The Application of Gamma-Range Auditory Steady-State Responses in Animal Models: A Semi-Structured Literature Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41300165
PubMed Central
PMC12650100
DOI
10.3390/brainsci15111159
PII: brainsci15111159
Knihovny.cz E-zdroje
- Klíčová slova
- ASSRs, animal models, auditory steady-state responses, gamma, psychiatric disorders,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Background: Gamma-range auditory steady-state responses (ASSRs) are emerging as promising translational biomarkers of neural network function. While extensively studied in human neuropsychiatric and neurodevelopmental research, their application in animal models has expanded in recent years, providing mechanistic insights into disease-related neural dynamics. However, methodological approaches vary widely, findings remain fragmented, and outcomes are not easily generalized. Methods: A literature search was conducted in March 2025 across PubMed and Scopus to identify studies investigating gamma-range ASSRs (30-100 Hz) in animal models with relevance to psychiatric and developmental conditions. Results: Most studies employed rodents, with a smaller number involving non-human primates, and used pharmacological, genetic, lesion-based, or developmental manipulations relevant to schizophrenia, autism spectrum disorder, and related conditions. ASSRs were highly sensitive to NMDA receptor antagonism, state- and trait-related factors, and exhibited region- and layer-specific generation patterns centered on the auditory cortex. Less common paradigms, such as chirps and gap-in-noise, also demonstrated translational potential. Conclusions: Animal research confirms that gamma-range ASSRs provide a sensitive, cross-species readout of circuit dysfunctions observed in psychiatric and neurodevelopmental disorders. To maximize their translational utility, future work should prioritize methodological harmonization, systematic inclusion of sex and behavioral state factors, and replication across laboratories. Strengthening these aspects will enhance the value of ASSRs as biomarkers for early detection, patient stratification, and treatment monitoring in clinical psychiatry.
3rd Faculty of Medicine Charles University 100 00 Prague Czech Republic
Institute of Bioscience Life Sciences Center Vilnius University 10257 Vilnius Lithuania
Psychedelic Research Center National Institute of Mental Health 250 67 Klecany Czech Republic
Zobrazit více v PubMed
O’Donnell B.F., Vohs J.L., Krishnan G.P., Rass O., Hetrick W.P., Morzorati S.L. Supplements to Clinical Neurophysiology. Volume 62. Elsevier; Amsterdam, The Netherlands: 2013. The Auditory Steady-State Response (ASSR) pp. 101–112. PubMed PMC
Brenner C.A., Krishnan G.P., Vohs J.L., Ahn W.-Y., Hetrick W.P., Morzorati S.L., O’Donnell B.F. Steady State Responses: Electrophysiological Assessment of Sensory Function in Schizophrenia. Schizophr. Bull. 2009;35:1065–1077. doi: 10.1093/schbul/sbp091. PubMed DOI PMC
Kuwada S., Anderson J.S., Batra R., Fitzpatrick D.C., Teissier N., D’Angelo W.R. Sources of the Scalp-Recorded Amplitude-Modulation Following Response. J. Am. Acad. Audiol. 2002;13:188–204. doi: 10.1055/s-0040-1715963. PubMed DOI
Joris P.X., Schreiner C.E., Rees A. Neural Processing of Amplitude-Modulated Sounds. Physiol. Rev. 2004;84:541–577. doi: 10.1152/physrev.00029.2003. PubMed DOI
