The Application of Gamma-Range Auditory Steady-State Responses in Animal Models: A Semi-Structured Literature Review

. 2025 Oct 28 ; 15 (11) : . [epub] 20251028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41300165

Background: Gamma-range auditory steady-state responses (ASSRs) are emerging as promising translational biomarkers of neural network function. While extensively studied in human neuropsychiatric and neurodevelopmental research, their application in animal models has expanded in recent years, providing mechanistic insights into disease-related neural dynamics. However, methodological approaches vary widely, findings remain fragmented, and outcomes are not easily generalized. Methods: A literature search was conducted in March 2025 across PubMed and Scopus to identify studies investigating gamma-range ASSRs (30-100 Hz) in animal models with relevance to psychiatric and developmental conditions. Results: Most studies employed rodents, with a smaller number involving non-human primates, and used pharmacological, genetic, lesion-based, or developmental manipulations relevant to schizophrenia, autism spectrum disorder, and related conditions. ASSRs were highly sensitive to NMDA receptor antagonism, state- and trait-related factors, and exhibited region- and layer-specific generation patterns centered on the auditory cortex. Less common paradigms, such as chirps and gap-in-noise, also demonstrated translational potential. Conclusions: Animal research confirms that gamma-range ASSRs provide a sensitive, cross-species readout of circuit dysfunctions observed in psychiatric and neurodevelopmental disorders. To maximize their translational utility, future work should prioritize methodological harmonization, systematic inclusion of sex and behavioral state factors, and replication across laboratories. Strengthening these aspects will enhance the value of ASSRs as biomarkers for early detection, patient stratification, and treatment monitoring in clinical psychiatry.

Zobrazit více v PubMed

O’Donnell B.F., Vohs J.L., Krishnan G.P., Rass O., Hetrick W.P., Morzorati S.L. Supplements to Clinical Neurophysiology. Volume 62. Elsevier; Amsterdam, The Netherlands: 2013. The Auditory Steady-State Response (ASSR) pp. 101–112. PubMed PMC

Brenner C.A., Krishnan G.P., Vohs J.L., Ahn W.-Y., Hetrick W.P., Morzorati S.L., O’Donnell B.F. Steady State Responses: Electrophysiological Assessment of Sensory Function in Schizophrenia. Schizophr. Bull. 2009;35:1065–1077. doi: 10.1093/schbul/sbp091. PubMed DOI PMC

Kuwada S., Anderson J.S., Batra R., Fitzpatrick D.C., Teissier N., D’Angelo W.R. Sources of the Scalp-Recorded Amplitude-Modulation Following Response. J. Am. Acad. Audiol. 2002;13:188–204. doi: 10.1055/s-0040-1715963. PubMed DOI

Joris P.X., Schreiner C.E., Rees A. Neural Processing of Amplitude-Modulated Sounds. Physiol. Rev. 2004;84:541–577. doi: 10.1152/physrev.00029.2003. PubMed DOI

Sugiyama S., Ohi K., Kuramitsu A., Takai K., Muto Y., Taniguchi T., Kinukawa T., Takeuchi N., Motomura E., Nishihara M., et al. The Auditory Steady-State Response: Electrophysiological Index for Sensory Processing Dysfunction in Psychiatric Disorders. Front. Psychiatry. 2021;12:644541. doi: 10.3389/fpsyt.2021.644541. PubMed DOI PMC

Grent T., Gajwani R., Gross J., Gumley A.I., Krishnadas R., Lawrie S.M., Schwannauer M., Schultze-Lutter F., Uhlhaas P.J. 40-Hz Auditory Steady-State Responses Characterize Circuit Dysfunctions and Predict Clinical Outcomes in Clinical High-Risk for Psychosis Participants: A Magnetoencephalography Study. Biol. Psychiatry. 2021;90:419–429. doi: 10.1016/j.biopsych.2021.03.018. PubMed DOI

Tada M., Nagai T., Kirihara K., Koike S., Suga M., Araki T., Kobayashi T., Kasai K. Differential Alterations of Auditory Gamma Oscillatory Responses Between Pre-Onset High-Risk Individuals and First-Episode Schizophrenia. Cereb. Cortex. 2016;26:1027–1035. doi: 10.1093/cercor/bhu278. PubMed DOI

