal of Immunology 192, no. 9 (2014): 4409–4416, 10.4049/jimmunol.1303135. PubMed DOI PMC
Swiecki M., Gilfillan S., Vermi W., Wang Y., and Colonna M., “Plasmacytoid Dendritic Cell Ablation Impacts Early Interferon Responses and Antiviral NK and CD8+ T Cell Accrual,” Immunity 33, no. 6 (2010): 955–966, 10.1016/j.immuni.2010.11.020. PubMed DOI PMC
Reizis B., “Plasmacytoid Dendritic Cells: Development, Regulation, and Function,” Immunity 50, no. 1 (2019): 37–50, 10.1016/j.immuni.2018.12.027. PubMed DOI PMC
Hadeiba H., Lahl K., Edalati A., et al., “Plasmacytoid Dendritic Cells Transport Peripheral Antigens to the Thymus to Promote Central Tolerance,” Immunity 36, no. 3 (2012): 438–450, 10.1016/j.immuni.2012.01.017. PubMed DOI PMC
Hadeiba H., Sato T., Habtezion A., Oderup C., Pan J., and Butcher E. C., “CCR9 Expression Defines Tolerogenic Plasmacytoid Dendritic Cells Able to Suppress Acute Graft‐Versus‐Host Disease,” Nature Immunology 9, no. 11 (2008): 1253–1260, 10.1038/ni.1658. PubMed DOI PMC
Leventhal D. S., Gilmore D. C., Berger J. M., et al., “Dendritic Cells Coordinate the Development and Homeostasis of Organ‐Specific Regulatory T Cells,” Immunity 44, no. 4 (2016): 847–859, 10.1016/j.immuni.2016.01.025. PubMed DOI PMC
Colonna M., Trinchieri G., and Liu Y. J., “Plasmacytoid Dendritic Cells in Immunity,” Nature Immunology 5, no. 12 (2004): 1219–1226, 10.1038/ni1141. PubMed DOI
Wang J., Sekai M., Matsui T., et al., “Hassall's Corpuscles With Cellular‐Senescence Features Maintain IFNα Production Through Neutrophils and pDC Activation in the Thymus,” International Immunology 31, no. 3 (2019): 127–139, 10.1093/intimm/dxy073. PubMed DOI PMC
Lienenklaus S., Cornitescu M., Zietara N., et al., “Novel Reporter Mouse Reveals Constitutive and Inflammatory Expression of IFN‐Beta In Vivo,” Journal of Immunology 183, no. 5 (2009): 3229–3236, 10.4049/jimmunol.0804277. PubMed DOI
Benhammadi M., Mathé J., Dumont‐Lagacé M., et al., “IFN‐λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells,” Journal of Immunology 205, no. 5 (2020): 1268–1280, 10.4049/jimmunol.2000225. PubMed DOI
Karsunky H., Merad M., Cozzio A., Weissman I. L., and Manz M. G., “Flt3 Ligand Regulates Dendritic Cell Development From Flt3+ Lymphoid and Myeloid‐Committed Progenitors to Flt3+ Dendritic Cells In Vivo,” Journal of Experimental Medicine 198, no. 2 (2003): 305–313, 10.1084/jem.20030323. PubMed DOI PMC
Waskow C., Liu K., Darrasse‐Jèze G., et al., “The Receptor Tyrosine Kinase Flt3 Is Required for Dendritic Cell Development in Peripheral Lymphoid Tissues,” Nature Immunology 9, no. 6 (2008): 676–683, 10.1038/ni.1615. PubMed DOI PMC
Schlitzer A., Sivakamasundari V., Chen J., et al., “Identification of cDC1‐ and cDC2‐Committed DC Progenitors Reveals Early Lineage Priming at the Common DC Progenitor Stage in the Bone Marrow,” Nature Immunology 16, no. 7 (2015): 718–728, 10.1038/ni.3200. PubMed DOI
Villani A. C., Satija R., Reynolds G., et al., “Single‐Cell RNA‐Seq Reveals New Types of Human Blood Dendritic Cells, Monocytes, and Progenitors,” Science 356, no. 6335 (2017), 10.1126/science.aah4573. PubMed DOI PMC
Durai V., Bagadia P., Briseño C. G., et al., “Altered Compensatory Cytokine Signaling Underlies the Discrepancy Between Flt3−/− and Flt3l−/− Mice,” Journal of Experimental Medicine 215, no. 5 (2018): 1417–1435, 10.1084/jem.20171784. PubMed DOI PMC