Sugiyama S., Ohi K., Kuramitsu A., Takai K., Muto Y., Taniguchi T., Kinukawa T., Takeuchi N., Motomura E., Nishihara M., et al. The Auditory Steady-State Response: Electrophysiological Index for Sensory Processing Dysfunction in Psychiatric Disorders. Front. Psychiatry. 2021;12:644541. doi: 10.3389/fpsyt.2021.644541. PubMed DOI PMC
Grent T., Gajwani R., Gross J., Gumley A.I., Krishnadas R., Lawrie S.M., Schwannauer M., Schultze-Lutter F., Uhlhaas P.J. 40-Hz Auditory Steady-State Responses Characterize Circuit Dysfunctions and Predict Clinical Outcomes in Clinical High-Risk for Psychosis Participants: A Magnetoencephalography Study. Biol. Psychiatry. 2021;90:419–429. doi: 10.1016/j.biopsych.2021.03.018. PubMed DOI
Tada M., Nagai T., Kirihara K., Koike S., Suga M., Araki T., Kobayashi T., Kasai K. Differential Alterations of Auditory Gamma Oscillatory Responses Between Pre-Onset High-Risk Individuals and First-Episode Schizophrenia. Cereb. Cortex. 2016;26:1027–1035. doi: 10.1093/cercor/bhu278. PubMed DOI
Koshiyama D., Kirihara K., Tada M., Nagai T., Fujioka M., Ichikawa E., Ohta K., Tani M., Tsuchiya M., Kanehara A., et al. Auditory Gamma Oscillations Predict Global Symptomatic Outcome in the Early Stages of Psychosis: A Longitudinal Investigation. Clin. Neurophysiol. 2018;129:2268–2275. doi: 10.1016/j.clinph.2018.08.007. PubMed DOI
Seymour R.A., Rippon G., Gooding-Williams G., Sowman P.F., Kessler K. Reduced Auditory Steady State Responses in Autism Spectrum Disorder. Mol. Autism. 2020;11:56. doi: 10.1186/s13229-020-00357-y. PubMed DOI PMC
Mäkelä J.P., Karmos G., Molnár M., Csépe V., Winkler I. Steady-State Responses from the Cat Auditory Cortex. Hear. Res. 1990;45:41–50. doi: 10.1016/0378-5955(90)90181-N. PubMed DOI
Jeng F.-C., Abbas P.J., Brown C.J., Miller C.A., Nourski K.V., Robinson B.K. Electrically Evoked Auditory Steady-State Responses in Guinea Pigs. Audiol. Neurotol. 2007;12:101–112. doi: 10.1159/000097796. PubMed DOI
Dolphin W.F., Chertoff M.E., Burkard R. Comparison of the Envelope Following Response in the Mongolian Gerbil Using Two-Tone and Sinusoidally Amplitude-Modulated Tones. J. Acoust. Soc. Am. 1994;96:2225–2234. doi: 10.1121/1.411382. PubMed DOI
Azkona G., Sanchez-Pernaute R. Mice in Translational Neuroscience: What R We Doing? Prog. Neurobiol. 2022;217:102330. doi: 10.1016/j.pneurobio.2022.102330. PubMed DOI
Leenaars C.H.C., Kouwenaar C., Stafleu F.R., Bleich A., Ritskes-Hoitinga M., De Vries R.B.M., Meijboom F.L.B. Animal to Human Translation: A Systematic Scoping Review of Reported Concordance Rates. J. Transl. Med. 2019;17:223. doi: 10.1186/s12967-019-1976-2. PubMed DOI PMC
Granzotto A., Vissel B., Sensi S.L. Lost in Translation: Inconvenient Truths on the Utility of Mouse Models in Alzheimer’s Disease Research. eLife. 2024;13:e90633. doi: 10.7554/eLife.90633. PubMed DOI PMC
Brynildsen J.K., Rajan K., Henderson M.X., Bassett D.S. Network Models to Enhance the Translational Impact of Cross-Species Studies. Nat. Rev. Neurosci. 2023;24:575–588. doi: 10.1038/s41583-023-00720-x. PubMed DOI PMC
Schuelert N., Dorner-Ciossek C., Brendel M., Rosenbrock H. A Comprehensive Analysis of Auditory Event-Related Potentials and Network Oscillations in an NMDA Receptor Antagonist Mouse Model Using a Novel Wireless Recording Technology. Physiol. Rep. 2018;6:e13782. doi: 10.14814/phy2.13782. PubMed DOI PMC
