Impact of Sex, Gonadectomy, and Repeated Restraint Stress on Gut Microbiome in Mice

. 2025 Nov 19 ; 63 (1) : 80. [epub] 20251119

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41254244

Grantová podpora
Grant 21-10845S Czech Science Foundation
PPLZ Project: L200112201 Czech Academy of Science

Odkazy

PubMed 41254244
PubMed Central PMC12627175
DOI 10.1007/s12035-025-05305-6
PII: 10.1007/s12035-025-05305-6
Knihovny.cz E-zdroje

Recently, the bidirectional connection between the gastrointestinal microbiota and the brain has gained interest in many research studies. Findings have highlighted the potential role of stress and sex hormones in modulating the gut microbiome. To our knowledge, no study has investigated the effect of sex hormone perturbations on the gut microbiota in response to stress. To understand how stress may alter the gut microbiota differently depending on sex, gonadectomized and sham-operated male and female mice were subjected to 2 h of daily restraint stress for seven consecutive days. Body weight and plasma level of corticosterone were evaluated. Bacterial diversity and composition of colon and cecum were analyzed by sequencing of 16S rRNA gene. The bacterial communities were strongly altered by stress in the colon than in the cecum. A profound dysregulation of several metabolic and functional pathways was observed in sham mice. Alterations in the gut microbiome diversity and its functional pathways due to stress were more pronounced in males than in females. The present results provide potential sex-specific biomarkers and novel metabolic signatures in the gut microbiota related to stress disorders which may be used as potential targets in diagnostic and therapeutic approaches in neurogastroenterological diseases.

Zobrazit více v PubMed

Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. 10.1038/nature09944 PubMed DOI PMC

Li J, Jia H, Cai X et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841. 10.1038/nbt.2942 PubMed DOI

Hadrich D (2018) Microbiome research is becoming the key to better understanding health and nutrition. Front Genet 9:1–10. 10.3389/fgene.2018.00212 PubMed DOI PMC

Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. 10.1042/BCJ20160510 PubMed DOI PMC

Mahnic A, Rupnik M (2018) Different host factors are associated with patterns in bacterial and fungal gut microbiota in Slovenian healthy cohort. PLoS ONE 13:1–17. 10.1371/journal.pone.0209209 PubMed DOI PMC

Kers JG, Velkers FC, Fischer EAJ et al (2018) Host and environmental factors affecting the intestinal microbiota in chickens. Front Microbiol 9:1–14. 10.3389/fmicb.2018.00235 PubMed DOI PMC

Lim MY, Hong S, Bang S-J, et al (2021) Gut microbiome structure and association with host factors in a Korean population. mSystems 6:1–15. 10.1128/msystems.00179-21 PubMed PMC

Markle JGM, Frank DN, Mortin-Toth S et al (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088. 10.1126/science.1233521 PubMed DOI

Jašarević E, Morrison KE, Bale TL (2016) Sex differences in the gut microbiome - brain axis across the lifespan. Philos Trans R Soc Lond B Biol Sci 371:12–17. 10.1098/rstb.2015.0122 PubMed DOI PMC

Org E, Mehrabian M, Parks BW et al (2016) Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7:313–322. 10.1080/19490976.2016.1203502 PubMed DOI PMC

Edogawa S, Peters SA, Jenkins GD et al (2018) Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J 32:6615–6625. 10.1096/fj.201800560R PubMed DOI PMC

Korpela K, Kallio S, Salonen A et al (2021) Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci Rep 11:1–10. 10.1038/s41598-021-02375-z PubMed DOI PMC

Elderman M, Hugenholtz F, Belzer C et al (2018) Sex and strain dependent differences in mucosal immunology and microbiota composition in mice. Biol Sex Differ 9:26. 10.1186/s13293-018-0186-6 PubMed DOI PMC

Menon R, Watson SE, Thomas LN et al (2013) Diet complexity and estrogen receptor β status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol 79:5763–5773. 10.1128/AEM.01182-13 PubMed DOI PMC

Yoon K, Kim N (2021) Roles of sex hormones and gender in the gut microbiota. J Neurogastroenterol Motil 27:314–325. 10.5056/JNM20208 PubMed DOI PMC

Bercik P, Denou E, Collins J et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609. 10.1053/j.gastro.2011.04.052 PubMed DOI