McKenna H. J., Stocking K. L., Miller R. E., et al., “Mice Lacking flt3 Ligand Have Deficient Hematopoiesis Affecting Hematopoietic Progenitor Cells, Dendritic Cells, and Natural Killer Cells,” Blood 95, no. 11 (2000): 3489–3497, 10.1182/blood.V95.11.3489. PubMed DOI
Grajales‐Reyes G. E., Iwata A., Albring J., et al., “Batf3 Maintains Autoactivation of Irf8 for Commitment of a CD8α PubMed DOI PMC
Hildner K., Edelson B. T., Purtha W. E., et al., “Batf3 Deficiency Reveals a Critical Role for CD8alpha+ Dendritic Cells in Cytotoxic T Cell Immunity,” Science 322, no. 5904 (2008): 1097–1100, 10.1126/science.1164206. PubMed DOI PMC
Kashiwada M., Pham N. L. L., Pewe L. L., Harty J. T., and Rothman P. B., “NFIL3/E4BP4 Is a Key Transcription Factor for CD8α PubMed DOI PMC
Hacker C., Kirsch R. D., Ju X. S., et al., “Transcriptional Profiling Identifies Id2 Function in Dendritic Cell Development,” Nature Immunology 4, no. 4 (2003): 380–386, 10.1038/ni903. PubMed DOI
Schiavoni G., Mattei F., Sestili P., et al., “ICSBP Is Essential for the Development of Mouse Type I Interferon‐Producing Cells and for the Generation and Activation of CD8alpha PubMed DOI PMC
Durai V., Bagadia P., Granja J. M., et al., “Cryptic Activation of an Irf8 Enhancer Governs cDC1 Fate Specification,” Nature Immunology 20, no. 9 (2019): 1161–1173, 10.1038/s41590-019-0450-x. PubMed DOI PMC
Bagadia P., Huang X., Liu T. T., et al., “An Nfil3–Zeb2–Id2 Pathway Imposes Irf8 Enhancer Switching During cDC1 Development,” Nature Immunology 20, no. 9 (2019): 1174–1185, 10.1038/s41590-019-0449-3. PubMed DOI PMC
Ardouin L., Luche H., Chelbi R., et al., “Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery,” Immunity 45, no. 2 (2016): 305–318, 10.1016/j.immuni.2016.07.019. PubMed DOI
Salmon H., Idoyaga J., Rahman A., et al., “Expansion and Activation of CD103 PubMed DOI PMC
Sasaki I., Kato T., Hemmi H., et al., “Conventional Type 1 Dendritic Cells in Intestinal Immune Homeostasis,” Frontiers in Immunology 13 (2022): 857954, 10.3389/fimmu.2022.857954. PubMed DOI PMC
Luche H., Ardouin L., Teo P., et al., “The Earliest Intrathymic Precursors of CD8α+ Thymic Dendritic Cells Correspond to Myeloid‐Type Double‐Negative 1c Cells,” European Journal of Immunology 41, no. 8 (2011): 2165–2175, 10.1002/eji.201141728. PubMed DOI PMC
Ardavin C., Wu L., Li C. L., and Shortman K., “Thymic Dendritic Cells and T Cells Develop Simultaneously in the Thymus From a Common Precursor Population,” Nature 362, no. 6422 (1993): 761–763, 10.1038/362761a0. PubMed DOI
Wu L., Li C. L., and Shortman K., “Thymic Dendritic Cell Precursors: Relationship to the T Lymphocyte Lineage and Phenotype of the Dendritic Cell Progeny,” Journal of Experimental Medicine 184, no. 3 (1996): 903–911, 10.1084/jem.184.3.903. PubMed DOI PMC
Schlenner S. M., Madan V., Busch K., et al., “Fate Mapping Reveals Separate Origins of T Cells and Myeloid Lineages in the Thymus,” Immunity 32, no. 3 (2010): 426–436, 10.1016/j.immuni.2010.03.005. PubMed DOI
Porritt H. E., Gordon K., and Petrie H. T., “Kinetics of Steady‐State Differentiation and Mapping of Intrathymic‐Signaling Environments by Stem Cell Transplantation in Nonirradiated Mice,” Journal of Experimental Medicine 198, no. 6 (2003): 957–962, 10.1084/jem.20030837. PubMed DOI PMC