Rosenbrock H., Dorner-Ciossek C., Giovannini R., Schmid B., Schuelert N. Effects of the Glycine Transporter-1 Inhibitor Iclepertin (BI 425809) on Sensory Processing, Neural Network Function, and Cognition in Animal Models Related to Schizophrenia. J. Pharmacol. Exp. Ther. 2022;382:223–232. doi: 10.1124/jpet.121.001071. PubMed DOI
Adraoui F.W., Hettak K., Viardot G., Alix M., Guiffard S., Meot B., L’Hostis P., Maurin A., Delpy E., Drieu La Rochelle C., et al. Differential Effects of Aripiprazole on Electroencephalography-Recorded Gamma-Band Auditory Steady-State Response, Spontaneous Gamma Oscillations and Behavior in a Schizophrenia Rat Model. Int. J. Mol. Sci. 2024;25:1035. doi: 10.3390/ijms25021035. PubMed DOI PMC
Nakao K., Nakazawa K. Brain State-Dependent Abnormal LFP Activity in the Auditory Cortex of a Schizophrenia Mouse Model. Front. Neurosci. 2014;8:168. doi: 10.3389/fnins.2014.00168. PubMed DOI PMC
Kozono N., Okamura A., Honda S., Matsumoto M., Mihara T. Gamma Power Abnormalities in a Fmr1-Targeted Transgenic Rat Model of Fragile X Syndrome. Sci. Rep. 2020;10:18799. doi: 10.1038/s41598-020-75893-x. PubMed DOI PMC
Herzog L.E., Wang L., Yu E., Choi S., Farsi Z., Song B.J., Pan J.Q., Sheng M. Mouse Mutants in Schizophrenia Risk Genes GRIN2A and AKAP11 Show EEG Abnormalities in Common with Schizophrenia Patients. Transl. Psychiatry. 2023;13:92. doi: 10.1038/s41398-023-02393-7. PubMed DOI PMC
Vohs J.L., Andrew Chambers R., Krishnan G.P., O’Donnell B.F., Berg S., Morzorati S.L. GABAergic Modulation of the 40 Hz Auditory Steady-State Response in a Rat Model of Schizophrenia. Int. J. Neuropsychopharm. 2010;13:487. doi: 10.1017/S1461145709990307. PubMed DOI PMC
Li S., Ma L., Wang Y., Wang X., Li Y., Qin L. Auditory Steady-State Responses in Primary and Non-Primary Regions of the Auditory Cortex in Neonatal Ventral Hippocampal Lesion Rats. PLoS ONE. 2018;13:e0192103. doi: 10.1371/journal.pone.0192103. PubMed DOI PMC
Croom K., Rumschlag J.A., Erickson M.A., Binder D.K., Razak K.A. Developmental Delays in Cortical Auditory Temporal Processing in a Mouse Model of Fragile X Syndrome. J. Neurodev. Disord. 2023;15:23. doi: 10.1186/s11689-023-09496-8. PubMed DOI PMC
Jonak C.R., Assad S.A., Garcia T.A., Sandhu M.S., Rumschlag J.A., Razak K.A., Binder D.K. Phenotypic Analysis of Multielectrode Array EEG Biomarkers in Developing and Adult Male Fmr1 KO Mice. Neurobiol. Dis. 2024;195:106496. doi: 10.1016/j.nbd.2024.106496. PubMed DOI
Sohal V.S., Rubenstein J.L.R. Excitation-Inhibition Balance as a Framework for Investigating Mechanisms in Neuropsychiatric Disorders. Mol. Psychiatry. 2019;24:1248–1257. doi: 10.1038/s41380-019-0426-0. PubMed DOI PMC
Minzenberg M.J., Firl A.J., Yoon J.H., Gomes G.C., Reinking C., Carter C.S. Gamma Oscillatory Power Is Impaired During Cognitive Control Independent of Medication Status in First-Episode Schizophrenia. Neuropsychopharmacology. 2010;35:2590–2599. doi: 10.1038/npp.2010.150. PubMed DOI PMC
Chen C.-M.A., Stanford A.D., Mao X., Abi-Dargham A., Shungu D.C., Lisanby S.H., Schroeder C.E., Kegeles L.S. GABA Level, Gamma Oscillation, and Working Memory Performance in Schizophrenia. NeuroImage Clin. 2014;4:531–539. doi: 10.1016/j.nicl.2014.03.007. PubMed DOI PMC
Port R.G., Gajewski C., Krizman E., Dow H.C., Hirano S., Brodkin E.S., Carlson G.C., Robinson M.B., Roberts T.P.L., Siegel S.J. Protocadherin 10 Alters γ Oscillations, Amino Acid Levels, and Their Coupling; Baclofen Partially Restores These Oscillatory Deficits. Neurobiol. Dis. 2017;108:324–338. doi: 10.1016/j.nbd.2017.08.013. PubMed DOI
