Post-Operative Atrial Fibrillation: Novel Predictive Value of CT-Derived Adipose Tissue Density in Minimally Invasive Mitral Surgery

. 2025 Dec 31 ; 74 (Suppl 1) : S117-S128.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41511103

Postoperative atrial fibrillation (POAF) remains a significant complication following minimally invasive thoracoscopic mitral valve surgery (MITMVS), yet current risk prediction models inadequately capture the underlying metabolic determinants of arrhythmogenesis. We investigated whether computed tomography (CT)-derived body composition parameters, as markers of metabolic status, could predict POAF risk in patients undergoing mitral valve repair. We retrospectively studied 104 consecutive MITMVS patients (2014-2023). Preoperative CT scans quantified skeletal muscle index, muscle density, and visceral/subcutaneous adipose tissue. Patients were grouped by preexisting atrial fibrillation (AF) with concurrent Maze (n=48) vs. no AF history (n=56). The primary outcome was POAF development. Higher visceral (VAT) and subcutaneous (SAT) adipose tissue density showed associations with increased POAF odds in multivariable analysis (VAT: OR 1.075, 95 % CI: 1.010;1.149, p=0.026; SAT: OR 1.073, 95 % CI: 1.011;1.146, p=0.025). Quartile analysis revealed a striking 5.5-fold increased POAF risk in the highest VAT density quartile compared to the lowest (42.3 % vs. 7.7 %). Notably, the relationship between intramuscular adipose tissue (IMAT) density and POAF differed between groups (interaction p=0.029), with a positive association in patients without prior AF (OR 1.167, 95 % CI: 1.011;1.377, p=0.047), but no significant relationship in those with preexisting AF (p=0.175). CT-derived tissue quality parameters, particularly VAT density, demonstrate robust associations with POAF risk following MITMVS. These findings establish preoperative CT-based metabolic assessment as a promising tool for perioperative risk stratification without additional testing burden. Key words Postoperative atrial fibrillation " Body composition " Computed tomography " Mitral valve surgery " Metabolic risk factors.

Zobrazit více v PubMed

Paquin A, Voisine P, Poirier P, Clavel MA, O’Connor S, Roberge J, Piché M-E. Sex-Specific Cardiometabolic Determinants of Postoperative Atrial Fibrillation After Cardiac Surgery. Can J Cardiol. 2024;40:1566–1575. doi: 10.1016/j.cjca.2024.02.002. PubMed DOI

Sanders J, Makariou N, Tocock A, Magboo R, Thomas A, Aitken LM. Preoperative risk assessment tools for morbidity after cardiac surgery: a systematic review. Eur J Cardiovasc Nurs. 2022;21:655–664. doi: 10.1093/eurjcn/zvac003. PubMed DOI

Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol. 2024;21:682–700. doi: 10.1038/s41569-024-01038-6. PubMed DOI

Pabon MA, Manocha K, Cheung JW, Lo JC. Linking Arrhythmias and Adipocytes: Insights, Mechanisms, and Future Directions. Front Physiol. 2018;9:1752. doi: 10.3389/fphys.2018.01752. PubMed DOI PMC

Rostagno C. Atrial fibrillation in patients undergoing surgical revascularization: an update on pharmacologic prophylaxis. Cardiovasc Hematol Agents Med Chem. 2012;10:325–338. doi: 10.2174/187152512803530306. PubMed DOI

Gaudino M, Di Franco A, Rong LQ, Piccini J, Mack M. Postoperative atrial fibrillation: from mechanisms to treatment. Eur Heart J. 2023;44:1020–1039. doi: 10.1093/eurheartj/ehad019. PubMed DOI PMC

Bessissow A, Khan J, Devereaux PJ, Alvarez-Garcia J, Alonso-Coello P. Postoperative atrial fibrillation in non-cardiac and cardiac surgery: an overview. J Thromb Haemost. 2015;13(Suppl 1):S304–S312. doi: 10.1111/jth.12974. PubMed DOI

El-Andari R, Watkins AR, Fialka NM, Kang JJH, Bozso SJ, Hassanabad AF, Vasanthan V, et al. Minimally Invasive Approaches to Mitral Valve Surgery: Where Are We Now? A Narrative Review. Can J Cardiol. 2024;40:1679–1689. doi: 10.1016/j.cjca.2024.03.017. PubMed DOI

