Sarcopenia and adipose tissue evaluation by artificial intelligence predicts the overall survival after TAVI

. 2024 Apr 17 ; 14 (1) : 8842. [epub] 20240417

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38632317

Grantová podpora
MUNI/A/1547/2023 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/1555/2023 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 38632317
PubMed Central PMC11024085
DOI 10.1038/s41598-024-59134-z
PII: 10.1038/s41598-024-59134-z
Knihovny.cz E-zdroje

Sarcopenia is a serious systemic disease that reduces overall survival. TAVI is selectively performed in patients with severe aortic stenosis who are not indicated for open cardiac surgery due to severe polymorbidity. Artificial intelligence-assisted body composition assessment from available CT scans appears to be a simple tool to stratify these patients into low and high risk based on future estimates of all-cause mortality. Within our study, the segmentation of preprocedural CT scans at the level of the lumbar third vertebra in patients undergoing TAVI was performed using a neural network (AutoMATiCA). The obtained parameters (area and density of skeletal muscles and intramuscular, visceral, and subcutaneous adipose tissue) were analyzed using Cox univariate and multivariable models for continuous and categorical variables to assess the relation of selected variables with all-cause mortality. 866 patients were included (median(interquartile range)): age 79.7 (74.9-83.3) years; BMI 28.9 (25.9-32.6) kg/m2. Survival analysis was performed on all automatically obtained parameters of muscle and fat density and area. Skeletal muscle index (SMI in cm2/m2), visceral (VAT in HU) and subcutaneous adipose tissue (SAT in HU) density predicted the all-cause mortality in patients after TAVI expressed as hazard ratio (HR) with 95% confidence interval (CI): SMI HR 0.986, 95% CI (0.975-0.996); VAT 1.015 (1.002-1.028) and SAT 1.014 (1.004-1.023), all p < 0.05. Automatic body composition assessment can estimate higher all-cause mortality risk in patients after TAVI, which may be useful in preoperative clinical reasoning and stratification of patients.

Erratum v

PubMed

Zobrazit více v PubMed

Spears J, Al-Saiegh Y, Goldberg D, Manthey S, Goldberg S. TAVR: a review of current practices and considerations in low-risk patients. J. Intervent. Cardiol. 2020;2020:2582938. doi: 10.1155/2020/2582938. PubMed DOI PMC

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on Sarcopenia in older people. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034. PubMed DOI PMC

von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle. 2010;1:129–133. doi: 10.1007/s13539-010-0014-2. PubMed DOI PMC

Soud M, Alahdab F, Ho G, Kuku KO, Cejudo-Tejeda M, Hideo-Kajita A, et al. Usefulness of skeletal muscle area detected by computed tomography to predict mortality in patients undergoing transcatheter aortic valve replacement: a meta-analysis study. Int. J. Cardiovasc. Imaging. 2019;35:1141–1147. doi: 10.1007/s10554-019-01582-0. PubMed DOI

Takagi H, Hari Y, Kawai N, Ando T, ALICE (All-Literature Investigation of Cardiovascular Evidence) Group Meta-analysis of the prognostic value of Psoas-muscle area on mortality in patients undergoing transcatheter aortic valve implantation. Am. J. Cardiol. 2018;122:1394–1400. doi: 10.1016/j.amjcard.2018.06.049. PubMed DOI

Bertschi D, Kiss CM, Schoenenberger AW, Stuck AE, Kressig RW. Sarcopenia in patients undergoing transcatheter aortic valve implantation (TAVI): A systematic review of the literature. J. Nutr. Health Aging. 2021;25:64–70. doi: 10.1007/s12603-020-1448-7. PubMed DOI

Lv W, Li S, Liao Y, Zhao Z, Che G, Chen M, et al. The ‘obesity paradox’ does exist in patients undergoing transcatheter aortic valve implantation for aortic stenosis: A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017;25:633–642. doi: 10.1093/icvts/ivx191. PubMed DOI

Mok M, Allende R, Leipsic J, Altisent OA-J, Del Trigo M, Campelo-Parada F, et al. Prognostic value of fat mass and skeletal muscle mass determined by computed tomography in patients who underwent transcatheter aortic valve implantation. Am. J. Cardiol. 2016;117:828–833. doi: 10.1016/j.amjcard.2015.12.015. PubMed DOI