Croom K., Rumschlag J.A., Erickson M.A., Binder D., Razak K.A. Sex Differences during Development in Cortical Temporal Processing and Event Related Potentials in Wild-Type and Fragile X Syndrome Model Mice. J. Neurodev. Disord. 2024;16:24. doi: 10.1186/s11689-024-09539-8. PubMed DOI PMC
Tao X., Croom K., Newman-Tancredi A., Varney M., Razak K.A. Acute Administration of NLX-101, a Serotonin 1A Receptor Agonist, Improves Auditory Temporal Processing during Development in a Mouse Model of Fragile X Syndrome. J. Neurodev. Disord. 2025;17:1. doi: 10.1186/s11689-024-09587-0. PubMed DOI PMC
Thuné H., Recasens M., Uhlhaas P.J. The 40-Hz Auditory Steady-State Response in Patients With Schizophrenia: A Meta-Analysis. JAMA Psychiatry. 2016;73:1145. doi: 10.1001/jamapsychiatry.2016.2619. PubMed DOI
Raza M.U., Sivarao D.V. Test-Retest Reliability of Tone- and 40 Hz Train-Evoked Gamma Oscillations in Female Rats and Their Sensitivity to Low-Dose NMDA Channel Blockade. Psychopharmacology. 2021;238:2325–2334. doi: 10.1007/s00213-021-05856-1. PubMed DOI
Sivarao D.V., Frenkel M., Chen P., Healy F.L., Lodge N.J., Zaczek R. MK-801 Disrupts and Nicotine Augments 40 Hz Auditory Steady State Responses in the Auditory Cortex of the Urethane-Anesthetized Rat. Neuropharmacology. 2013;73:1–9. doi: 10.1016/j.neuropharm.2013.05.006. PubMed DOI
Sivarao D.V., Chen P., Senapati A., Yang Y., Fernandes A., Benitex Y., Whiterock V., Li Y.-W., Ahlijanian M.K. 40 Hz Auditory Steady-State Response Is a Pharmacodynamic Biomarker for Cortical NMDA Receptors. Neuropsychopharmacology. 2016;41:2232–2240. doi: 10.1038/npp.2016.17. PubMed DOI PMC
Light G.A., Zhang W., Joshi Y.B., Bhakta S., Talledo J.A., Swerdlow N.R. Single-Dose Memantine Improves Cortical Oscillatory Response Dynamics in Patients with Schizophrenia. Neuropsychopharmacology. 2017;42:2633–2639. doi: 10.1038/npp.2017.81. PubMed DOI PMC
Murphy N., Ramakrishnan N., Vo-Le B., Vo-Le B., Smith M.A., Iqbal T., Swann A.C., Mathew S.J., Lijffijt M. A Randomized Cross-over Trial to Define Neurophysiological Correlates of AV-101 N-Methyl-d-Aspartate Receptor Blockade in Healthy Veterans. Neuropsychopharmacology. 2021;46:820–827. doi: 10.1038/s41386-020-00917-z. PubMed DOI PMC
Vohs J.L., Chambers R.A., O’Donnell B.F., Krishnan G.P., Morzorati S.L. Auditory Steady State Responses in a Schizophrenia Rat Model Probed by Excitatory/Inhibitory Receptor Manipulation. Int. J. Psychophysiol. 2012;86:136–142. doi: 10.1016/j.ijpsycho.2012.04.002. PubMed DOI PMC
Shahriari Y., Krusienski D., Dadi Y.S., Seo M., Shin H.-S., Choi J.H. Impaired Auditory Evoked Potentials and Oscillations in Frontal and Auditory Cortex of a Schizophrenia Mouse Model. World J. Biol. Psychiatry. 2016;17:439–448. doi: 10.3109/15622975.2015.1112036. PubMed DOI
Nakao K., Singh M., Sapkota K., Hagler B.C., Hunter R.N., Raman C., Hablitz J.J., Nakazawa K. GSK3β Inhibition Restores Cortical Gamma Oscillation and Cognitive Behavior in a Mouse Model of NMDA Receptor Hypofunction Relevant to Schizophrenia. Neuropsychopharmacology. 2020;45:2207–2218. doi: 10.1038/s41386-020-00819-0. PubMed DOI PMC
Balla A., Ginsberg S.D., Abbas A.I., Sershen H., Javitt D.C. Translational Neurophysiological Biomarkers of N-Methyl-d-Aspartate Receptor Dysfunction in Serine Racemase Knockout Mice. Biomark. Neuropsychiatry. 2020;2:100019. doi: 10.1016/j.bionps.2020.100019. PubMed DOI PMC