Koshiyama D., Kirihara K., Tada M., Nagai T., Fujioka M., Ichikawa E., Ohta K., Tani M., Tsuchiya M., Kanehara A., et al. Auditory Gamma Oscillations Predict Global Symptomatic Outcome in the Early Stages of Psychosis: A Longitudinal Investigation. Clin. Neurophysiol. 2018;129:2268–2275. doi: 10.1016/j.clinph.2018.08.007. PubMed DOI

Seymour R.A., Rippon G., Gooding-Williams G., Sowman P.F., Kessler K. Reduced Auditory Steady State Responses in Autism Spectrum Disorder. Mol. Autism. 2020;11:56. doi: 10.1186/s13229-020-00357-y. PubMed DOI PMC

Mäkelä J.P., Karmos G., Molnár M., Csépe V., Winkler I. Steady-State Responses from the Cat Auditory Cortex. Hear. Res. 1990;45:41–50. doi: 10.1016/0378-5955(90)90181-N. PubMed DOI

Jeng F.-C., Abbas P.J., Brown C.J., Miller C.A., Nourski K.V., Robinson B.K. Electrically Evoked Auditory Steady-State Responses in Guinea Pigs. Audiol. Neurotol. 2007;12:101–112. doi: 10.1159/000097796. PubMed DOI

Dolphin W.F., Chertoff M.E., Burkard R. Comparison of the Envelope Following Response in the Mongolian Gerbil Using Two-Tone and Sinusoidally Amplitude-Modulated Tones. J. Acoust. Soc. Am. 1994;96:2225–2234. doi: 10.1121/1.411382. PubMed DOI

Azkona G., Sanchez-Pernaute R. Mice in Translational Neuroscience: What R We Doing? Prog. Neurobiol. 2022;217:102330. doi: 10.1016/j.pneurobio.2022.102330. PubMed DOI

Leenaars C.H.C., Kouwenaar C., Stafleu F.R., Bleich A., Ritskes-Hoitinga M., De Vries R.B.M., Meijboom F.L.B. Animal to Human Translation: A Systematic Scoping Review of Reported Concordance Rates. J. Transl. Med. 2019;17:223. doi: 10.1186/s12967-019-1976-2. PubMed DOI PMC

Granzotto A., Vissel B., Sensi S.L. Lost in Translation: Inconvenient Truths on the Utility of Mouse Models in Alzheimer’s Disease Research. eLife. 2024;13:e90633. doi: 10.7554/eLife.90633. PubMed DOI PMC

Brynildsen J.K., Rajan K., Henderson M.X., Bassett D.S. Network Models to Enhance the Translational Impact of Cross-Species Studies. Nat. Rev. Neurosci. 2023;24:575–588. doi: 10.1038/s41583-023-00720-x. PubMed DOI PMC

Schuelert N., Dorner-Ciossek C., Brendel M., Rosenbrock H. A Comprehensive Analysis of Auditory Event-Related Potentials and Network Oscillations in an NMDA Receptor Antagonist Mouse Model Using a Novel Wireless Recording Technology. Physiol. Rep. 2018;6:e13782. doi: 10.14814/phy2.13782. PubMed DOI PMC

Rosenbrock H., Dorner-Ciossek C., Giovannini R., Schmid B., Schuelert N. Effects of the Glycine Transporter-1 Inhibitor Iclepertin (BI 425809) on Sensory Processing, Neural Network Function, and Cognition in Animal Models Related to Schizophrenia. J. Pharmacol. Exp. Ther. 2022;382:223–232. doi: 10.1124/jpet.121.001071. PubMed DOI

Adraoui F.W., Hettak K., Viardot G., Alix M., Guiffard S., Meot B., L’Hostis P., Maurin A., Delpy E., Drieu La Rochelle C., et al. Differential Effects of Aripiprazole on Electroencephalography-Recorded Gamma-Band Auditory Steady-State Response, Spontaneous Gamma Oscillations and Behavior in a Schizophrenia Rat Model. Int. J. Mol. Sci. 2024;25:1035. doi: 10.3390/ijms25021035. PubMed DOI PMC

Nakao K., Nakazawa K. Brain State-Dependent Abnormal LFP Activity in the Auditory Cortex of a Schizophrenia Mouse Model. Front. Neurosci. 2014;8:168. doi: 10.3389/fnins.2014.00168. PubMed DOI PMC

Kozono N., Okamura A., Honda S., Matsumoto M., Mihara T. Gamma Power Abnormalities in a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome. Sci. Rep. 2020;10:18799. doi: 10.1038/s41598-020-75893-x. PubMed DOI PMC