Okuno T, Koseki K, Nakanishi T, Ninomiya K, Tomii D, Tanaka T, Sato Y, et al. Prognostic Impact of Computed Tomography-Derived Abdominal Fat Area on Transcatheter Aortic Valve Implantation. Circ J. 2018;82:3082–3089. doi: 10.1253/circj.CJ-18-0709. PubMed DOI

Foldyna B, Troschel FM, Addison D, Fintelmann FJ, Elmariah S, Furman D, Eslami P, et al. Computed tomography-based fat and muscle characteristics are associated with mortality after transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2018;12:223–228. doi: 10.1016/j.jcct.2018.03.007. PubMed DOI PMC

Paris MT, Tandon P, Heyland DK, Furberg H, Premji T, Low G, Mourtzakis M. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin Nutr. 2020;39:3049–3055. doi: 10.1016/j.clnu.2020.01.008. PubMed DOI PMC

Malietzis G, Currie AC, Athanasiou T, Johns N, Anyamene N, Glynne-Jones R, Kennedy RH, et al. Influence of body composition profile on outcomes following colorectal cancer surgery. Br J Surg. 2016;103:572–580. doi: 10.1002/bjs.10075. PubMed DOI

Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320:C375–C391. doi: 10.1152/ajpcell.00379.2020. PubMed DOI PMC

Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab. 2005;19:547–566. doi: 10.1016/j.beem.2005.07.009. PubMed DOI

Pekař M, Jiravský O, Novák J, Branny P, Balušík J, Daniš D, Hečko J, et al. Sarcopenia and adipose tissue evaluation by artificial intelligence predicts the overall survival after TAVI. Sci Rep. 2024;14:8842. doi: 10.1038/s41598-024-59134-z. PubMed DOI PMC

Pekař M, Jiravský O, Novák J, Branny P, Balušík J, Daniš D, Hečko J, et al. Publisher Correction: Sarcopenia and adipose tissue evaluation by artificial intelligence predicts the overall survival after TAVI. Sci Rep. 2024;14:10749. doi: 10.1038/s41598-024-61601-6. PubMed DOI PMC

Kwon H, Kim D, Kim JS. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Sci Rep. 2017;7:10955. doi: 10.1038/s41598-017-09723-y. PubMed DOI PMC

Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol. 2016;231:R77–R99. doi: 10.1530/JOE-16-0211. PubMed DOI PMC

Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51:802–809. doi: 10.1016/j.jacc.2007.09.064. PubMed DOI

Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective. Circ Res. 2020;127:51–72. doi: 10.1161/CIRCRESAHA.120.316363. PubMed DOI PMC

Pekařová A, Pekař M, Soltes M, Havrlentová L, Chovancová T. Psoas density - an optimal sarcopaenic indicator associated with postoperative complications after colorectal resection for cancer? Wideochir Inne Tech Maloinwazyjne. 2021;16:91–97. doi: 10.5114/wiitm.2020.100880. PubMed DOI PMC

Heus C, Bakker N, Verduin WM, Doodeman HJ, Houdijk APJ. Impact of Body Composition on Surgical Outcome in Rectal Cancer Patients, a Retrospective Cohort Study. World J Surg. 2019;43:1370–1376. doi: 10.1007/s00268-019-04925-z. PubMed DOI

Aleixo GFP, Valente SA, Wei W, Moore HCF. Association of body composition and surgical outcomes in patients with early-stage breast cancer. Breast Cancer Res Treat. 2023;202:305–311. doi: 10.1007/s10549-023-07060-5. PubMed DOI

Levi B, Zhang P, Lisiecki J, Terjimanian MN, Rinkinen J, Agarwal S, Holcombe SA, et al. Use of morphometric assessment of body composition to quantify risk of surgical-site infection in patients undergoing component separation ventral hernia repair Plast Reconstr Surg 2014133559e–566e 10.1097/PRS.0000000000000009 PubMed DOI

Yu X, Huang YH, Feng YZ, Cheng ZY, Wang CC, Cai XR. Association of body composition with postoperative complications after laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass. Eur J Radiol. 2023;162:110768. doi: 10.1016/j.ejrad.2023.110768. PubMed DOI