Croom K., Rumschlag J.A., Molinaro G., Erickson M.A., Binder D.K., Huber K.M., Razak K.A. Developmental Trajectory and Sex Differences in Auditory Processing in a PTEN-Deletion Model of Autism Spectrum Disorders. Neurobiol. Dis. 2024;200:106628. doi: 10.1016/j.nbd.2024.106628. PubMed DOI PMC
Lovelace J.W., Ethell I.M., Binder D.K., Razak K.A. Minocycline Treatment Reverses Sound Evoked EEG Abnormalities in a Mouse Model of Fragile X Syndrome. Front. Neurosci. 2020;14:771. doi: 10.3389/fnins.2020.00771. PubMed DOI PMC
Wang X., Li Y., Li Z., Li J., Xu J., Yang P., Qin L. Neuroprotective Effect of Microglia against Impairments of Auditory Steady-State Response Induced by Anti-P IgG from SLE Patients in Naïve Mice. J. Neuroinflammation. 2020;17:31. doi: 10.1186/s12974-020-1716-9. PubMed DOI PMC
Li Y., Wang X., Chen J., Li Z., Yang P., Qin L. Aberrant Auditory Steady-State Response of Awake Mice Induced by Chronic Interferon-α Treatment. Front. Pharmacol. 2021;11:584425. doi: 10.3389/fphar.2020.584425. PubMed DOI PMC
Gautam D., Shields A., Krepps E., Ummear Raza M., Sivarao D.V. Click Train Elicited Local Gamma Synchrony: Differing Performance and Pharmacological Responsivity of Primary Auditory and Prefrontal Cortices. Brain Res. 2024;1841:149091. doi: 10.1016/j.brainres.2024.149091. PubMed DOI
Kim T., Thankachan S., McKenna J.T., McNally J.M., Yang C., Choi J.H., Chen L., Kocsis B., Deisseroth K., Strecker R.E., et al. Cortically Projecting Basal Forebrain Parvalbumin Neurons Regulate Cortical Gamma Band Oscillations. Proc. Natl. Acad. Sci. USA. 2015;112:3535–3540. doi: 10.1073/pnas.1413625112. PubMed DOI PMC
Wang Y., Ma L., Wang X., Qin L. Differential Modulation of the Auditory Steady State Response and Inhibitory Gating by Chloral Hydrate Anesthesia. Sci. Rep. 2018;8:3683. doi: 10.1038/s41598-018-21920-x. PubMed DOI PMC
Li Z., Li J., Wang S., Wang X., Chen J., Qin L. Laminar Profile of Auditory Steady-State Response in the Auditory Cortex of Awake Mice. Front. Syst. Neurosci. 2021;15:636395. doi: 10.3389/fnsys.2021.636395. PubMed DOI PMC
Johnson T.D., Gallagher A.J., Coulson S., Rangel L.M. Network Resonance and the Auditory Steady State Response. Sci. Rep. 2024;14:16799. doi: 10.1038/s41598-024-66697-4. PubMed DOI PMC
Hwang E., Brown R.E., Kocsis B., Kim T., McKenna J.T., McNally J.M., Han H.-B., Choi J.H. Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Modulates the Cortical Topography of Auditory Steady-State Responses. Brain Struct. Funct. 2019;224:1505–1518. doi: 10.1007/s00429-019-01845-5. PubMed DOI PMC
Toader O., von Heimendahl M., Schuelert N., Nissen W., Rosenbrock H. Suppression of Parvalbumin Interneuron Activity in the Prefrontal Cortex Recapitulates Features of Impaired Excitatory/Inhibitory Balance and Sensory Processing in Schizophrenia. Schizophr. Bull. 2020;46:981–989. doi: 10.1093/schbul/sbz123. PubMed DOI PMC
Muller L., Chavane F., Reynolds J., Sejnowski T.J. Cortical Travelling Waves: Mechanisms and Computational Principles. Nat. Rev. Neurosci. 2018;19:255–268. doi: 10.1038/nrn.2018.20. PubMed DOI PMC
Sugiyama S., Inui K., Ohi K., Shioiri T. The Influence of Novelty Detection on the 40-Hz Auditory Steady-State Response in Schizophrenia: A Novel Hypothesis from Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2024;135:111096. doi: 10.1016/j.pnpbp.2024.111096. PubMed DOI
Farahani E.D., Wouters J., van Wieringen A. Improving Source Modeling of Auditory Steady-State Responses with Frequency-Specific Brain Maps. Neuroscience. 2019. in press .