Krueger A., “A Missing Link in Thymic Dendritic Cell Development,” European Journal of Immunology 41, no. 8 (2011): 2145–2147, 10.1002/eji.201141850. PubMed DOI
Liu K., Victora G. D., Schwickert T. A., et al., “In Vivo Analysis of Dendritic Cell Development and Homeostasis,” Science 324, no. 5925 (2009): 392–397, 10.1126/science.1170540. PubMed DOI PMC
Cosway E. J., Ohigashi I., Schauble K., et al., “Formation of the Intrathymic Dendritic Cell Pool Requires CCL21‐Mediated Recruitment of CCR7+ Progenitors to the Thymus,” Journal of Immunology 201, no. 2 (2018): 516–523, 10.4049/jimmunol.1800348. PubMed DOI PMC
Kurobe H., Liu C., Ueno T., et al., “CCR7‐Dependent Cortex‐To‐Medulla Migration of Positively Selected Thymocytes Is Essential for Establishing Central Tolerance,” Immunity 24, no. 2 (2006): 165–177, 10.1016/j.immuni.2005.12.011. PubMed DOI
Hu Z., Li Y., Nieuwenhuijze A. V., et al., “CCR7 Modulates the Generation of Thymic Regulatory T Cells by Altering the Composition of the Thymic Dendritic Cell Compartment,” Cell Reports 21, no. 1 (2017): 168–180, 10.1016/j.celrep.2017.09.016. PubMed DOI PMC
Lei Y., Ripen A. M., Ishimaru N., et al., “Aire‐Dependent Production of XCL1 Mediates Medullary Accumulation of Thymic Dendritic Cells and Contributes to Regulatory T Cell Development,” Journal of Experimental Medicine 208, no. 2 (2011): 383–394, 10.1084/jem.20102327. PubMed DOI PMC
Böttcher J. P., Bonavita E., Chakravarty P., et al., “NK Cells Stimulate Recruitment of cDC1 Into the Tumor Microenvironment Promoting Cancer Immune Control,” Cell 172, no. 5 (2018): 1022–1037.e14, 10.1016/j.cell.2018.01.004. PubMed DOI PMC
Perry J. S. A., Russler‐Germain E. V., Zhou Y. W., et al., “Transfer of Cell‐Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo‐Tolerance,” Immunity 48, no. 5 (2018): 923–936.e4, 10.1016/j.immuni.2018.04.007. PubMed DOI PMC
Vobořil M., Březina J., Brabec T., et al., “A Model of Preferential Pairing Between Epithelial and Dendritic Cells in Thymic Antigen Transfer,” eLife 11 (2022): e71578, 10.7554/eLife.71578. PubMed DOI PMC
Gallegos A. M. and Bevan M. J., “Central Tolerance to Tissue‐Specific Antigens Mediated by Direct and Indirect Antigen Presentation,” Journal of Experimental Medicine 200, no. 8 (2004): 1039–1049, 10.1084/jem.20041457. PubMed DOI PMC
Maier B., Leader A. M., Chen S. T., et al., “A Conserved Dendritic‐Cell Regulatory Program Limits Antitumour Immunity,” Nature 580, no. 7802 (2020): 257–262, 10.1038/s41586-020-2134-y. PubMed DOI PMC
Březina J., Brabec T., Machač D., et al., “Claudin 1‐Mediated Positioning of DC1 to mTECs is Essential for Antigen Transfer‐Coupled DC1 Maturation and Maintenance of Central Tolerance,” preprint, March 17, 2025: 2025.03.15.643437, 10.1101/2025.03.15.643437. DOI
Coquet J. M., Ribot J. C., Bąbała N., et al., “Epithelial and Dendritic Cells in the Thymic Medulla Promote CD4+Foxp3+ Regulatory T Cell Development via the CD27‐CD70 Pathway,” Journal of Experimental Medicine 210, no. 4 (2013): 715–728, 10.1084/jem.20112061. PubMed DOI PMC
Schlitzer A., McGovern N., Teo P., et al., “IRF4 Transcription Factor‐Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL‐17 Cytokine Responses,” Immunity 38, no. 5 (2013): 970–983, 10.1016/j.immuni.2013.04.011. PubMed DOI PMC