Herzog L.E., Wang L., Yu E., Choi S., Farsi Z., Song B.J., Pan J.Q., Sheng M. Mouse Mutants in Schizophrenia Risk Genes GRIN2A and AKAP11 Show EEG Abnormalities in Common with Schizophrenia Patients. Transl. Psychiatry. 2023;13:92. doi: 10.1038/s41398-023-02393-7. PubMed DOI PMC

Vohs J.L., Andrew Chambers R., Krishnan G.P., O’Donnell B.F., Berg S., Morzorati S.L. GABAergic Modulation of the 40 Hz Auditory Steady-State Response in a Rat Model of Schizophrenia. Int. J. Neuropsychopharm. 2010;13:487. doi: 10.1017/S1461145709990307. PubMed DOI PMC

Li S., Ma L., Wang Y., Wang X., Li Y., Qin L. Auditory Steady-State Responses in Primary and Non-Primary Regions of the Auditory Cortex in Neonatal Ventral Hippocampal Lesion Rats. PLoS ONE. 2018;13:e0192103. doi: 10.1371/journal.pone.0192103. PubMed DOI PMC

Croom K., Rumschlag J.A., Erickson M.A., Binder D.K., Razak K.A. Developmental Delays in Cortical Auditory Temporal Processing in a Mouse Model of Fragile X Syndrome. J. Neurodev. Disord. 2023;15:23. doi: 10.1186/s11689-023-09496-8. PubMed DOI PMC

Jonak C.R., Assad S.A., Garcia T.A., Sandhu M.S., Rumschlag J.A., Razak K.A., Binder D.K. Phenotypic Analysis of Multielectrode Array EEG Biomarkers in Developing and Adult Male Fmr1 KO Mice. Neurobiol. Dis. 2024;195:106496. doi: 10.1016/j.nbd.2024.106496. PubMed DOI

Sohal V.S., Rubenstein J.L.R. Excitation-Inhibition Balance as a Framework for Investigating Mechanisms in Neuropsychiatric Disorders. Mol. Psychiatry. 2019;24:1248–1257. doi: 10.1038/s41380-019-0426-0. PubMed DOI PMC

Minzenberg M.J., Firl A.J., Yoon J.H., Gomes G.C., Reinking C., Carter C.S. Gamma Oscillatory Power Is Impaired During Cognitive Control Independent of Medication Status in First-Episode Schizophrenia. Neuropsychopharmacology. 2010;35:2590–2599. doi: 10.1038/npp.2010.150. PubMed DOI PMC

Chen C.-M.A., Stanford A.D., Mao X., Abi-Dargham A., Shungu D.C., Lisanby S.H., Schroeder C.E., Kegeles L.S. GABA Level, Gamma Oscillation, and Working Memory Performance in Schizophrenia. NeuroImage Clin. 2014;4:531–539. doi: 10.1016/j.nicl.2014.03.007. PubMed DOI PMC

Port R.G., Gajewski C., Krizman E., Dow H.C., Hirano S., Brodkin E.S., Carlson G.C., Robinson M.B., Roberts T.P.L., Siegel S.J. Protocadherin 10 Alters γ Oscillations, Amino Acid Levels, and Their Coupling; Baclofen Partially Restores These Oscillatory Deficits. Neurobiol. Dis. 2017;108:324–338. doi: 10.1016/j.nbd.2017.08.013. PubMed DOI

Croom K., Rumschlag J.A., Erickson M.A., Binder D., Razak K.A. Sex Differences during Development in Cortical Temporal Processing and Event Related Potentials in Wild-Type and Fragile X Syndrome Model Mice. J. Neurodev. Disord. 2024;16:24. doi: 10.1186/s11689-024-09539-8. PubMed DOI PMC

Tao X., Croom K., Newman-Tancredi A., Varney M., Razak K.A. Acute Administration of NLX-101, a Serotonin 1A Receptor Agonist, Improves Auditory Temporal Processing during Development in a Mouse Model of Fragile X Syndrome. J. Neurodev. Disord. 2025;17:1. doi: 10.1186/s11689-024-09587-0. PubMed DOI PMC

Thuné H., Recasens M., Uhlhaas P.J. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia: A Meta-Analysis. JAMA Psychiatry. 2016;73:1145. doi: 10.1001/jamapsychiatry.2016.2619. PubMed DOI

Raza M.U., Sivarao D.V. Test-Retest Reliability of Tone- and 40 Hz Train-Evoked Gamma Oscillations in Female Rats and Their Sensitivity to Low-Dose NMDA Channel Blockade. Psychopharmacology. 2021;238:2325–2334. doi: 10.1007/s00213-021-05856-1. PubMed DOI