Jiricek S., Koudelka V., Lacik J., Vejmola C., Kuratko D., Wójcik D.K., Raida Z., Hlinka J., Palenicek T. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front. Neuroinform. 2021;14:589228. doi: 10.3389/fninf.2020.589228. PubMed DOI PMC
Price J.L., Drevets W.C. Neurocircuitry of Mood Disorders. Neuropsychopharmacology. 2010;35:192–216. doi: 10.1038/npp.2009.104. PubMed DOI PMC
Paul T., See J.W., Vijayakumar V., Njideaka-Kevin T., Loh H., Lee V.J.Q., Dogrul B.N. Neurostructural Changes in Schizophrenia and Treatment-Resistance: A Narrative Review. Psychoradiology. 2024;4:kkae015. doi: 10.1093/psyrad/kkae015. PubMed DOI PMC
Eilam-Stock T., Wu T., Spagna A., Egan L.J., Fan J. Neuroanatomical Alterations in High-Functioning Adults with Autism Spectrum Disorder. Front. Neurosci. 2016;10:237. doi: 10.3389/fnins.2016.00237. PubMed DOI PMC
Griskova I., Morup M., Parnas J., Ruksenas O., Arnfred S.M. The Amplitude and Phase Precision of 40 Hz Auditory Steady-State Response Depend on the Level of Arousal. Exp. Brain Res. 2007;183:133–138. doi: 10.1007/s00221-007-1111-0. PubMed DOI
Binder M., Górska U., Griskova-Bulanova I. 40 Hz Auditory Steady-State Responses in Patients with Disorders of Consciousness: Correlation between Phase-Locking Index and Coma Recovery Scale-Revised Score. Clin. Neurophysiol. 2017;128:799–806. doi: 10.1016/j.clinph.2017.02.012. PubMed DOI
Melynyte S., Pipinis E., Genyte V., Voicikas A., Rihs T., Griskova-Bulanova I. 40 Hz Auditory Steady-State Response: The Impact of Handedness and Gender. Brain Topogr. 2018;31:419–429. doi: 10.1007/s10548-017-0611-x. PubMed DOI
Li Y., Wang X., Li Z., Chen J., Qin L. Effect of Locomotion on the Auditory Steady State Response of Head-Fixed Mice. World J. Biol. Psychiatry. 2020;22:362–372. doi: 10.1080/15622975.2020.1814409. PubMed DOI
Liu H.-H., Liu C.-M., Hsieh M.H., Chien Y.-L., Hsu Y.-F., Lai W.-S. Dysregulated Affective Arousal Regulates Reward-Based Decision Making in Patients with Schizophrenia: An Integrated Study. Schizophrenia. 2022;8:26. doi: 10.1038/s41537-022-00234-y. PubMed DOI PMC
Hegerl U., Wilk K., Olbrich S., Schoenknecht P., Sander C. Hyperstable Regulation of Vigilance in Patients with Major Depressive Disorder. World J. Biol. Psychiatry. 2012;13:436–446. doi: 10.3109/15622975.2011.579164. PubMed DOI
Palmisano A., Pandit S., Smeralda C.L., Demchenko I., Rossi S., Battelli L., Rivolta D., Bhat V., Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life. 2024;14:578. doi: 10.3390/life14050578. PubMed DOI PMC
Hwang H., Kim S.M., Kim H.J., Han D.H. Comparison of Attention and Brain Functional Connectivity between Patient Groups with Schizophrenia and Attention Deficit Hyperactivity Disorder. Psychiatry Res. 2025;345:116376. doi: 10.1016/j.psychres.2025.116376. PubMed DOI
McNally J.M., Aguilar D.D., Katsuki F., Radzik L.K., Schiffino F.L., Uygun D.S., McKenna J.T., Strecker R.E., Deisseroth K., Spencer K.M., et al. Optogenetic Manipulation of an Ascending Arousal System Tunes Cortical Broadband Gamma Power and Reveals Functional Deficits Relevant to Schizophrenia. Mol. Psychiatry. 2020;26:3461–3475. doi: 10.1038/s41380-020-0840-3. PubMed DOI PMC
Hirano Y., Nakamura I., Tamura S., Onitsuka T. Long-Term Test-Retest Reliability of Auditory Gamma Oscillations Between Different Clinical EEG Systems. Front. Psychiatry. 2020;11:876. doi: 10.3389/fpsyt.2020.00876. PubMed DOI PMC
Jasinskyte U., Buisas R., Griskova-Bulanova I., Guzulaitis R. Auditory Steady-State Responses in the Auditory Cortex of Mice during Estrus Cycle. Brain Res. 2023;1810:148376. doi: 10.1016/j.brainres.2023.148376. PubMed DOI
Griskova-Bulanova I., Griksiene R., Korostenskaja M., Ruksenas O. 40 Hz Auditory Steady-State Response in Females: When Is It Better to Entrain? Acta Neurobiol. Exp. 2014;74:91–97. doi: 10.55782/ane-2014-1975. PubMed DOI