Heijtz RD, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052. 10.1073/pnas.1010529108 PubMed DOI PMC

Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–265. 10.1111/j.1365-2982.2010.01620.x PubMed DOI

Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113:2019–2040. 10.1007/s10482-020-01474-7 PubMed DOI

Afzaal M, Saeed F, Shah YA et al (2022) Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol 13:1–14. 10.3389/fmicb.2022.999001 PubMed DOI PMC

Hou K, Wu ZX, Chen XY et al (2022) Microbiota in health and diseases. Signal Transduct Target Ther. 10.1038/s41392-022-00974-4 PubMed DOI PMC

Cussotto S, Sandhu KV, Dinan TG, Cryan JF (2018) The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front Neuroendocrinol 51:80–101. 10.1016/j.yfrne.2018.04.002 PubMed DOI

Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of PubMed DOI PMC

Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394-1401.e4. 10.1053/j.gastro.2013.02.043 PubMed DOI PMC

Lyte M (2014) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24. 10.1007/978-1-4939-0897-4_1 PubMed DOI

Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155. 10.1002/(SICI)1098-2302(199909)35:2%3c146::AID-DEV7%3e3.0.CO;2-G PubMed DOI

Li S, Wang Z, Yang Y et al (2017) Lachnospiraceae shift in the microbial community of mice faecal sample effects on water immersion restraint stress. AMB Express. 10.1186/s13568-017-0383-4 PubMed DOI PMC

Murakami T, Kamada K, Mizushima K et al (2017) Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion 95:55–60. 10.1159/000452364 PubMed DOI

Amini-Khoei H, Haghani-Samani E, Beigi M et al (2019) On the role of corticosterone in behavioral disorders, microbiota composition alteration and neuroimmune response in adult male mice subjected to maternal separation stress. Int Immunopharmacol 66:242–250. 10.1016/j.intimp.2018.11.037 PubMed DOI

Shaler CR, Parco AA, Elhenawy W et al (2021) Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nat Commun. 10.1038/s41467-021-26992-4 PubMed DOI PMC

Gheorghe CE, Ritz NL, Martin JA et al (2021) Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 13:1–51. 10.1080/19490976.2021.1941711 PubMed DOI PMC

Delaroque C, Chervy M, Gewirtz AT, Chassaing B (2021) Social overcrowding impacts gut microbiota, promoting stress, inflammation, and dysglycemia. Gut Microbes. 10.1080/19490976.2021.2000275 PubMed DOI PMC

Rao J, Xie R, Lin L et al (2021) Fecal microbiota transplantation ameliorates gut microbiota imbalance and intestinal barrier damage in rats with stress-induced depressive-like behavior. Eur J Neurosci 53:3598–3611. 10.1111/ejn.15192 PubMed DOI

Lyte JM, Gheorghe CE, Goodson MS et al (2020) Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil 32:1–12. 10.1111/nmo.13881 PubMed DOI

Marcondes Ávila PR, Fiorot M, Michels M et al (2020) Effects of microbiota transplantation and the role of the vagus nerve in gut–brain axis in animals subjected to chronic mild stress. J Affect Disord 277:410–416. 10.1016/j.jad.2020.08.013 PubMed DOI

Lkhagva E, Hong J, Hong W et al (2021) The regional diversity of gut microbiome along the GI tract. BMC Microbiol 21:1–13. 10.1186/s12866-021-02099-0 PubMed DOI PMC

Donaldson GP, Lee SM, Mazmanian SK (2015) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32. 10.1038/nrmicro3552 PubMed DOI PMC

Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294. 10.1038/nrgastro.2012.32 PubMed DOI

Bailey MT, Dowd SE, Galley JD et al (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407. 10.1016/j.bbi.2010.10.023 PubMed DOI PMC

De Palma G, Blennerhassett P, Lu J et al (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun. 10.1038/ncomms8735 PubMed DOI

Leigh SJ, Uhlig F, Wilmes L et al (2023) The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota–gut–brain axis perspective. J Physiol 601:4491–4538. 10.1113/JP281951 PubMed DOI

Langgartner D, Lowry CA, Reber SO (2020) Old friends, immuneregulation, and stress resilience; [Old Friends, Immunregulation und Stressresilienz: Teil 1: Theoretische Grundlagen]. Nervenheilkunde 39:47–54. 10.1055/a-1037-0710 DOI

Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37:1369–1378. 10.1016/j.psyneuen.2012.03.007 PubMed DOI

Handa RJ, McGivern RF (2016) Stress response: sex differences. Curated Ref Collect Neurosci Biobehav Psychol 511–517. 10.1016/B978-0-12-809324-5.02865-0

Verma R, Balhara YS, Gupta C (2011) Gender differences in stress response: role of developmental and biological determinants. Indian J Psychiatry 20:4. 10.4103/0972-6748.98407 PubMed DOI PMC

Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. Nat Neurosci 18:1413–1420. 10.1038/nn.4112 PubMed DOI PMC

Million M, Larauche M (2016) Stress, sex, and the enteric nervous system. Neurogastroenterol Motil 28:1283–1289. 10.1111/nmo.12937 PubMed DOI PMC

Oyola MG, Handa RJ (2017) Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. Stress (Amsterdam Neth) 20:476–494. 10.1080/10253890.2017.1369523 PubMed DOI PMC

Bangasser DA, Wiersielis KR (2018) Sex differences in stress responses: a critical role for corticotropin-releasing factor. Hormones (Athens) 17:5–13. 10.1007/s42000-018-0002-z PubMed DOI

Goldfarb EV, Seo D, Sinha R (2019) Sex differences in neural stress responses and correlation with subjective stress and stress regulation. Neurobiol Stress 11:100177. 10.1016/j.ynstr.2019.100177 PubMed DOI PMC

Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M et al (2016) The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol Motil 28:463–486. 10.1111/nmo.12717 PubMed DOI

Bridgewater LC, Zhang C, Wu Y et al (2017) Gender-based differences in host behavior and gut microbiota composition in response to high fat diet and stress in a mouse model. Sci Rep 7:1–12. 10.1038/s41598-017-11069-4 PubMed DOI PMC

Rincel M, Aubert P, Chevalier J et al (2019) Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain Behav Immun 80:179–192. 10.1016/j.bbi.2019.03.006 PubMed DOI

Park HJ, Kim SA, Kang WS, Kim JW (2021) Early-life stress modulates gut microbiota and peripheral and central inflammation in a sex-dependent manner. Int J Mol Sci 22:1–17. 10.3390/ijms22041899 PubMed DOI PMC

Jašarević E, Howard CD, Misic AM et al (2017) Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci Rep 7:1–13. 10.1038/srep44182 PubMed DOI PMC

Moussaoui N, Jacobs JP, Larauche M et al (2017) Chronic early-life stress in rat pups alters basal corticosterone, intestinal permeability, and fecal microbiota at weaning: influence of sex. J Neurogastroenterol Motil 23:135–143. 10.5056/jnm16105 PubMed DOI PMC

Tsilimigras MCB, Gharaibeh RZ, Sioda M et al (2018) Interactions between stress and sex in microbial responses within the microbiota-gut-brain axis in a mouse model. Psychosom Med. 10.1097/PSY.0000000000000572 PubMed DOI

Audet MC (2019) Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: does sex matter? Front Neuroendocrinol 54:100772. 10.1016/j.yfrne.2019.100772 PubMed DOI

Jiang J, Fu Y, Tang A et al (2023) Sex difference in prebiotics on gut and blood–brain barrier dysfunction underlying stress-induced anxiety and depression. CNS Neurosci Ther 29(S1):115–128. 10.1111/cns.14091 PubMed DOI PMC

Lyte JM, Koester LR, Daniels KM, Lyte M (2022) Distinct cecal and fecal microbiome responses to stress are accompanied by sex- and diet-dependent changes in behavior and gut serotonin. Front Neurosci 16:1–14. 10.3389/fnins.2022.827343 PubMed DOI PMC

Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673. 10.1038/mp.2012.77 PubMed DOI

Moreno-Indias I, Sánchez-Alcoholado L, Sánchez-Garrido MÁ et al (2016) Neonatal androgen exposure causes persistent gut microbiota dysbiosis related to metabolic disease in adult female rats. Endocrinology 157:4888–4898. 10.1210/en.2016-1317 PubMed DOI

