A unique arsenic profile with unusual arsenic compounds discovered in the edible mushroom Sparassis crispa
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
10.55776/PIN3635824
Austrian Science Fund
25-16582K
Grantová Agentura České Republiky
PubMed
41272157
DOI
10.1007/s00216-025-06201-7
PII: 10.1007/s00216-025-06201-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biological samples, Ion chromatography/ion exchange, Mass spectrometry/ICP-MS, Speciation, Trace elements,
- Publikační typ
- časopisecké články MeSH
The edible and medicinal mushroom Sparassis crispa contains a diverse profile of arsenic species. We investigated the arsenic profile of extracts from four different fruiting bodies of S. crispa originating from Austria and Czechia. Besides the previously known arsenic species arsenocholine, trimethylarsine oxide, trimethyl(2-carboxyethyl)arsonium, arsenobetaine amide, and the tetramethylarsonium ion, we were able to identify the uncommon α-glycerophosphorylarsenocholine-previously only identified as a minor arsenic species in marine animals-as a major arsenic species. Furthermore, a novel arsenic compound, i.e., β-methyl arsenocholine, was identified as a naturally occurring compound in all investigated samples of S. crispa. We present methods for the preparation of synthetic α-glycerophosphorylarsenocholine and β-methyl arsenocholine, which were used to confirm their presence in S. crispa.
Institute of Chemistry Analytical Chemistry University of Graz Universitätsplatz 1 8010 Graz Austria
Institute of Geology Czech Academy of Sciences Rozvojová 269 16500 Prague 6 Czech Republic
Nuclear Physics Institute Czech Academy of Sciences Hlavní 130 25068 Husinec Řež Czech Republic
Zobrazit více v PubMed
Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999;266:163–71. https://doi.org/10.1098/rspb.1999.0617 . PubMed DOI PMC
Braeuer S, Goessler W. Arsenic species in mushrooms, with a focus on analytical methods for their determination - a critical review. Anal Chim Acta. 2019;1073:1–21. https://doi.org/10.1016/j.aca.2019.04.004 . PubMed DOI
Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ. Arsenic Compounds in Higher Fungi. Appl Organomet Chem. 1997;11:673–82. https://doi.org/10.1002/(SICI)1099-0739(199708)11:8%3c673:AID-AOC620%3e3.0.CO;2-1 . DOI
Walenta M, Raab A, Braeuer S, Steiner L, Borovička J, Goessler W. Arsenobetaine amide: a novel arsenic species detected in several mushroom species. Anal Bioanal Chem. 2024;416:1399–405. https://doi.org/10.1007/s00216-024-05132-z . PubMed DOI PMC
Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, et al. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ. 2019;648:1570–81. https://doi.org/10.1016/j.scitotenv.2018.08.202 . PubMed DOI
Braeuer S, Borovička J, Glasnov T, Guedes La, de Cruz G, Jensen KB, et al. Homoarsenocholine - A novel arsenic compound detected for the first time in nature. Talanta. 2018;188:107–10. https://doi.org/10.1016/j.talanta.2018.05.065 . PubMed DOI PMC
Braeuer S, Borovička J, Glabonjat RA, Steiner L, Goessler W. Arsenocholine-O-sulfate: a novel compound as major arsenic species in the parasitic mushroom Tolypocladiumophioglossoides. Chemosphere. 2021;265:128886. https://doi.org/10.1016/j.chemosphere.2020.128886 . PubMed DOI
Hughes KW, Segovia AR, Petersen RH. Transatlantic disjunction in fleshy fungi. I. The Sparassis crispa complex. Mycol Progress. 2014;13:407–27. https://doi.org/10.1007/s11557-013-0927-1 . DOI
Thi Nhu Ngoc L, Oh YK, Lee YJ, Lee YC. Effects of Sparassis crispa in medical therapeutics: a systematic review and meta-analysis of randomized controlled trials. Int J Mol Sci. 2018;19:1487. https://doi.org/10.3390/ijms19051487 . PubMed DOI PMC
Kwon A-H, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg. 2009;197:503–9. https://doi.org/10.1016/j.amjsurg.2007.11.021 . PubMed DOI
Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BioMed Res Int. 2013;2013:982317. https://doi.org/10.1155/2013/982317 . PubMed DOI PMC
Sharma N, Tapwal A, Verma R, Kumar D, Nepovimova E, Kuca K. Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat.: a review. IMA Fungus. 2022;13:8. https://doi.org/10.1186/s43008-022-00095-1 .