Tamura T., Tailor P., Yamaoka K., et al., “IFN Regulatory Factor‐4 and ‐8 Govern Dendritic Cell Subset Development and Their Functional Diversity,” Journal of Immunology 174, no. 5 (2005): 2573–2581, 10.4049/jimmunol.174.5.2573. PubMed DOI
Tussiwand R., Everts B., Grajales‐Reyes G. E., et al., “Klf4 Expression in Conventional Dendritic Cells Is Required for T Helper 2 Cell Responses,” Immunity 42, no. 5 (2015): 916–928, 10.1016/j.immuni.2015.04.017. PubMed DOI PMC
Ichikawa E., Hida S., Omatsu Y., et al., “Defective Development of Splenic and Epidermal CD4+ Dendritic Cells in Mice Deficient for IFN Regulatory Factor‐2,” Proceedings of the National Academy of Sciences 101, no. 11 (2004): 3909–3914, 10.1073/pnas.0400610101. PubMed DOI PMC
Liu T. T., Kim S., Desai P., et al., “Ablation of cDC2 Development by Triple Mutations Within the Zeb2 Enhancer,” Nature 607, no. 7917 (2022): 142–148, 10.1038/s41586-022-04866-z. PubMed DOI PMC
Kumamoto Y., Linehan M., Weinstein J. S., Laidlaw B. J., Craft J. E., and Iwasaki A., “CD301b PubMed DOI PMC
Duong E., Fessenden T. B., Lutz E., et al., “Type I Interferon Activates MHC Class I‐Dressed CD11b+ Conventional Dendritic Cells to Promote Protective Anti‐Tumor CD8+ T Cell Immunity,” Immunity 55, no. 2 (2022): 308–323.e9, 10.1016/j.immuni.2021.10.020. PubMed DOI PMC
Lewis K. L., Caton M. L., Bogunovic M., et al., “Notch2 Receptor Signaling Controls Functional Differentiation of Dendritic Cells in the Spleen and Intestine,” Immunity 35, no. 5 (2011): 780–791, 10.1016/j.immuni.2011.08.013. PubMed DOI PMC
Satpathy A. T., Briseño C. G., Lee J. S., et al., “Notch2‐Dependent Classical Dendritic Cells Orchestrate Intestinal Immunity to Attaching‐And‐Effacing Bacterial Pathogens,” Nature Immunology 14, no. 9 (2013): 937–948, 10.1038/ni.2679. PubMed DOI PMC
Tatsumi N., El‐Fenej J., Davila‐Pagan A., and Kumamoto Y., “CD301b+ Dendritic Cell‐Derived IL‐2 Dictates CD4+ T Helper Cell Differentiation,” Nature Communications 16, no. 1 (2025): 2002, 10.1038/s41467-025-55916-9. PubMed DOI PMC
Brown C. C., Gudjonson H., Pritykin Y., et al., “Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity,” Cell 179, no. 4 (2019): 846–863.e24, 10.1016/j.cell.2019.09.035. PubMed DOI PMC
Lyu M., Suzuki H., Kang L., et al., “ILC3s Select Microbiota‐Specific Regulatory T Cells to Establish Tolerance in the Gut,” Nature 610, no. 7933 (2022): 744–751, 10.1038/s41586-022-05141-x. PubMed DOI PMC
Akagbosu B., Tayyebi Z., Shibu G., et al., “Novel Antigen‐Presenting Cell Imparts Treg‐Dependent Tolerance to Gut Microbiota,” Nature 610, no. 7933 (2022): 752–760, 10.1038/s41586-022-05309-5. PubMed DOI PMC
Abramson J., Dobeš J., Lyu M., and Sonnenberg G. F., “The Emerging Family of RORγt+ Antigen‐Presenting Cells,” Nature Reviews. Immunology 24, no. 1 (2024): 64–77, 10.1038/s41577-023-00906-5. PubMed DOI PMC
Rodrigues P. F., Kouklas A., Cvijetic G., et al., “pDC‐Like Cells Are Pre‐DC2 and Require KLF4 to Control Homeostatic CD4 T Cells,” Science Immunology 8, no. 80 (2023): eadd4132, 10.1126/sciimmunol.add4132. PubMed DOI PMC
Leylek R., Alcántara‐Hernández M., Lanzar Z., et al., “Integrated Cross‐Species Analysis Identifies a Conserved Transitional Dendritic Cell Population,” Cell Reports 29, no. 11 (2019): 3736–3750.e8, 10.1016/j.celrep.2019.11.042. PubMed DOI PMC