Kaliannan K, Robertson RC, Murphy K et al (2018) Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome 6:1–22. 10.1186/s40168-018-0587-0 PubMed DOI PMC

Diviccaro S, Fitzgerald JA, Cioffi L et al (2022) Gut steroids and microbiota: effect of gonadectomy and sex. Biomolecules 12:1–21. 10.3390/biom12060767 PubMed DOI PMC

Vagnerová K, Vodička M, Hermanová P et al (2019) Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic–pituitary–adrenal axis and the intestine of male mice. Front Immunol 10:1–10. 10.3389/fimmu.2019.02655 PubMed DOI PMC

Milani C, Hevia A, Foroni E et al (2013) Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS One. 10.1371/journal.pone.0068739 PubMed DOI PMC

Mekadim C, Skalnikova HK, Cizkova J et al (2022) Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol 22:1–19. 10.1186/s12866-022-02458-5 PubMed DOI PMC

Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. 10.1038/s41587-019-0209-9 PubMed DOI PMC

Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods 13:581–583. 10.1038/nmeth.3869 PubMed DOI PMC

Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016:1–22. 10.7717/peerj.2584 PubMed DOI PMC

Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

Oksanen J, Simpson GL, Blanchet FG, et al (2025) Vegan: community ecology package. https://vegandevs.github.io/vegan/

Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 10.1186/gb-2011-12-6-r60 PubMed DOI PMC

Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. 10.1038/s41587-020-0548-6 PubMed DOI PMC

Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. 10.1093/bioinformatics/btu494 PubMed DOI PMC

Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458. 10.1053/j.gastro.2014.01.052 PubMed DOI PMC

Shin JH, Park YH, Sim M et al (2019) Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol 170:192–201. 10.1016/j.resmic.2019.03.003 PubMed DOI

Maeng LY, Beumer A (2023) Never fear, the gut bacteria are here: estrogen and gut microbiome-brain axis interactions in fear extinction. Int J Psychophysiol 189:66–75. 10.1016/j.ijpsycho.2023.05.350 PubMed DOI

Santos-Marcos JA, Mora-Ortiz M, Tena-Sempere M et al (2023) Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 14:1–24. 10.1186/s13293-023-00490-2 PubMed DOI PMC

Tanelian A, Nankova B, Miari M, Sabban EL (2024) Microbial composition, functionality, and stress resilience or susceptibility: unraveling sex-specific patterns. Biol Sex Differ 15:1–23. 10.1186/s13293-024-00590-7 PubMed DOI PMC

Harris RBS, Zhou J, Youngblood BD et al (1998) Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 275:R1928. 10.1152/ajpregu.1998.275.6.r1928 PubMed DOI

Jeong JY, Lee DH, Kang SS (2013) Effects of chronic restraint stress on body weight, food intake, and hypothalamic gene expressions in mice. Endocrinol Metab 28:288. 10.3803/enm.2013.28.4.288 PubMed DOI PMC

Lotan A, Lifschytz T, Wolf G et al (2018) Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 23:1432–1445. 10.1038/mp.2017.237 PubMed DOI

Krahn DD, Gosnell BA, Majchrzak MJ (1990) The anorectic effects of CRH and restraint stress decrease with repeated exposures. Biol Psychiatry 27:1094–1102. 10.1016/0006-3223(90)90046-5 PubMed DOI

Primindari RS, Rohmah AN, Irawan DD (2022) Effect of increased corticosterone levels due to chronic stress on body weight changes in DOI

Rengarajan S, Knoop KA, Rengarajan A et al (2020) A potential role for stress-induced microbial alterations in IgA-associated irritable bowel syndrome with diarrhea. Cell Rep Med 1:100124. 10.1016/j.xcrm.2020.100124 PubMed DOI PMC

Yue Y, Chen Y, Liu H et al (2021) Shugan hewei decoction alleviates cecum mucosal injury and improves depressive- and anxiety-like behaviors in chronic stress model rats by regulating cecal microbiota and inhibiting NLRP3 inflammasome. Front Pharmacol 12:1–19. 10.3389/fphar.2021.766474 PubMed DOI PMC

Gao K, Farzi A, Ke X, Yu Y, Chen C, Chen Su, Yu T, Wang H et al (2022) Oral administration of PubMed DOI