Sivarao D.V., Frenkel M., Chen P., Healy F.L., Lodge N.J., Zaczek R. MK-801 Disrupts and Nicotine Augments 40 Hz Auditory Steady State Responses in the Auditory Cortex of the Urethane-Anesthetized Rat. Neuropharmacology. 2013;73:1–9. doi: 10.1016/j.neuropharm.2013.05.006. PubMed DOI

Sivarao D.V., Chen P., Senapati A., Yang Y., Fernandes A., Benitex Y., Whiterock V., Li Y.-W., Ahlijanian M.K. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors. Neuropsychopharmacology. 2016;41:2232–2240. doi: 10.1038/npp.2016.17. PubMed DOI PMC

Light G.A., Zhang W., Joshi Y.B., Bhakta S., Talledo J.A., Swerdlow N.R. Single-Dose Memantine Improves Cortical Oscillatory Response Dynamics in Patients with Schizophrenia. Neuropsychopharmacology. 2017;42:2633–2639. doi: 10.1038/npp.2017.81. PubMed DOI PMC

Murphy N., Ramakrishnan N., Vo-Le B., Vo-Le B., Smith M.A., Iqbal T., Swann A.C., Mathew S.J., Lijffijt M. A Randomized Cross-over Trial to Define Neurophysiological Correlates of AV-101 N-Methyl-d-Aspartate Receptor Blockade in Healthy Veterans. Neuropsychopharmacology. 2021;46:820–827. doi: 10.1038/s41386-020-00917-z. PubMed DOI PMC

Vohs J.L., Chambers R.A., O’Donnell B.F., Krishnan G.P., Morzorati S.L. Auditory Steady State Responses in a Schizophrenia Rat Model Probed by Excitatory/Inhibitory Receptor Manipulation. Int. J. Psychophysiol. 2012;86:136–142. doi: 10.1016/j.ijpsycho.2012.04.002. PubMed DOI PMC

Shahriari Y., Krusienski D., Dadi Y.S., Seo M., Shin H.-S., Choi J.H. Impaired Auditory Evoked Potentials and Oscillations in Frontal and Auditory Cortex of a Schizophrenia Mouse Model. World J. Biol. Psychiatry. 2016;17:439–448. doi: 10.3109/15622975.2015.1112036. PubMed DOI

Nakao K., Singh M., Sapkota K., Hagler B.C., Hunter R.N., Raman C., Hablitz J.J., Nakazawa K. GSK3β Inhibition Restores Cortical Gamma Oscillation and Cognitive Behavior in a Mouse Model of NMDA Receptor Hypofunction Relevant to Schizophrenia. Neuropsychopharmacology. 2020;45:2207–2218. doi: 10.1038/s41386-020-00819-0. PubMed DOI PMC

Balla A., Ginsberg S.D., Abbas A.I., Sershen H., Javitt D.C. Translational Neurophysiological Biomarkers of N-Methyl-d-Aspartate Receptor Dysfunction in Serine Racemase Knockout Mice. Biomark. Neuropsychiatry. 2020;2:100019. doi: 10.1016/j.bionps.2020.100019. PubMed DOI PMC

Croom K., Rumschlag J.A., Molinaro G., Erickson M.A., Binder D.K., Huber K.M., Razak K.A. Developmental Trajectory and Sex Differences in Auditory Processing in a PTEN-Deletion Model of Autism Spectrum Disorders. Neurobiol. Dis. 2024;200:106628. doi: 10.1016/j.nbd.2024.106628. PubMed DOI PMC

Lovelace J.W., Ethell I.M., Binder D.K., Razak K.A. Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Front. Neurosci. 2020;14:771. doi: 10.3389/fnins.2020.00771. PubMed DOI PMC

Wang X., Li Y., Li Z., Li J., Xu J., Yang P., Qin L. Neuroprotective Effect of Microglia against Impairments of Auditory Steady-State Response Induced by Anti-P IgG from SLE Patients in Naïve Mice. J. Neuroinflammation. 2020;17:31. doi: 10.1186/s12974-020-1716-9. PubMed DOI PMC

Li Y., Wang X., Chen J., Li Z., Yang P., Qin L. Aberrant Auditory Steady-State Response of Awake Mice Induced by Chronic Interferon-α Treatment. Front. Pharmacol. 2021;11:584425. doi: 10.3389/fphar.2020.584425. PubMed DOI PMC