Sulczewski F. B., Maqueda‐Alfaro R. A., Alcántara‐Hernández M., et al., “Transitional Dendritic Cells Are Distinct From Conventional DC2 Precursors and Mediate Proinflammatory Antiviral Responses,” Nature Immunology 24, no. 8 (2023): 1265–1280, 10.1038/s41590-023-01545-7. PubMed DOI PMC
Rodrigues P. F., Trsan T., Cvijetic G., et al., “Progenitors of Distinct Lineages Shape the Diversity of Mature Type 2 Conventional Dendritic Cells,” Immunity 57, no. 7 (2024): 1567–1585.e5, 10.1016/j.immuni.2024.05.007. PubMed DOI
Zhu Y., Cai P., Li Z., et al., “Transcription Factors TCF4 and KLF4 Respectively Control the Development of the DC2A and DC2B Lineages,” Nature Immunology 26, no. 8 (2025): 1275–1286, 10.1038/s41590-025-02208-5. PubMed DOI
Minutti C. M., Piot C., Pereira da Costa M., et al., “Distinct Ontogenetic Lineages Dictate cDC2 Heterogeneity,” Nature Immunology 25, no. 3 (2024): 448–461, 10.1038/s41590-024-01745-9. PubMed DOI PMC
Breed E. R., Vobořil M., Ashby K. M., et al., “Type 2 Cytokines in the Thymus Activate Sirpα+ Dendritic Cells to Promote Clonal Deletion,” Nature Immunology 23, no. 7 (2022): 1042–1051, 10.1038/s41590-022-01218-x. PubMed DOI PMC
Vobořil M., Brabec T., Dobeš J., et al., “Toll‐Like Receptor Signaling in Thymic Epithelium Controls Monocyte‐Derived Dendritic Cell Recruitment and Treg Generation,” Nature Communications 11, no. 1 (2020): 2361, 10.1038/s41467-020-16081-3. PubMed DOI PMC
Vollmann E. H., Rattay K., Barreiro O., et al., “Specialized Transendothelial Dendritic Cells Mediate Thymic T‐Cell Selection Against Blood‐Borne Macromolecules,” Nature Communications 12, no. 1 (2021): 6230, 10.1038/s41467-021-26446-x. PubMed DOI PMC
Zegarra‐Ruiz D. F., Kim D. V., Norwood K., et al., “Thymic Development of Gut‐Microbiota‐Specific T Cells,” Nature 594, no. 7863 (2021): 413–417, 10.1038/s41586-021-03531-1. PubMed DOI PMC
Park J. E., Botting R. A., Domínguez Conde C., et al., “A Cell Atlas of Human Thymic Development Defines T Cell Repertoire Formation,” Science 367, no. 6480 (2020): eaay3224, 10.1126/science.aay3224. PubMed DOI PMC
Y. Wang , Liu X., and Bond A. C., et al. “Unexpected heterogeneity and tissue‐specific properties of the thymic hematopoietic antigen‐presenting cell network,” Proceedings of the National Academy of Sciences of the United States of America 122, no. 41 (2025): e2508184122, 10.1073/pnas.2508184122. PubMed DOI PMC
Liu Z., Gu Y., Chakarov S., et al., “Fate Mapping via Ms4a3‐Expression History Traces Monocyte‐Derived Cells,” Cell 178, no. 6 (2019): 1509–1525.e19, 10.1016/j.cell.2019.08.009. PubMed DOI
Lancaster J. N., Thyagarajan H. M., Srinivasan J., Li Y., Hu Z., and Ehrlich L. I. R., “Live‐Cell Imaging Reveals the Relative Contributions of Antigen‐Presenting Cell Subsets to Thymic Central Tolerance,” Nature Communications 10, no. 1 (2019): 2220, 10.1038/s41467-019-09727-4. PubMed DOI PMC
Baba T., Nakamoto Y., and Mukaida N., “Crucial Contribution of Thymic Sirp Alpha+ Conventional Dendritic Cells to Central Tolerance Against Blood‐Borne Antigens in a CCR2‐Dependent Manner,” Journal of Immunology 183, no. 5 (2009): 3053–3063, 10.4049/jimmunol.0900438. PubMed DOI
Kroger C. J., Wang B., and Tisch R., “Temporal Increase in Thymocyte Negative Selection Parallels Enhanced Thymic SIRPα+ DC Function,” European Journal of Immunology 46, no. 10 (2016): 2352–2362, 10.1002/eji.201646354. PubMed DOI PMC
