A unique arsenic profile with unusual arsenic compounds discovered in the edible mushroom Sparassis crispa

. 2025 Nov 21 ; () : . [epub] 20251121

Status Publisher Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41272157

Grantová podpora
10.55776/PIN3635824 Austrian Science Fund
25-16582K Grantová Agentura České Republiky

Odkazy

PubMed 41272157
DOI 10.1007/s00216-025-06201-7
PII: 10.1007/s00216-025-06201-7
Knihovny.cz E-zdroje

The edible and medicinal mushroom Sparassis crispa contains a diverse profile of arsenic species. We investigated the arsenic profile of extracts from four different fruiting bodies of S. crispa originating from Austria and Czechia. Besides the previously known arsenic species arsenocholine, trimethylarsine oxide, trimethyl(2-carboxyethyl)arsonium, arsenobetaine amide, and the tetramethylarsonium ion, we were able to identify the uncommon α-glycerophosphorylarsenocholine-previously only identified as a minor arsenic species in marine animals-as a major arsenic species. Furthermore, a novel arsenic compound, i.e., β-methyl arsenocholine, was identified as a naturally occurring compound in all investigated samples of S. crispa. We present methods for the preparation of synthetic α-glycerophosphorylarsenocholine and β-methyl arsenocholine, which were used to confirm their presence in S. crispa.

Zobrazit více v PubMed

Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999;266:163–71. https://doi.org/10.1098/rspb.1999.0617 . PubMed DOI PMC

Braeuer S, Goessler W. Arsenic species in mushrooms, with a focus on analytical methods for their determination - a critical review. Anal Chim Acta. 2019;1073:1–21. https://doi.org/10.1016/j.aca.2019.04.004 . PubMed DOI

Šlejkovec Z, Byrne AR, Stijve T, Goessler W, Irgolic KJ. Arsenic Compounds in Higher Fungi. Appl Organomet Chem. 1997;11:673–82. https://doi.org/10.1002/(SICI)1099-0739(199708)11:8%3c673:AID-AOC620%3e3.0.CO;2-1 . DOI

Walenta M, Raab A, Braeuer S, Steiner L, Borovička J, Goessler W. Arsenobetaine amide: a novel arsenic species detected in several mushroom species. Anal Bioanal Chem. 2024;416:1399–405. https://doi.org/10.1007/s00216-024-05132-z . PubMed DOI PMC

Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, et al. Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ. 2019;648:1570–81. https://doi.org/10.1016/j.scitotenv.2018.08.202 . PubMed DOI

Braeuer S, Borovička J, Glasnov T, Guedes La, de Cruz G, Jensen KB, et al. Homoarsenocholine - A novel arsenic compound detected for the first time in nature. Talanta. 2018;188:107–10. https://doi.org/10.1016/j.talanta.2018.05.065 . PubMed DOI PMC

Braeuer S, Borovička J, Glabonjat RA, Steiner L, Goessler W. Arsenocholine-O-sulfate: a novel compound as major arsenic species in the parasitic mushroom Tolypocladiumophioglossoides. Chemosphere. 2021;265:128886. https://doi.org/10.1016/j.chemosphere.2020.128886 . PubMed DOI

Hughes KW, Segovia AR, Petersen RH. Transatlantic disjunction in fleshy fungi. I. The Sparassis crispa complex. Mycol Progress. 2014;13:407–27. https://doi.org/10.1007/s11557-013-0927-1 . DOI

Thi Nhu Ngoc L, Oh YK, Lee YJ, Lee YC. Effects of Sparassis crispa in medical therapeutics: a systematic review and meta-analysis of randomized controlled trials. Int J Mol Sci. 2018;19:1487. https://doi.org/10.3390/ijms19051487 . PubMed DOI PMC

Kwon A-H, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg. 2009;197:503–9. https://doi.org/10.1016/j.amjsurg.2007.11.021 . PubMed DOI

Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BioMed Res Int. 2013;2013:982317. https://doi.org/10.1155/2013/982317 . PubMed DOI PMC

Sharma N, Tapwal A, Verma R, Kumar D, Nepovimova E, Kuca K. Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat.: a review. IMA Fungus. 2022;13:8. https://doi.org/10.1186/s43008-022-00095-1 .

Qiu Z, Zhang X, Ren S, Jiang B, Zhao J, Zhu M, Di Zhou, Li Q, Zhang M, Li T, Shu L. Cauliflower mushroom (Sparassis): a promising functional food with nutritional and medicinal properties. Crit Rev Food Sci Nutr. 2025;1–17. https://doi.org/10.1080/10408398.2025.2524473

Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull. 2000;23:866–72. https://doi.org/10.1248/bpb.23.866 . PubMed DOI

Chen J, Garbinski LD, Rosen B, Zhang J, Xiang P, Ma LQ. Organoarsenical compounds: occurrence, toxicology and biotransformation. Crit Rev Environ Sci Technol. 2020;50:217–43. https://doi.org/10.1080/10643389.2019.1619375 . DOI

Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002;133:1–16. https://doi.org/10.1016/S0378-4274(02)00084-X . PubMed DOI

Vega L, Styblo M, Patterson R, Cullen W, Wang C, Germolec D. Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol Appl Pharmacol. 2001;172:225–32. https://doi.org/10.1006/taap.2001.9152 . PubMed DOI

Witt B, Meyer S, Ebert F, Francesconi KA, Schwerdtle T. Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Arch Toxicol. 2017;91:3121–34. https://doi.org/10.1007/s00204-017-1933-x . PubMed DOI

Filippi M, Doušová B, Machovič V. Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma. 2007;139:154–70. https://doi.org/10.1016/j.geoderma.2007.01.015 . DOI

Chalmers BA, Bühl M, Nejman PS, Slawin AM, Woollins JD, Kilian P. Rhodium(III) and iridium(III) half-sandwich complexes with tertiary arsine and stibine ligands. J Organomet Chem. 2015;799:70–4. https://doi.org/10.1016/j.jorganchem.2015.09.006 . DOI

Long LH, Sackman JF. The heat of formation of trimethylarsine. Trans Faraday Soc. 1956;52:1201. https://doi.org/10.1039/TF9565201201 . DOI

Major RT, Cline JK. Preparation and properties of alpha- and beta-methylcholine and gamma-homocholine. J Am Chem Soc. 1932;54:242–9. DOI

Braeuer S, Walenta M, Steiner L, Goessler W. Determination of the naturally occurring vanadium-complex amavadin in Amanita muscaria with HPLC-ICPMS. J Anal At Spectrom. 2021;36:954–67. https://doi.org/10.1039/D0JA00518E . DOI

Park J-M, de Castro KA, Ahn H-S, Rhee H-J. Facile syntheses of l-α-glycerophosphorylcholine. Bull Korean Chem Soc. 2010;31:2689–91. https://doi.org/10.5012/bkcs.2010.31.9.2689 . DOI

Contreras-Acuña M, García-Barrera T, García-Sevillano MA, Gómez-Ariza JL. Speciation of arsenic in marine food (Anemonia sulcata) by liquid chromatography coupled to inductively coupled plasma mass spectrometry and organic mass spectrometry. J Chromatogr A. 2013;1282:133–41. https://doi.org/10.1016/j.chroma.2013.01.068 . PubMed DOI

Francesconi KA, Stick RV, Edmonds JS. Glycerylphosphorylarsenocholine and phosphatidylarsenocholine in yelloweye mullet (Aldrichetta forsteri) following oral administration of arsenocholine. Experientia. 1990;46:464–6. https://doi.org/10.1007/BF01954231 . DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...