Rare microbial relict sheds light on an ancient eukaryotic supergroup

. 2026 Jan ; 649 (8096) : 388-395. [epub] 20251119

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41261123
Odkazy

PubMed 41261123
DOI 10.1038/s41586-025-09750-0
PII: 10.1038/s41586-025-09750-0
Knihovny.cz E-zdroje

During the past decade, our understanding of eukaryotic evolution has increased immensely. Newly recognized eukaryotic supergroups have been established1-3, and most enigmatic orphan lineages have had their relationships resolved4-6. Studies on unicellular protist eukaryotes have also been key to understanding the evolution of mitochondria, the fundamental organelles of the eukaryotic cell, which originated from an alphaproteobacterial ancestor. The retention of ancestral alphaproteobacterial pathways in some protist lineages reveals that the mitochondrion of the last eukaryotic common ancestor was more metabolically versatile than are the highly derived mitochondria that are found in most modern eukaryotes7,8. Here we report the discovery of such a unicellular eukaryote, Solarion arienae gen. et sp. nov., an inconspicuous, free-living heterotrophic protist with two morphologically distinct cell types and a novel type of predatory extrusome. We assign Solarion to the new phylum Caelestes. Together with Provora, hemimastigophoreans and Meteora, they form a new eukaryotic supergroup, Disparia. Moreover, S. arienae has some noteworthy traits associated with the mitochondrial genome; in particular, the mitochondrially encoded secA gene, a remnant of an ancestral alphaproteobacterial protein secretion pathway, which has been lost almost entirely in extant mitochondria9,10. The discovery of S. arienae broadens our understanding of early eukaryotic evolution and facilitates the study of proto-mitochondrial metabolic remnants, shedding light on the complexity of ancestral eukaryotic life.

Zobrazit více v PubMed

Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018). PubMed DOI

Brown, M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 10, 427–433 (2018). PubMed DOI PMC

Tikhonenkov, D. V. et al. Microbial predators form a new supergroup of eukaryotes. Nature 612, 714–719 (2022). PubMed DOI

Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724 (2017). PubMed DOI

Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019). PubMed DOI

Schön, M. E. et al. Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat. Commun. 12, 6651 (2021). PubMed DOI PMC

Gray, M. W. et al. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol. 18, 22 (2020). PubMed DOI PMC

Horváthová, L., et al. Analysis of diverse eukaryotes suggests the existence of an ancestral mitochondrial apparatus derived from the bacterial type II secretion system. Nat. Commun. 12, 2947 (2021). PubMed DOI PMC

Burger, G., Gray, M. W., Forget, L. & Lang, B. F. Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol. Evol. 5, 418–438 (2013). PubMed DOI PMC

Moreira, D., Blaz, J., Kim, E. & Eme, L. A gene-rich mitochondrion with a unique ancestral protein transport system. Curr. Biol. 34, 3812–3819 (2024). PubMed DOI

Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020). PubMed DOI

Lukeš, J., Čepička, I. & Kolísko, M. Evolution: no end in sight for novel incredible (heterotrophic) protists. Curr. Biol. 34, R55–R58 (2024). PubMed DOI

Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020). PubMed DOI

del Campo, J. et al. The protist cultural renaissance. Trends Microbiol. 32, 128–131 (2024). PubMed DOI

Timmis, J. N., Ayliff, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004). PubMed DOI

Gabaldón, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609 (2003). PubMed DOI

Gawryluk, R. M. R. & Stairs, C. W. Diversity of electron transport chains in anaerobic protists. Biochim. Biophys. Acta Bioenerg. 1862, 148334 (2021). PubMed DOI

Namasivayam, S. et al. Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma. Proc. Natl Acad. Sci. USA 120, e2308569120 (2023). PubMed DOI PMC

He, D., Fu, C.-J. & Baldauf, S. L. Multiple origins of eukaryotic cox15 suggest horizontal gene transfer from bacteria to jakobid mitochondrial DNA. Mol. Biol. Evol. 33, 122–133 (2016). PubMed DOI

Milner, D. S., Wideman, J. G., Stairs, C. W., Dunn, C. D. & Richards, T. A. A functional bacteria-derived restriction modification system in the mitochondrion of a heterotrophic protist. PLoS Biol. 19, e3001126 (2021). PubMed DOI PMC

Gray, M. W. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc. Natl Acad. Sci. USA 112, 10133–10138 (2015). PubMed DOI PMC

Pyrih, J. et al. Vestiges of the bacterial signal recognition particle-based protein targeting in mitochondria. Mol. Biol. Evol. 38, 3170–3187 (2021). PubMed DOI PMC

Eglit, Y. et al. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr. Biol. 34, 451–459 (2024). PubMed DOI

Shiryev, S. A. & Agarwala, R. Indexing and searching petabase-scale nucleotide resources. Nat. Methods 21, 994–1002 (2024). PubMed DOI PMC

Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015). PubMed DOI

Forster, D. et al. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120 (2016). PubMed DOI

Hausmann, K. Extrusive organelles in protists. Int. Rev. Cytol. 52, 197–276 (1978). PubMed DOI