Gautam D., Shields A., Krepps E., Ummear Raza M., Sivarao D.V. Click Train Elicited Local Gamma Synchrony: Differing Performance and Pharmacological Responsivity of Primary Auditory and Prefrontal Cortices. Brain Res. 2024;1841:149091. doi: 10.1016/j.brainres.2024.149091. PubMed DOI

Kim T., Thankachan S., McKenna J.T., McNally J.M., Yang C., Choi J.H., Chen L., Kocsis B., Deisseroth K., Strecker R.E., et al. Cortically Projecting Basal Forebrain Parvalbumin Neurons Regulate Cortical Gamma Band Oscillations. Proc. Natl. Acad. Sci. USA. 2015;112:3535–3540. doi: 10.1073/pnas.1413625112. PubMed DOI PMC

Wang Y., Ma L., Wang X., Qin L. Differential Modulation of the Auditory Steady State Response and Inhibitory Gating by Chloral Hydrate Anesthesia. Sci. Rep. 2018;8:3683. doi: 10.1038/s41598-018-21920-x. PubMed DOI PMC

Li Z., Li J., Wang S., Wang X., Chen J., Qin L. Laminar Profile of Auditory Steady-State Response in the Auditory Cortex of Awake Mice. Front. Syst. Neurosci. 2021;15:636395. doi: 10.3389/fnsys.2021.636395. PubMed DOI PMC

Johnson T.D., Gallagher A.J., Coulson S., Rangel L.M. Network Resonance and the Auditory Steady State Response. Sci. Rep. 2024;14:16799. doi: 10.1038/s41598-024-66697-4. PubMed DOI PMC

Hwang E., Brown R.E., Kocsis B., Kim T., McKenna J.T., McNally J.M., Han H.-B., Choi J.H. Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Modulates the Cortical Topography of Auditory Steady-State Responses. Brain Struct. Funct. 2019;224:1505–1518. doi: 10.1007/s00429-019-01845-5. PubMed DOI PMC

Toader O., von Heimendahl M., Schuelert N., Nissen W., Rosenbrock H. Suppression of Parvalbumin Interneuron Activity in the Prefrontal Cortex Recapitulates Features of Impaired Excitatory/Inhibitory Balance and Sensory Processing in Schizophrenia. Schizophr. Bull. 2020;46:981–989. doi: 10.1093/schbul/sbz123. PubMed DOI PMC

Muller L., Chavane F., Reynolds J., Sejnowski T.J. Cortical Travelling Waves: Mechanisms and Computational Principles. Nat. Rev. Neurosci. 2018;19:255–268. doi: 10.1038/nrn.2018.20. PubMed DOI PMC

Sugiyama S., Inui K., Ohi K., Shioiri T. The Influence of Novelty Detection on the 40-Hz Auditory Steady-State Response in Schizophrenia: A Novel Hypothesis from Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2024;135:111096. doi: 10.1016/j.pnpbp.2024.111096. PubMed DOI

Farahani E.D., Wouters J., van Wieringen A. Improving Source Modeling of Auditory Steady-State Responses with Frequency-Specific Brain Maps. Neuroscience. 2019. in press .

Jiricek S., Koudelka V., Lacik J., Vejmola C., Kuratko D., Wójcik D.K., Raida Z., Hlinka J., Palenicek T. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front. Neuroinform. 2021;14:589228. doi: 10.3389/fninf.2020.589228. PubMed DOI PMC

Price J.L., Drevets W.C. Neurocircuitry of Mood Disorders. Neuropsychopharmacology. 2010;35:192–216. doi: 10.1038/npp.2009.104. PubMed DOI PMC

Paul T., See J.W., Vijayakumar V., Njideaka-Kevin T., Loh H., Lee V.J.Q., Dogrul B.N. Neurostructural Changes in Schizophrenia and Treatment-Resistance: A Narrative Review. Psychoradiology. 2024;4:kkae015. doi: 10.1093/psyrad/kkae015. PubMed DOI PMC

Eilam-Stock T., Wu T., Spagna A., Egan L.J., Fan J. Neuroanatomical Alterations in High-Functioning Adults with Autism Spectrum Disorder. Front. Neurosci. 2016;10:237. doi: 10.3389/fnins.2016.00237. PubMed DOI PMC

Griskova I., Morup M., Parnas J., Ruksenas O., Arnfred S.M. The Amplitude and Phase Precision of 40 Hz Auditory Steady-State Response Depend on the Level of Arousal. Exp. Brain Res. 2007;183:133–138. doi: 10.1007/s00221-007-1111-0. PubMed DOI