Moniem I., Kafetzopoulos V. Sex Differences in Schizophrenia: Symptomatology, Treatment Efficacy and Adverse Effects. Front. Psychiatry. 2025;16:1594334. doi: 10.3389/fpsyt.2025.1594334. PubMed DOI PMC
Napolitano A., Schiavi S., La Rosa P., Rossi-Espagnet M.C., Petrillo S., Bottino F., Tagliente E., Longo D., Lupi E., Casula L., et al. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front. Psychiatry. 2022;13:889636. doi: 10.3389/fpsyt.2022.889636. PubMed DOI PMC
Sloan D.M., Sandt A.R. Gender Differences in Depression. Womens Health. 2006;2:425–434. doi: 10.2217/17455057.2.3.425. PubMed DOI
Parker G., Fletcher K., Paterson A., Anderson J., Hong M. Gender Differences in Depression Severity and Symptoms Across Depressive Sub-Types. J. Affect. Disord. 2014;167:351–357. doi: 10.1016/j.jad.2014.06.018. PubMed DOI
Handy A.B., Greenfield S.F., Yonkers K.A., Payne L.A. Psychiatric Symptoms Across the Menstrual Cycle in Adult Women: A Comprehensive Review. Harv. Rev. Psychiatry. 2022;30:100–117. doi: 10.1097/HRP.0000000000000329. PubMed DOI PMC
Mazza M., Marano G. Unmasking the Cycle: Premenstrual and Menstrual Exacerbation of Psychiatric Disorders and Impact on Female Mental Health. World J. Psychiatry. 2025;15:107132. doi: 10.5498/wjp.v15.i8.107132. PubMed DOI PMC
Lear A., Baker S.N., Clarke H.F., Roberts A.C., Schmid M.C., Jarrett W. Understanding Them to Understand Ourselves: The Importance of NHP Research for Translational Neuroscience. Curr. Res. Neurobiol. 2022;3:100049. doi: 10.1016/j.crneur.2022.100049. PubMed DOI PMC
Harding J.D. Nonhuman Primates and Translational Research: Progress, Opportunities, and Challenges. ILAR J. 2017;58:141–150. doi: 10.1093/ilar/ilx033. PubMed DOI PMC
Konoike N., Iwaoki H., Miwa M., Sakata H., Itoh K., Nakamura K. Comparison of Non-Invasive, Scalp-Recorded Auditory Steady-State Responses in Humans, Rhesus Monkeys, and Common Marmosets. Sci. Rep. 2022;12:9210. doi: 10.1038/s41598-022-13228-8. PubMed DOI PMC
Nakamura T., Dinh T.H., Asai M., Nishimaru H., Matsumoto J., Setogawa T., Ichijo H., Honda S., Yamada H., Mihara T., et al. Characteristics of Auditory Steady-State Responses to Different Click Frequencies in Awake Intact Macaques. BMC Neurosci. 2022;23:57. doi: 10.1186/s12868-022-00741-9. PubMed DOI PMC
Iwamura Y., Nakayama T., Matsumoto A., Ogi Y., Yamaguchi M., Kobayashi A., Matsumoto K., Katsura Y., Konoike N., Nakamura K., et al. Effect of Dopamine Receptor-Related Compounds on Naïve Common Marmosets for Auditory Steady-State Response. J. Neurophysiol. 2022;128:229–238. doi: 10.1152/jn.00147.2022. PubMed DOI
Yan T., Suzuki K., Kameda S., Kuratomi T., Mihara M., Maeda M., Hirata M. Intracranial EEG Recordings of High-Frequency Activity From a Wireless Implantable BMI Device in Awake Nonhuman Primates. IEEE Trans. Biomed. Eng. 2023;70:1107–1113. doi: 10.1109/TBME.2022.3210286. PubMed DOI
Aguilar D.D., Radzik L.K., Schiffino F.L., Folorunso O.O., Zielinski M.R., Coyle J.T., Balu D.T., McNally J.M. Altered Neural Oscillations and Behavior in a Genetic Mouse Model of NMDA Receptor Hypofunction. Sci. Rep. 2021;11:9031. doi: 10.1038/s41598-021-88428-9. PubMed DOI PMC
Cizus E., Jasinskyte U., Guzulaitis R. Effects of Acute and Chronic Ketamine Administration on Spontaneous and Evoked Brain Activity. Brain Res. 2024;1846:149232. doi: 10.1016/j.brainres.2024.149232. PubMed DOI
Dejean C., Dupont T., Verpy E., Gonçalves N., Coqueran S., Michalski N., Pucheu S., Bourgeron T., Gourévitch B. Detecting Central Auditory Processing Disorders in Awake Mice. Brain Sci. 2023;13:1539. doi: 10.3390/brainsci13111539. PubMed DOI PMC