Tice, A. K., et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021). PubMed DOI PMC

Banos, H. et al. GTRpmix: a linked general time-reversible model for profile mixture models. Mol. Biol. Evol. 41, msae174 (2024). PubMed DOI PMC

Si Quang, L., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008). DOI

Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002). PubMed DOI

Torruella, G., Galindo, L. J., Moreira, D. & López-García, P. Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life. Curr. Biol. 35, 198–207 (2025). PubMed DOI

Lartillot, N. & Philippe, H. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Phil. Trans. R. Soc. B 363, 1463–1472 (2008). PubMed DOI PMC

Cranford-Smith, T. & Huber, D. The way is the goal: how SecA transports proteins across the cytoplasmic membrane in bacteria. FEMS Microbiol. Lett. 365, fny093 (2018). PubMed DOI PMC

Petrů, M., Dohnálek, V., Füssy, Z. & Doležal, P. Fates of Sec, Tat, and YidC translocases in mitochondria and other eukaryotic compartments. Mol. Biol. Evol. 38, 5241–5254 (2021). PubMed DOI PMC

Smets, D., Loos, M. S., Karamanou, S. & Economou, A. Protein transport across the bacterial plasma membrane by the Sec pathway. Protein J. 38, 262–273 (2019). PubMed DOI

Hsieh, Y. et al. SecA alone can promote protein translocation and ion channel activity. J. Biol. Chem. 286, 44702–44709 (2011). PubMed DOI PMC

Hsieh, Y. et al. Dissecting structures and functions of SecA-only protein-conducting channels: ATPase, pore structure, ion channel activity, protein translocation, and interaction with SecYEG/SecDF•YajC. PLoS One 12, e0178307 (2017). PubMed DOI PMC

Köstlbacher, S., Panagiotou, K., Tamarit, D. & Ettema, T. J. G. WitChi: Efficient detection and pruning of compositional bias in phylogenomic alignments using empirical chi-squared testing. Preprint at bioRxiv https://doi.org/10.1101/2025.07.14.663642 (2025).

Tong, J. et al. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol. Biol. Evol. 28, 1581–1591 (2011). PubMed DOI

Dembech, E. et al. Identification of hidden associations among eukaryotic genes through statistical analysis of coevolutionary transitions. Proc. Natl Acad. Sci. USA 120, e2218329120 (2023). PubMed DOI PMC

Alto, L. T. & Terman, J. R. in Semaphorin Signaling: Methods in Molecular Biology Vol. 1493 (ed. Terman, J. R.) 1–25 (Springer, 2017).

Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009). PubMed DOI PMC

Pereira, R. V. et al. Ubiquitin-specific proteases are differentially expressed throughout the Schistosoma mansoni life cycle. Parasit. Vectors 8, 349 (2015). PubMed DOI PMC

Burge, R. J., Damianou, A., Wilkinson, A. J., Rodenko, B. & Mottram, J. C. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2–UEV1 E2 complex. PLoS Pathog. 16, e1008784 (2020). PubMed DOI PMC

Rizos, I., Frada, M. J., Bittner, L. & Not, F. Life cycle strategies in free-living unicellular eukaryotes: diversity, evolution, and current molecular tools to unravel the private life of microorganisms. J. Eukaryot. Microbiol. 71, e13052 (2024). PubMed DOI PMC

Hofstatter, P. G., Brown, M. W. & Lahr, D. J. G. Comparative genomics supports sex and meiosis in diverse Amoebozoa. Genome Biol. Evol. 10, 3118–3128 (2018). PubMed DOI PMC

Sibbald, S. J. & Archibald, J. M. More protist genomes needed. Nat. Ecol. Evol. 1, 0145 (2017). DOI

Valt, M. & Hrubá, P. Chemical fixation of Solarion arienae for transmission electron microscopy. protocols.io https://doi.org/10.17504/protocols.io.kxygxyd5zl8j/v2 (2024).

Valt, M. HPF-FS of Solarion arienae for transmission electron microscopy. protocols.io https://doi.org/10.17504/protocols.io.dm6gpzp15lzp/v2 (2024).

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). PubMed DOI

Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017). PubMed DOI

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed DOI

Bodian, D. A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat. Rec. 65, 89–97 (1936). DOI

Nie, D. Morphology and taxonomy of the intestinal protozoa of the guinea-pig, Cavia porcella. J. Morphol. 86, 381–493 (1950). PubMed DOI

Valt, M. & Kotyk, M. Permanent specimen preparation by protargol staining. protocols.io https://doi.org/10.17504/protocols.io.q26g71or9gwz/v1 (2024).

Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988). PubMed DOI

Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011). PubMed DOI PMC

Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-seq data. GigaScience 8, giz100 (2019). PubMed DOI PMC

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed DOI PMC

Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010). PubMed DOI PMC

Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020). PubMed DOI PMC

Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010). PubMed DOI PMC

Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012). PubMed DOI PMC

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009). PubMed DOI PMC

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed DOI PMC

Rio, D. C., Ares, M., Hannon, G. J. & Nilsen, T. W. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5439 (2010). PubMed DOI

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012). PubMed DOI PMC

Lafond-Lapalme, J., Duceppe, M.-O., Wang, S., Moffett, P. & Mimee, B. A new method for decontamination of de novo transcriptomes using a hierarchical clustering algorithm. Bioinformatics 33, 1293–1300 (2017). PubMed DOI

Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021). PubMed DOI PMC

Huerta-Cepas, J. et al. EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019). PubMed DOI

Pánek, T. et al. A new lineage of non-photosynthetic green algae with extreme organellar genomes. BMC Biol. 20, 66 (2022). PubMed DOI PMC

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). PubMed DOI PMC

Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020). PubMed DOI PMC

Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020). PubMed DOI

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). PubMed DOI PMC

Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012). PubMed DOI PMC

Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016). PubMed DOI

Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019). PubMed DOI PMC

Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013). PubMed DOI PMC

Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021). PubMed DOI

Challis, R., Richards, E., Rajan, J., Cochrane, G. & Blaxter, M. BlobToolKit – interactive quality assessment of genome assemblies. G3 10, 1361–1374 (2020). PubMed DOI PMC

Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024). PubMed DOI PMC

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 http://www.repeatmasker.org (2013–2015).

Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020). PubMed DOI PMC

Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019). PubMed DOI PMC

Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021). PubMed DOI PMC

Tegenfeldt, F. et al. OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes. Nucleic Acids Res. 53, D516–D522 (2025). PubMed DOI

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015). PubMed DOI

Huang, N. & Li, H. compleasm: a faster and more accurate reimplementation of BUSCO. Bioinformatics 39, btad595 (2023). PubMed DOI PMC

Gabriel, L., Hoff, K. J., Brůna, T., Borodovsky, M. & Stanke, M. TSEBRA: transcript selector for BRAKER. BMC Bioinformatics 22, 566 (2021). PubMed DOI PMC

Brůna, T., Gabriel, L. & Hoff, K. J. in Insect Genomics: Methods in Molecular Biology Vol. 2935 (eds Bonizzoni, M. & Ometto, L.) 67–107 (Springer, 2025).

Jones, R. E. et al. Create, analyze, and visualize phylogenomic datasets using PhyloFisher. Curr. Protoc. 4, e969 (2024). PubMed DOI PMC

Wang, H.-C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67, 216–235 (2018). PubMed DOI

Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011). PubMed DOI PMC

Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010). PubMed DOI

Kishino, H., Miyata, T. & Hasegawa, M. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 31, 151–160 (1990). DOI

Susko, E., Field, C., Blouin, C. & Roger, A. J. Estimation of rates-across-sites distributions in phylogenetic substitution models. Syst. Biol. 52, 594–603 (2003). PubMed DOI

Comte, A. et al. PhylteR: efficient identification of outlier sequences in phylogenomic datasets. Mol. Biol. Evol. 40, msad234 (2023). PubMed DOI PMC

Shen, X.-X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 0126 (2017). DOI

Huson, D. H. et al. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8, 460 (2007). PubMed DOI PMC

Lang, B. F. et al. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front. Plant Sci. 14, 1222186 (2023). PubMed DOI PMC

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). PubMed DOI PMC

Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018). PubMed DOI

Chan, P. P. & Lowe, T. M. in Gene Prediction: Methods in Molecular Biology Vol. 1962 (ed. Kollmar, M.) 1–14 (Springer, 2019).

Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022). PubMed DOI PMC

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). PubMed DOI PMC

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). PubMed DOI

Steinegger, M. & Söding, J. Clustering huge protein sequence sets in linear time. Nat. Commun. 9, 2542 (2018). PubMed DOI PMC

Richter, D. J. et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2, e56 (2022). DOI

Soding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005). PubMed DOI PMC

Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001). PubMed DOI

Liu, Y., Schmidt, B. & Maskell, D. L. MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26, 1958–1964 (2010). PubMed DOI

Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). PubMed DOI

Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). PubMed DOI

Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013). PubMed DOI

Sun, J. et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 51, W397–W403 (2023). PubMed DOI PMC

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019). PubMed DOI PMC

Tang, S., Lomsadze, A. & Borodovsky, M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 43, e78 (2015). PubMed DOI PMC

Blum, M. et al. InterPro: the protein sequence classification resource in 2025. Nucleic Acids Res. 53, D444–D456 (2025). PubMed DOI

Valt, M. et al. Molecular and supplementary data of Solarion arienae. Figshare https://doi.org/10.6084/m9.figshare.27182820 (2025).

Bertrand, D. et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat. Biotechnol. 37, 937–944 (2019). PubMed DOI

Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics 29, 2669–2677 (2013). PubMed DOI PMC

Di Genova, A., Buena-Atienza, E., Ossowski, S. & Sagot, M. F. Efficient hybrid de novo assembly of human genomes with WENGAN. Nat. Biotechnol. 39, 422–430 (2021). PubMed DOI

Field, H. I., Coulson, R. M. & Field, M. C. An automated graphics tool for comparative genomics: the Coulson plot generator. BMC Bioinformatics 14, 141 (2013). PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...