Alcántara‐Hernández M., Leylek R., Wagar L. E., et al., “High‐Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization,” Immunity 47, no. 6 (2017): 1037–1050.e6, 10.1016/j.immuni.2017.11.001. PubMed DOI PMC
See P., Dutertre C. A., Chen J., et al., “Mapping the Human DC Lineage Through the Integration of High‐Dimensional Techniques,” Science 356, no. 6342 (2017): eaag3009, 10.1126/science.aag3009. PubMed DOI PMC
Bar‐On L., Birnberg T., Lewis K. L., et al., “CX3CR1+ CD8alpha+ Dendritic Cells Are a Steady‐State Population Related to Plasmacytoid Dendritic Cells,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 33 (2010): 14745–14750, 10.1073/pnas.1001562107. PubMed DOI PMC
Salvermoser J., van Blijswijk J., Papaioannou N. E., et al., “Clec9a‐Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo,” Frontiers in Immunology 9 (2018): 699, 10.3389/fimmu.2018.00699. PubMed DOI PMC
Corcoran L., Ferrero I., Vremec D., et al., “The Lymphoid Past of Mouse Plasmacytoid Cells and Thymic Dendritic Cells,” Journal of Immunology 170, no. 10 (2003): 4926–4932, 10.4049/jimmunol.170.10.4926. PubMed DOI
Caton M. L., Smith‐Raska M. R., and Reizis B., “Notch–RBP‐J Signaling Controls the Homeostasis of CD8 PubMed DOI PMC
Palis J., Robertson S., Kennedy M., Wall C., and Keller G., “Development of Erythroid and Myeloid Progenitors in the Yolk Sac and Embryo Proper of the Mouse,” Development (Cambridge, England) 126, no. 22 (1999): 5073–5084, 10.1242/dev.126.22.5073. PubMed DOI
Gomez Perdiguero E., Klapproth K., Schulz C., et al., “Tissue‐Resident Macrophages Originate From Yolk‐Sac‐Derived Erythro‐Myeloid Progenitors,” Nature 518, no. 7540 (2015): 547–551, 10.1038/nature13989. PubMed DOI PMC
Hoeffel G., Chen J., Lavin Y., et al., “C‐Myb PubMed DOI PMC
McGrath K. E., Frame J. M., Fegan K. H., et al., “Distinct Sources of Hematopoietic Progenitors Emerge Before HSCs and Provide Functional Blood Cells in the Mammalian Embryo,” Cell Reports 11, no. 12 (2015): 1892–1904, 10.1016/j.celrep.2015.05.036. PubMed DOI PMC
Akashi K., Traver D., Miyamoto T., and Weissman I. L., “A Clonogenic Common Myeloid Progenitor That Gives Rise to All Myeloid Lineages,” Nature 404, no. 6774 (2000): 193–197, 10.1038/35004599. PubMed DOI
Lee C. Z. W. and Ginhoux F., “Biology of Resident Tissue Macrophages,” Development (Cambridge, England) 149, no. 8 (2022): dev200270, 10.1242/dev.200270. PubMed DOI
Cheong C., Matos I., Choi J. H., et al., “Microbial Stimulation Fully Differentiates Monocytes to DC‐SIGN/CD209 PubMed DOI PMC
Plantinga M., Guilliams M., Vanheerswynghels M., et al., “Conventional and Monocyte‐Derived CD11b PubMed DOI
Surh C. D. and Sprent J., “T‐Cell Apoptosis Detected In Situ During Positive and Negative Selection in the Thymus,” Nature 372, no. 6501 (1994): 100–103, 10.1038/372100a0. PubMed DOI
Kurd N. S., Lutes L. K., Yoon J., et al., “A Role for Phagocytosis in Inducing Cell Death During Thymocyte Negative Selection,” eLife 8 (2019): e48097, 10.7554/eLife.48097. PubMed DOI PMC
Rodriguez‐Manzanet R., Sanjuan M. A., Wu H. Y., et al., “T and B Cell Hyperactivity and Autoimmunity Associated With Niche‐Specific Defects in Apoptotic Body Clearance in TIM‐4‐Deficient Mice,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 19 (2010): 8706–8711, 10.1073/pnas.0910359107. PubMed DOI PMC