Shimada K, , Masakatsu Nohara, Akihito Yasuoka AK, Shinozaki F, et al (2022) Mouse model of weak depression exhibiting suppressed cAMP signaling in the amygdala, lower lipid catabolism in liver, and correlated gut microbiota. Front Behav Neurosci 16:. 10.3389/fnbeh.2022.841450 PubMed PMC

Gao X, Cao Q, Cheng Y et al (2018) Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci U S A 115:E2960–E2969. 10.1073/pnas.1720696115 PubMed DOI PMC

Qu W, Liu S, Zhang W et al (2019) Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: intestinal microbiota and gut microbiome function. Food Funct 10:5886–5897. 10.1039/c9fo00399a PubMed DOI

Tian P, Wang G, Zhao J et al (2019) PubMed DOI

Deng Y, Zhou M, Wang J et al (2021) Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes 13:1–16. 10.1080/19490976.2020.1869501 PubMed DOI PMC

Li H, Xiang Y, Zhu Z et al (2021) Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflammation 18:1–18. 10.1186/s12974-021-02303-y PubMed DOI PMC

Liu X, Teng T, Li X et al (2021) Impact of inosine on chronic unpredictable mild stress-induced depressive and anxiety-like behaviors with the alteration of gut microbiota. Front Cell Infect Microbiol 11:1–11. 10.3389/fcimb.2021.697640 PubMed DOI PMC

Song X, Wang W, Ding S et al (2021) Puerarin ameliorates depression-like behaviors of with chronic unpredictable mild stress mice by remodeling their gut microbiota. J Affect Disord 290:353–363. 10.1016/j.jad.2021.04.037 PubMed DOI

Wu J, Li J, Gaurav C et al (2021) CUMS and dexamethasone induce depression-like phenotypes in mice by differentially altering gut microbiota and triggering macroglia activation. Gen Psychiatry 34:1–11. 10.1136/gpsych-2021-100529 PubMed DOI PMC

Zhang , Jianan Huang , Yifan Xiong , Xiangna Zhang YL and ZL (2022) Jasmine tea attenuates chronic unpredictable mild stress-induced depressive-like behavior in rats via the gut-brain axis. Nutrients 14:1–19. 10.3390/nu14010099 PubMed PMC

Zhang Y, Wu S, Liu Y et al (2021) Acute cold water-immersion restraint stress induces intestinal injury and reduces the diversity of gut microbiota in mice. Front Cell Infect Microbiol 11:1–11. 10.3389/fcimb.2021.706849 PubMed DOI PMC

Cheng S, Zhu Z, Li H et al (2023) Rifaximin ameliorates depression-like behaviour in chronic unpredictable mild stress rats by regulating intestinal microbiota and hippocampal tryptophan metabolism. J Affect Disord 329:30–41. 10.1016/j.jad.2023.02.086 PubMed DOI

Vacca M, Celano G, Calabrese FM et al (2020) The controversial role of human gut lachnospiraceae. Microorganisms 8:1–25. 10.3390/microorganisms8040573 PubMed DOI PMC

Stanislawski MA, Frank DN, Borengasser SJ et al (2021) The gut microbiota during a behavioral weight loss intervention. Nutrients. 10.3390/nu13093248 PubMed DOI PMC

Naseribafrouei A, Hestad K, Avershina E et al (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26:1155–1162. 10.1111/nmo.12378 PubMed DOI

Golubeva AV, Crampton S, Desbonnet L et al (2015) Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 60:58–74. 10.1016/j.psyneuen.2015.06.002 PubMed DOI

Yu M, Jia H, Zhou C et al (2017) Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J Pharm Biomed Anal 138:231–239. 10.1016/j.jpba.2017.02.008 PubMed DOI

McGaughey KD, Yilmaz-Swenson T, Elsayed NM et al (2019) Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety- and depressive-like behavior following social defeat in mice. Sci Rep 9:1–11. 10.1038/s41598-019-40140-5 PubMed DOI PMC

Rong H, Xie X, Zhao J et al (2019) Similarly in depression, nuances of gut microbiota: evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J Psychiatr Res 113:90–99. 10.1016/j.jpsychires.2019.03.017 PubMed DOI

Barandouzi AZ, Angela RS, Wendy AH et al (2020) Altered composition of gut microbiota in depression: a systematic review. Front Psychiatry 11:1–10. 10.3389/fpsyt.2020.00541 PubMed DOI PMC