Visser M, van Venrooij LMW, Vulperhorst L, de Vos R, Wisselink W, van Leeuwen PAM, et al. Sarcopenic obesity is associated with adverse clinical outcome after cardiac surgery. Nutr Metab Cardiovasc Dis. 2013;23:511–518. doi: 10.1016/j.numecd.2011.12.001. PubMed DOI

Al Otaibi A, Gupta S, Belley-Cote EP, Alsagheir A, Spence J, Parry D, Whitlock RP. Mini-thoracotomy vs. conventional sternotomy mitral valve surgery: a systematic review and meta-analysis. J Cardiovasc Surg (Torino) 2017;58:489–496. doi: 10.23736/S0021-9509.16.09603-8. PubMed DOI

Paparella D, Rotunno C, Guida P, Travascia M, De Palo M, Paradiso A, Carrozzo A, Rociola R. Minimally invasive heart valve surgery: influence on coagulation and inflammatory response. Interact Cardiovasc Thorac Surg. 2017;25:225–232. doi: 10.1093/icvts/ivx090. PubMed DOI

Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002;415:219–226. doi: 10.1038/415219a. PubMed DOI

Chi P-C, Chang S-C, Yun C-H, Kuo J-Y, Hung C-L, Hou CJ-Y, Liu C-Y, et al. The Associations between Various Ectopic Visceral Adiposity and Body Surface Electrocardiographic Alterations: Potential Differences between Local and Remote Systemic Effects. PLoS One. 2016;11:e0158300. doi: 10.1371/journal.pone.0158300. PubMed DOI PMC

Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, Vasan RS, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48. doi: 10.1161/CIRCULATIONAHA.106.675355. PubMed DOI

Tarsitano MG, Pandozzi C, Muscogiuri G, Sironi S, Pujia A, Lenzi A, Giannetta E. Epicardial Adipose Tissue: A Novel Potential Imaging Marker of Comorbidities Caused by Chronic Inflammation. Nutrients. 2022;14:2926. doi: 10.3390/nu14142926. PubMed DOI PMC

Jang A, Bae CH, Han SJ, Bae H. Association Between Length of Stay in the Intensive Care Unit and Sarcopenia Among Hemiplegic Stroke Patients. Ann Rehabil Med. 2021;45:49–56. doi: 10.5535/arm.20111. PubMed DOI PMC

Moisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, Bulger E, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17:R206. doi: 10.1186/cc12901. PubMed DOI PMC

Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, Fox CS. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc Imaging. 2013;6:762–771. doi: 10.1016/j.jcmg.2012.11.021. PubMed DOI PMC

Miljkovic I, Kuipers AL, Cauley JA, Prasad T, Lee CG, Ensrud KE, Cawthon PM, et al. Greater Skeletal Muscle Fat Infiltration Is Associated With Higher All-Cause and Cardiovascular Mortality in Older Men. J Gerontol A Biol Sci Med Sci. 2015;70:1133–1140. doi: 10.1093/gerona/glv027. PubMed DOI PMC

Zaman JAB, Harling L, Ashrafian H, Darzi A, Gooderham N, Athanasiou T, Peters NS. Post-operative atrial fibrillation is associated with a pre-existing structural and electrical substrate in human right atrial myocardium. Int J Cardiol. 2016;220:580–588. doi: 10.1016/j.ijcard.2016.06.249. PubMed DOI PMC

Aguilar M. My Big Fat Coronary Bypass Surgery: Sex, Obesity, and Postoperative Atrial Fibrillation. Can J Cardiol. 2024;40:1576–1579. doi: 10.1016/j.cjca.2024.03.024. PubMed DOI

Shibata K, Yamamoto M, Yamada S, Kobayashi T, Morita S, Kagase A, Tokuda T, et al. Clinical Outcomes of Subcutaneous and Visceral Adipose Tissue Characteristics Assessed in Patients Underwent Transcatheter Aortic Valve Replacement. CJC Open. 2021;3:142–151. doi: 10.1016/j.cjco.2020.09.019. PubMed DOI PMC

Gutiérrez-Ortiz E, Cobiella J, Muñoz-Guijosa C, Teles RC, Estévez-Loureiro R, Moñivas V, Regueiro A, et al. Transapical transcatheter mitral valve replacement for mitral valve disease: an Iberian experience. Rev Esp Cardiol (Engl Ed) 2025;78:229–238. doi: 10.1016/j.rec.2024.07.004. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...