Binder M., Górska U., Griskova-Bulanova I. 40 Hz Auditory Steady-State Responses in Patients with Disorders of Consciousness: Correlation between Phase-Locking Index and Coma Recovery Scale-Revised Score. Clin. Neurophysiol. 2017;128:799–806. doi: 10.1016/j.clinph.2017.02.012. PubMed DOI

Melynyte S., Pipinis E., Genyte V., Voicikas A., Rihs T., Griskova-Bulanova I. 40 Hz Auditory Steady-State Response: The Impact of Handedness and Gender. Brain Topogr. 2018;31:419–429. doi: 10.1007/s10548-017-0611-x. PubMed DOI

Li Y., Wang X., Li Z., Chen J., Qin L. Effect of Locomotion on the Auditory Steady State Response of Head-Fixed Mice. World J. Biol. Psychiatry. 2020;22:362–372. doi: 10.1080/15622975.2020.1814409. PubMed DOI

Liu H.-H., Liu C.-M., Hsieh M.H., Chien Y.-L., Hsu Y.-F., Lai W.-S. Dysregulated Affective Arousal Regulates Reward-Based Decision Making in Patients with Schizophrenia: An Integrated Study. Schizophrenia. 2022;8:26. doi: 10.1038/s41537-022-00234-y. PubMed DOI PMC

Hegerl U., Wilk K., Olbrich S., Schoenknecht P., Sander C. Hyperstable Regulation of Vigilance in Patients with Major Depressive Disorder. World J. Biol. Psychiatry. 2012;13:436–446. doi: 10.3109/15622975.2011.579164. PubMed DOI

Palmisano A., Pandit S., Smeralda C.L., Demchenko I., Rossi S., Battelli L., Rivolta D., Bhat V., Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life. 2024;14:578. doi: 10.3390/life14050578. PubMed DOI PMC

Hwang H., Kim S.M., Kim H.J., Han D.H. Comparison of Attention and Brain Functional Connectivity between Patient Groups with Schizophrenia and Attention Deficit Hyperactivity Disorder. Psychiatry Res. 2025;345:116376. doi: 10.1016/j.psychres.2025.116376. PubMed DOI

McNally J.M., Aguilar D.D., Katsuki F., Radzik L.K., Schiffino F.L., Uygun D.S., McKenna J.T., Strecker R.E., Deisseroth K., Spencer K.M., et al. Optogenetic Manipulation of an Ascending Arousal System Tunes Cortical Broadband Gamma Power and Reveals Functional Deficits Relevant to Schizophrenia. Mol. Psychiatry. 2020;26:3461–3475. doi: 10.1038/s41380-020-0840-3. PubMed DOI PMC

Hirano Y., Nakamura I., Tamura S., Onitsuka T. Long-Term Test-Retest Reliability of Auditory Gamma Oscillations Between Different Clinical EEG Systems. Front. Psychiatry. 2020;11:876. doi: 10.3389/fpsyt.2020.00876. PubMed DOI PMC

Jasinskyte U., Buisas R., Griskova-Bulanova I., Guzulaitis R. Auditory Steady-State Responses in the Auditory Cortex of Mice during Estrus Cycle. Brain Res. 2023;1810:148376. doi: 10.1016/j.brainres.2023.148376. PubMed DOI

Griskova-Bulanova I., Griksiene R., Korostenskaja M., Ruksenas O. 40 Hz Auditory Steady-State Response in Females: When Is It Better to Entrain? Acta Neurobiol. Exp. 2014;74:91–97. doi: 10.55782/ane-2014-1975. PubMed DOI

Moniem I., Kafetzopoulos V. Sex Differences in Schizophrenia: Symptomatology, Treatment Efficacy and Adverse Effects. Front. Psychiatry. 2025;16:1594334. doi: 10.3389/fpsyt.2025.1594334. PubMed DOI PMC

Napolitano A., Schiavi S., La Rosa P., Rossi-Espagnet M.C., Petrillo S., Bottino F., Tagliente E., Longo D., Lupi E., Casula L., et al. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front. Psychiatry. 2022;13:889636. doi: 10.3389/fpsyt.2022.889636. PubMed DOI PMC

Sloan D.M., Sandt A.R. Gender Differences in Depression. Womens Health. 2006;2:425–434. doi: 10.2217/17455057.2.3.425. PubMed DOI