Qu Q, Li H, Bai L et al (2021) Effects of heat stress on gut microbiome in rats. Indian J Microbiol 61:338–347. 10.1007/s12088-021-00948-0 PubMed DOI PMC

Liang S, Sin ZY, Yu J et al (2023) Multi-cohort analysis of depression-associated gut bacteria sheds insight on bacterial biomarkers across populations. Cell Mol Life Sci 80:1–20. 10.1007/s00018-022-04650-2 PubMed DOI PMC

Kemp KM, Colson J, Lorenz RG et al (2021) Early life stress in mice alters gut microbiota independent of maternal microbiota inheritance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 320:R663–R674. 10.1152/AJPREGU.00072.2020 PubMed DOI PMC

Hu Y, Chen F, Ye H, Lu B (2021) Integrative analysis of the gut microbiome and metabolome in a rat model with stress induced irritable bowel syndrome. Sci Rep 11:1–11. 10.1038/s41598-021-97083-z PubMed DOI PMC

Bailey MT, Lubach GR, Coe CL (2004) Prenatal stress alters bacterial colonization of the gut in infant monkeys. J Pediatr Gastroenterol Nutr 38:414–421. 10.1097/00005176-200404000-00009 PubMed DOI

Zijlmans MAC, Korpela K, Riksen-Walraven JM et al (2015) Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 53:233–245. 10.1016/j.psyneuen.2015.01.006 PubMed DOI

Marin IA, Goertz JE, Ren T et al (2017) Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep 7:1–10. 10.1038/srep43859 PubMed DOI PMC

Maltz RM, Keirsey J, Kim SC et al (2018) Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids. PLoS ONE 13:1–19. 10.1371/journal.pone.0196961 PubMed DOI PMC

Bassett SA, Young W, Fraser K et al (2019) Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci Rep 9:1–13. 10.1038/s41598-019-50593-3 PubMed DOI PMC

Guo Y, Xie JP, Deng K et al (2019) Prophylactic effects of PubMed DOI PMC

Lv WJ, Wu XL, Chen WQ et al (2019) The gut microbiome modulates the changes in liver metabolism and in inflammatory processes in the brain of chronic unpredictable mild stress rats. Oxid Med Cell Longev. 10.1155/2019/7902874 PubMed DOI PMC

Oh NS, Joung JY, Lee JY et al (2020) Glycated milk protein fermented with PubMed DOI PMC

Dong Z, Xie Q, Xu F et al (2022) Neferine alleviates chronic stress-induced depression by regulating monoamine neurotransmitter secretion and gut microbiota structure. Front Pharmacol 13:1–11. 10.3389/fphar.2022.974949 PubMed DOI PMC

Zhuang Y, Zeng R, Liu X et al (2022) Neoagaro-oligosaccharides ameliorate chronic restraint stress-induced depression by increasing 5-HT and BDNF in the brain and remodeling the gut microbiota of mice. Mar Drugs. 10.3390/md20110725 PubMed DOI PMC

Han SK, Kim JK, Park HS et al (2021) Chaihu-Shugan-San (Shihosogansan) alleviates restraint stress-generated anxiety and depression in mice by regulating NF-κB-mediated BDNF expression through the modulation of gut microbiota. Chin Med 16:1–13. 10.1186/s13020-021-00492-5 PubMed DOI PMC

Gur TL, Palkar AV, Rajasekera T et al (2019) Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav Brain Res 359:886–894. 10.1016/j.bbr.2018.06.025 PubMed DOI PMC

Duan J, Huang Y, Tan X et al (2021) Characterization of gut microbiome in mice model of depression with divergent response to escitalopram treatment. Transl Psychiatry 11:1–12. 10.1038/s41398-021-01428-1 PubMed DOI PMC

Lin R, Wang Z, Cao J et al (2021) Role of melatonin in murine “restraint stress”-induced dysfunction of colonic microbiota. J Microbiol 59:500–512. 10.1007/s12275-021-0305-7 PubMed DOI

Dos Santos GM, Valeri F, Winter J et al (2022) Resilience and the gut microbiome: insights from chronically socially stressed wild-type mice. Microorganisms 10:1–18. 10.3390/microorganisms10061077 PubMed DOI PMC