Gautam D., Raza M.U., Miyakoshi M., Molina J.L., Joshi Y.B., Clayson P.E., Light G.A., Swerdlow N.R., Sivarao D.V. Click-Train Evoked Steady State Harmonic Response as a Novel Pharmacodynamic Biomarker of Cortical Oscillatory Synchrony. Neuropharmacology. 2023;240:109707. doi: 10.1016/j.neuropharm.2023.109707. PubMed DOI
Inaba H., Kai R., Namba H., Sotoyama H., Jodo E., Nin F., Hibino H., Yabe H., Eifuku S., Horii A., et al. Perinatal Epidermal Growth Factor Signal Perturbation Results in the Series of Abnormal Auditory Oscillations and Responses Relevant to Schizophrenia. Schizophr. Bull. Open. 2021;2:sgaa070. doi: 10.1093/schizbullopen/sgaa070. DOI
Kozono N., Honda S., Tada M., Kirihara K., Zhao Z., Jinde S., Uka T., Yamada H., Matsumoto M., Kasai K., et al. Auditory Steady State Response; Nature and Utility as a Translational Science Tool. Sci. Rep. 2019;9:8454. doi: 10.1038/s41598-019-44936-3. PubMed DOI PMC
Leishman E., O’Donnell B.F., Millward J.B., Vohs J.L., Rass O., Krishnan G.P., Bolbecker A.R., Morzorati S.L. Phencyclidine Disrupts the Auditory Steady State Response in Rats. PLoS ONE. 2015;10:e0134979. doi: 10.1371/journal.pone.0134979. PubMed DOI PMC
Li J., Li Z., Wang X., Liu Y., Wang S., Wang X., Li Y., Qin L. The Thalamocortical Mechanism Underlying the Generation and Regulation of the Auditory Steady-State Responses in Awake Mice. J. Neurosci. 2024;44:e1166232023. doi: 10.1523/JNEUROSCI.1166-23.2023. PubMed DOI PMC
Munch A.S., Amat-Foraster M., Agerskov C., Bastlund J.F., Herrik K.F., Richter U. Sub-Anesthetic Doses of Ketamine Increase Single Cell Entrainment in the Rat Auditory Cortex during Auditory Steady-State Response. J. Psychopharmacol. 2023;37:822–835. doi: 10.1177/02698811231164231. PubMed DOI
Prado-Gutierrez P., Martínez-Montes E., Weinstein A., Zañartu M. Estimation of Auditory Steady-State Responses Based on the Averaging of Independent EEG Epochs. PLoS ONE. 2019;14:e0206018. doi: 10.1371/journal.pone.0206018. PubMed DOI PMC
Ummear Raza M., Gautam D., Rorie D., Sivarao D.V. Differential Effects of Clozapine and Haloperidol on the 40 Hz Auditory Steady State Response-Mediated Phase Resetting in the Prefrontal Cortex of the Female Sprague Dawley Rat. Schizophr. Bull. 2023;49:581–591. doi: 10.1093/schbul/sbac203. PubMed DOI PMC
Sullivan E.M., Timi P., Hong L.E., O’Donnell P. Effects of NMDA and GABA-A Receptor Antagonism on Auditory Steady-State Synchronization in Awake Behaving Rats. Int. J. Neuropsychopharmacol. 2015;18:pyu118. doi: 10.1093/ijnp/pyu118. PubMed DOI PMC
Thankachan S., Katsuki F., McKenna J.T., Yang C., Shukla C., Deisseroth K., Uygun D.S., Strecker R.E., Brown R.E., McNally J.M., et al. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci. Rep. 2019;9:3607. doi: 10.1038/s41598-019-40398-9. PubMed DOI PMC
Wang Y., Li Z., Tian Z., Wang X., Li Y., Qin L. Emotional Arousal Modifies Auditory Steady State Response in the Auditory Cortex and Prefrontal Cortex of Rats. Stress. 2019;22:492–500. doi: 10.1080/10253890.2019.1583203. PubMed DOI
Wang X., Li Y., Chen J., Li Z., Li J., Qin L. Aberrant Auditory Steady-State Response of Awake Mice After Single Application of the NMDA Receptor Antagonist MK-801 Into the Medial Geniculate Body. Int. J. Neuropsychopharmacol. 2020;23:459–468. doi: 10.1093/ijnp/pyaa022. PubMed DOI PMC
Yamazaki M., Honda S., Tamaki K., Irie M., Mihara T. Effects of (+)-Bicuculline, a GABAa Receptor Antagonist, on Auditory Steady State Response in Free-Moving Rats. PLoS ONE. 2020;15:e0236363. doi: 10.1371/journal.pone.0236363. PubMed DOI PMC
Zhang J., Ma L., Li W., Yang P., Qin L. Cholinergic Modulation of Auditory Steady-State Response in the Auditory Cortex of the Freely Moving Rat. Neuroscience. 2016;324:29–39. doi: 10.1016/j.neuroscience.2016.03.006. PubMed DOI