Parker G., Fletcher K., Paterson A., Anderson J., Hong M. Gender Differences in Depression Severity and Symptoms Across Depressive Sub-Types. J. Affect. Disord. 2014;167:351–357. doi: 10.1016/j.jad.2014.06.018. PubMed DOI

Handy A.B., Greenfield S.F., Yonkers K.A., Payne L.A. Psychiatric Symptoms Across the Menstrual Cycle in Adult Women: A Comprehensive Review. Harv. Rev. Psychiatry. 2022;30:100–117. doi: 10.1097/HRP.0000000000000329. PubMed DOI PMC

Mazza M., Marano G. Unmasking the Cycle: Premenstrual and Menstrual Exacerbation of Psychiatric Disorders and Impact on Female Mental Health. World J. Psychiatry. 2025;15:107132. doi: 10.5498/wjp.v15.i8.107132. PubMed DOI PMC

Lear A., Baker S.N., Clarke H.F., Roberts A.C., Schmid M.C., Jarrett W. Understanding Them to Understand Ourselves: The Importance of NHP Research for Translational Neuroscience. Curr. Res. Neurobiol. 2022;3:100049. doi: 10.1016/j.crneur.2022.100049. PubMed DOI PMC

Harding J.D. Nonhuman Primates and Translational Research: Progress, Opportunities, and Challenges. ILAR J. 2017;58:141–150. doi: 10.1093/ilar/ilx033. PubMed DOI PMC

Konoike N., Iwaoki H., Miwa M., Sakata H., Itoh K., Nakamura K. Comparison of Non-Invasive, Scalp-Recorded Auditory Steady-State Responses in Humans, Rhesus Monkeys, and Common Marmosets. Sci. Rep. 2022;12:9210. doi: 10.1038/s41598-022-13228-8. PubMed DOI PMC

Nakamura T., Dinh T.H., Asai M., Nishimaru H., Matsumoto J., Setogawa T., Ichijo H., Honda S., Yamada H., Mihara T., et al. Characteristics of Auditory Steady-State Responses to Different Click Frequencies in Awake Intact Macaques. BMC Neurosci. 2022;23:57. doi: 10.1186/s12868-022-00741-9. PubMed DOI PMC

Iwamura Y., Nakayama T., Matsumoto A., Ogi Y., Yamaguchi M., Kobayashi A., Matsumoto K., Katsura Y., Konoike N., Nakamura K., et al. Effect of Dopamine Receptor-Related Compounds on Naïve Common Marmosets for Auditory Steady-State Response. J. Neurophysiol. 2022;128:229–238. doi: 10.1152/jn.00147.2022. PubMed DOI

Yan T., Suzuki K., Kameda S., Kuratomi T., Mihara M., Maeda M., Hirata M. Intracranial EEG Recordings of High-Frequency Activity From a Wireless Implantable BMI Device in Awake Nonhuman Primates. IEEE Trans. Biomed. Eng. 2023;70:1107–1113. doi: 10.1109/TBME.2022.3210286. PubMed DOI

Aguilar D.D., Radzik L.K., Schiffino F.L., Folorunso O.O., Zielinski M.R., Coyle J.T., Balu D.T., McNally J.M. Altered Neural Oscillations and Behavior in a Genetic Mouse Model of NMDA Receptor Hypofunction. Sci. Rep. 2021;11:9031. doi: 10.1038/s41598-021-88428-9. PubMed DOI PMC

Cizus E., Jasinskyte U., Guzulaitis R. Effects of Acute and Chronic Ketamine Administration on Spontaneous and Evoked Brain Activity. Brain Res. 2024;1846:149232. doi: 10.1016/j.brainres.2024.149232. PubMed DOI

Dejean C., Dupont T., Verpy E., Gonçalves N., Coqueran S., Michalski N., Pucheu S., Bourgeron T., Gourévitch B. Detecting Central Auditory Processing Disorders in Awake Mice. Brain Sci. 2023;13:1539. doi: 10.3390/brainsci13111539. PubMed DOI PMC

Gautam D., Raza M.U., Miyakoshi M., Molina J.L., Joshi Y.B., Clayson P.E., Light G.A., Swerdlow N.R., Sivarao D.V. Click-Train Evoked Steady State Harmonic Response as a Novel Pharmacodynamic Biomarker of Cortical Oscillatory Synchrony. Neuropharmacology. 2023;240:109707. doi: 10.1016/j.neuropharm.2023.109707. PubMed DOI