Tacke R., Hilgendorf I., Garner H., et al., “The Transcription Factor NR4A1 Is Essential for the Development of a Novel Macrophage Subset in the Thymus,” Scientific Reports 5 (2015): 10055, 10.1038/srep10055. PubMed DOI PMC
Guerri L., Peguillet I., Geraldo Y., Nabti S., Premel V., and Lantz O., “Analysis of APC Types Involved in CD4 Tolerance and Regulatory T Cell Generation Using Reaggregated Thymic Organ Cultures,” Journal of Immunology 190, no. 5 (2013): 2102–2110, 10.4049/jimmunol.1202883. PubMed DOI
Ladi E., Schwickert T. A., Chtanova T., et al., “Thymocyte‐Dendritic Cell Interactions Near Sources of CCR7 Ligands in the Thymic Cortex,” Journal of Immunology 181, no. 10 (2008): 7014–7023, 10.4049/jimmunol.181.10.7014. PubMed DOI
Wang H., Breed E. R., Lee Y. J., Qian L. J., Jameson S. C., and Hogquist K. A., “Myeloid Cells Activate iNKT Cells to Produce IL‐4 in the Thymic Medulla,” Proceedings of the National Academy of Sciences of the United States of America 116, no. 44 (2019): 22262–22268, 10.1073/pnas.1910412116. PubMed DOI PMC
Oh J., Wu N., Barczak A. J., Barbeau R., Erle D. J., and Shin J. S., “CD40 Mediates Maturation of Thymic Dendritic Cells Driven by Self‐Reactive CD4+ Thymocytes and Supports Development of Natural Regulatory T Cells,” Journal of Immunology 200, no. 4 (2018): 1399–1412, 10.4049/jimmunol.1700768. PubMed DOI PMC
Yamano T., Nedjic J., Hinterberger M., et al., “Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction,” Immunity 42, no. 6 (2015): 1048–1061, 10.1016/j.immuni.2015.05.013. PubMed DOI
Klein L. and Petrozziello E., “Antigen Presentation for Central Tolerance Induction,” Nature Reviews. Immunology 25, no. 1 (2025): 57–72, 10.1038/s41577-024-01076-8. PubMed DOI
Srinivasan J., Moore C. R., Calindi A., et al., “Single‐Cell Transcriptomics Reveals Heterogenous Thymic Dendritic Cell Subsets With Distinct Functions and Requirements for Thymocyte‐Regulated Crosstalk,” preprint, August 7, 2025: 2023.12.18.572281, 10.1101/2023.12.18.572281. DOI
Spidale N. A., Wang B., and Tisch R., “Cutting Edge: Antigen‐Specific Thymocyte Feedback Regulates Homeostatic Thymic Conventional Dendritic Cell Maturation,” Journal of Immunology 193, no. 1 (2014): 21–25, 10.4049/jimmunol.1400321. PubMed DOI PMC
Dudziak D., Kamphorst A. O., Heidkamp G. F., et al., “Differential Antigen Processing by Dendritic Cell Subsets In Vivo,” Science 315, no. 5808 (2007): 107–111, 10.1126/science.1136080. PubMed DOI
MacNabb B. W., Kline D. E., Albright A. R., et al., “Negligible Role for Deletion Mediated by cDC1 in CD8+ T Cell Tolerance,” Journal of Immunology 202, no. 9 (2019): 2628–2635, 10.4049/jimmunol.1801621. PubMed DOI PMC
Malhotra D., Linehan J. L., Dileepan T., et al., “Tolerance Is Established in Polyclonal CD4 PubMed DOI PMC
Baba T., Badr M. E. S., Tomaru U., Ishizu A., and Mukaida N., “Novel Process of Intrathymic Tumor‐Immune Tolerance Through CCR2‐Mediated Recruitment of Sirpα+ Dendritic Cells: A Murine Model,” PLoS One 7, no. 7 (2012): e41154, 10.1371/journal.pone.0041154. PubMed DOI PMC
Cédile O., Løbner M., Toft‐Hansen H., et al., “Thymic CCL2 Influences Induction of T‐Cell Tolerance,” Journal of Autoimmunity 55 (2014): 73–85, 10.1016/j.jaut.2014.07.004. PubMed DOI