Qiu Z, Zhang X, Ren S, Jiang B, Zhao J, Zhu M, Di Zhou, Li Q, Zhang M, Li T, Shu L. Cauliflower mushroom (Sparassis): a promising functional food with nutritional and medicinal properties. Crit Rev Food Sci Nutr. 2025;1–17. https://doi.org/10.1080/10408398.2025.2524473
Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull. 2000;23:866–72. https://doi.org/10.1248/bpb.23.866 . PubMed DOI
Chen J, Garbinski LD, Rosen B, Zhang J, Xiang P, Ma LQ. Organoarsenical compounds: occurrence, toxicology and biotransformation. Crit Rev Environ Sci Technol. 2020;50:217–43. https://doi.org/10.1080/10643389.2019.1619375 . DOI
Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133:1–16. https://doi.org/10.1016/S0378-4274(02)00084-X . PubMed DOI
Vega L, Styblo M, Patterson R, Cullen W, Wang C, Germolec D. Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol Appl Pharmacol. 2001;172:225–32. https://doi.org/10.1006/taap.2001.9152 . PubMed DOI
Witt B, Meyer S, Ebert F, Francesconi KA, Schwerdtle T. Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Arch Toxicol. 2017;91:3121–34. https://doi.org/10.1007/s00204-017-1933-x . PubMed DOI
Filippi M, Doušová B, Machovič V. Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma. 2007;139:154–70. https://doi.org/10.1016/j.geoderma.2007.01.015 . DOI
Chalmers BA, Bühl M, Nejman PS, Slawin AM, Woollins JD, Kilian P. Rhodium(III) and iridium(III) half-sandwich complexes with tertiary arsine and stibine ligands. J Organomet Chem. 2015;799:70–4. https://doi.org/10.1016/j.jorganchem.2015.09.006 . DOI
Long LH, Sackman JF. The heat of formation of trimethylarsine. Trans Faraday Soc. 1956;52:1201. https://doi.org/10.1039/TF9565201201 . DOI
Major RT, Cline JK. Preparation and properties of alpha- and beta-methylcholine and gamma-homocholine. J Am Chem Soc. 1932;54:242–9. DOI
Braeuer S, Walenta M, Steiner L, Goessler W. Determination of the naturally occurring vanadium-complex amavadin in Amanita muscaria with HPLC-ICPMS. J Anal At Spectrom. 2021;36:954–67. https://doi.org/10.1039/D0JA00518E . DOI
Park J-M, de Castro KA, Ahn H-S, Rhee H-J. Facile syntheses of l-α-glycerophosphorylcholine. Bull Korean Chem Soc. 2010;31:2689–91. https://doi.org/10.5012/bkcs.2010.31.9.2689 . DOI
Contreras-Acuña M, García-Barrera T, García-Sevillano MA, Gómez-Ariza JL. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry. J Chromatogr A. 2013;1282:133–41. https://doi.org/10.1016/j.chroma.2013.01.068 . PubMed DOI
Francesconi KA, Stick RV, Edmonds JS. Glycerylphosphorylarsenocholine and phosphatidylarsenocholine in yelloweye mullet (Aldrichetta forsteri) following oral administration of arsenocholine. Experientia. 1990;46:464–6. https://doi.org/10.1007/BF01954231 . DOI