Tanelian A, Nankova B, Miari M et al (2022) Resilience or susceptibility to traumatic stress: potential influence of the microbiome. Neurobiol Stress 19:100461. 10.1016/j.ynstr.2022.100461 PubMed DOI PMC

Lürzel S, Kaiser S, Krüger C, Sachser N (2011) Inhibiting influence of testosterone on stress responsiveness during adolescence. Horm Behav 60:691–698. 10.1016/j.yhbeh.2011.09.007 PubMed DOI

Jurić M, Balog M, Ivić V et al (2021) Chronic stress and gonadectomy affect the expression of Cx37, Cx40 and Cx43 in the spinal cord. Life. 10.3390/life11121330 PubMed DOI PMC

Lyte M, Vulchanova L, Brown DR (2011) Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343:23–32. 10.1007/s00441-010-1050-0 PubMed DOI

Madison A, Kiecolt-Glaser JK (2019) Stress, depression, diet, and the gut microbiota: human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 28:105–110. 10.1016/j.cobeha.2019.01.011 PubMed DOI PMC

Lopresti AL (2020) The effects of psychological and environmental stress on micronutrient concentrations in the body: a review of the evidence. Adv Nutr 11:103–112. 10.1093/advances/nmz082 PubMed DOI PMC

Varvara RA, Vodnar DC (2024) Probiotic-driven advancement: exploring the intricacies of mineral absorption in the human body. Food Chemistry: X 21:101067. 10.1016/j.fochx.2023.101067 PubMed DOI PMC

Roth W, Mohamadzadeh M (2021) Vitamin B12 and gut-brain homeostasis in the pathophysiology of ischemic stroke. EBioMedicine 73:103676. 10.1016/j.ebiom.2021.103676 PubMed DOI PMC

Mathew AR, Di Matteo G, La Rosa P et al (2024) Vitamin B12 deficiency and the nervous system: beyond metabolic decompensation—comparing biological models and gaining new insights into molecular and cellular mechanisms. Int J Mol Sci. 10.3390/ijms25010590 PubMed DOI PMC

Maguire J (2014) Stress-induced plasticity of GABAergic inhibition. Front Cell Neurosci 8:1–8. 10.3389/fncel.2014.00157 PubMed DOI PMC

Braga JD, Thongngam M, Kumrungsee T (2024) Gamma-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. NPJ Sci Food. 10.1038/s41538-024-00253-2 PubMed DOI PMC

Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71. 10.1038/s41579-020-0433-9 PubMed DOI

Fleishman JS, Kumar S (2024) Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 9:97. 10.1038/s41392-024-01811-6 PubMed DOI PMC

Vital M, Rud T, Rath S et al (2019) Diversity of bacteria exhibiting bile acid-inducible 7α-dehydroxylation genes in the human gut. Comput Struct Biotechnol J 17:1016–1019. 10.1016/j.csbj.2019.07.012 PubMed DOI PMC

Qu Y, Su C, Zhao Q et al (2022) Gut microbiota-mediated elevated production of secondary bile acids in chronic unpredictable mild stress. Front Pharmacol 13:1–11. 10.3389/fphar.2022.837543 PubMed DOI PMC

Mizock BA (1995) Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 98:75–84. 10.1016/S0002-9343(99)80083-7 PubMed DOI

Nirupama, R., Devaki, M. and Yajurvedi HN. D (2010) Repeated acute stress induced alterations in carbohydrate metabolism in rat Repeated acute stress induced alterations in. J Stress Physiol Biochem 6:44–55

Nirupama R, Devaki M, Yajurvedi HN (2012) Chronic stress and carbohydrate metabolism: persistent changes and slow return to normalcy in male albino rats. Stress (Amsterdam Neth) 15:262–271. 10.3109/10253890.2011.619604 PubMed DOI

Ibrahim M, Anishetty S (2012) A meta-metabolome network of carbohydrate metabolism: interactions between gut microbiota and host. Biochem Biophys Res Commun 428:278–284. 10.1016/j.bbrc.2012.10.045 PubMed DOI

Peña-Bautista C, Casas-Fernández E, Vento M et al (2020) Stress and neurodegeneration. Clin Chim Acta 503:163–168. 10.1016/j.cca.2020.01.019 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...