Inaba H., Kai R., Namba H., Sotoyama H., Jodo E., Nin F., Hibino H., Yabe H., Eifuku S., Horii A., et al. Perinatal Epidermal Growth Factor Signal Perturbation Results in the Series of Abnormal Auditory Oscillations and Responses Relevant to Schizophrenia. Schizophr. Bull. Open. 2021;2:sgaa070. doi: 10.1093/schizbullopen/sgaa070. DOI

Kozono N., Honda S., Tada M., Kirihara K., Zhao Z., Jinde S., Uka T., Yamada H., Matsumoto M., Kasai K., et al. Auditory Steady State Response; Nature and Utility as a Translational Science Tool. Sci. Rep. 2019;9:8454. doi: 10.1038/s41598-019-44936-3. PubMed DOI PMC

Leishman E., O’Donnell B.F., Millward J.B., Vohs J.L., Rass O., Krishnan G.P., Bolbecker A.R., Morzorati S.L. Phencyclidine Disrupts the Auditory Steady State Response in Rats. PLoS ONE. 2015;10:e0134979. doi: 10.1371/journal.pone.0134979. PubMed DOI PMC

Li J., Li Z., Wang X., Liu Y., Wang S., Wang X., Li Y., Qin L. The Thalamocortical Mechanism Underlying the Generation and Regulation of the Auditory Steady-State Responses in Awake Mice. J. Neurosci. 2024;44:e1166232023. doi: 10.1523/JNEUROSCI.1166-23.2023. PubMed DOI PMC

Munch A.S., Amat-Foraster M., Agerskov C., Bastlund J.F., Herrik K.F., Richter U. Sub-Anesthetic Doses of Ketamine Increase Single Cell Entrainment in the Rat Auditory Cortex during Auditory Steady-State Response. J. Psychopharmacol. 2023;37:822–835. doi: 10.1177/02698811231164231. PubMed DOI

Prado-Gutierrez P., Martínez-Montes E., Weinstein A., Zañartu M. Estimation of Auditory Steady-State Responses Based on the Averaging of Independent EEG Epochs. PLoS ONE. 2019;14:e0206018. doi: 10.1371/journal.pone.0206018. PubMed DOI PMC

Ummear Raza M., Gautam D., Rorie D., Sivarao D.V. Differential Effects of Clozapine and Haloperidol on the 40 Hz Auditory Steady State Response-Mediated Phase Resetting in the Prefrontal Cortex of the Female Sprague Dawley Rat. Schizophr. Bull. 2023;49:581–591. doi: 10.1093/schbul/sbac203. PubMed DOI PMC

Sullivan E.M., Timi P., Hong L.E., O’Donnell P. Effects of NMDA and GABA-A Receptor Antagonism on Auditory Steady-State Synchronization in Awake Behaving Rats. Int. J. Neuropsychopharmacol. 2015;18:pyu118. doi: 10.1093/ijnp/pyu118. PubMed DOI PMC

Thankachan S., Katsuki F., McKenna J.T., Yang C., Shukla C., Deisseroth K., Uygun D.S., Strecker R.E., Brown R.E., McNally J.M., et al. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci. Rep. 2019;9:3607. doi: 10.1038/s41598-019-40398-9. PubMed DOI PMC

Wang Y., Li Z., Tian Z., Wang X., Li Y., Qin L. Emotional Arousal Modifies Auditory Steady State Response in the Auditory Cortex and Prefrontal Cortex of Rats. Stress. 2019;22:492–500. doi: 10.1080/10253890.2019.1583203. PubMed DOI

Wang X., Li Y., Chen J., Li Z., Li J., Qin L. Aberrant Auditory Steady-State Response of Awake Mice After Single Application of the NMDA Receptor Antagonist MK-801 Into the Medial Geniculate Body. Int. J. Neuropsychopharmacol. 2020;23:459–468. doi: 10.1093/ijnp/pyaa022. PubMed DOI PMC

Yamazaki M., Honda S., Tamaki K., Irie M., Mihara T. Effects of (+)-Bicuculline, a GABAa Receptor Antagonist, on Auditory Steady State Response in Free-Moving Rats. PLoS ONE. 2020;15:e0236363. doi: 10.1371/journal.pone.0236363. PubMed DOI PMC

Zhang J., Ma L., Li W., Yang P., Qin L. Cholinergic Modulation of Auditory Steady-State Response in the Auditory Cortex of the Freely Moving Rat. Neuroscience. 2016;324:29–39. doi: 10.1016/j.neuroscience.2016.03.006. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...