Okuno T, Koseki K, Nakanishi T, Ninomiya K, Tomii D, Tanaka T, et al. Prognostic impact of computed tomography-derived abdominal fat area on transcatheter aortic valve implantation. Circ. J. Off. J. Jpn Circ. Soc. 2018;82:3082–3089. PubMed

Shibata K, Yamamoto M, Yamada S, Kobayashi T, Morita S, Kagase A, et al. Clinical outcomes of subcutaneous and visceral adipose tissue characteristics assessed in patients underwent transcatheter aortic valve replacement. CJC Open. 2021;3:142–151. doi: 10.1016/j.cjco.2020.09.019. PubMed DOI PMC

Brown AD, Li B, Gabriel S, Cusimano RJ, Chung J, Horlick E, et al. Association between sarcopenia and adverse events following transcatheter aortic valve implantation. CJC Open. 2022;4:173–179. doi: 10.1016/j.cjco.2021.09.012. PubMed DOI PMC

Paris MT, Tandon P, Heyland DK, Furberg H, Premji T, Low G, et al. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin. Nutr. Edinb. Scotl. 2020;39:3049–3055. doi: 10.1016/j.clnu.2020.01.008. PubMed DOI PMC

Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2008;33:997–1006. doi: 10.1139/H08-075. PubMed DOI

Branny M, Branny P, Hudec M, Bilka M, Škňouřil L, Chovančík J, et al. Alternative access routes for transcatheter aortic valve implantation (TAVI) Cor. Vasa. 2017;59:e10–e16. doi: 10.1016/j.crvasa.2017.01.024. DOI

Williams, B., Mandrekar, J. N., Mandrekar, S. J., Cha, S. & Furth, A. Finding optimal cutpoints for continuous covariates with binary and time-to-event outcomes.

Ramakrishna H, Patel PA, Gutsche JT, Vallabhajosyula P, Szeto WY, MacKay E, et al. Surgical aortic valve replacement-clinical update on recent advances in the contemporary era. J. Cardiothorac. Vasc. Anesth. 2016;30:1733–1741. doi: 10.1053/j.jvca.2016.04.014. PubMed DOI

Prosecky R, Kunzova S, Kovacovicova P, Skladana M, Homolka P, Sochor O, et al. Association of anthropometric and body composition parameters with the presence of hypertension in the Central European population: Results from KardioVize 2030 study. Acta Cardiol. 2023;78:1–9. doi: 10.1080/00015385.2023.2192153. PubMed DOI

Dahya V, Xiao J, Prado CM, Burroughs P, McGee D, Silva AC, et al. Computed tomography-derived skeletal muscle index: A novel predictor of frailty and hospital length of stay after transcatheter aortic valve replacement. Am. Heart J. 2016;182:21–27. doi: 10.1016/j.ahj.2016.08.016. PubMed DOI

Garg L, Agrawal S, Pew T, Hanzel GS, Abbas AE, Gallagher MJ, et al. Psoas muscle area as a predictor of outcomes in transcatheter aortic valve implantation. Am. J. Cardiol. 2017;119:457–460. doi: 10.1016/j.amjcard.2016.10.019. PubMed DOI

Hebeler KR, Baumgarten H, Squiers JJ, Wooley J, Pollock BD, Mahoney C, et al. Albumin is predictive of 1-year mortality after transcatheter aortic valve replacement. Ann. Thorac. Surg. 2018;106:1302–1307. doi: 10.1016/j.athoracsur.2018.06.024. PubMed DOI

Tokuda T, Yamamoto M, Kagase A, Koyama Y, Otsuka T, Tada N, et al. Importance of combined assessment of skeletal muscle mass and density by computed tomography in predicting clinical outcomes after transcatheter aortic valve replacement. Int. J. Cardiovasc. Imaging. 2020;36:929–938. doi: 10.1007/s10554-020-01776-x. PubMed DOI

Tzeng Y-H, Wei J, Tsao T-P, Lee Y-T, Lee K-C, Liou H-R, et al. Computed tomography-determined muscle quality rather than muscle quantity is a better determinant of prolonged hospital length of stay in patients undergoing transcatheter aortic valve implantation. Acad. Radiol. 2020;27:381–388. doi: 10.1016/j.acra.2019.05.007. PubMed DOI

van Mourik MS, Janmaat YC, van Kesteren F, Vendrik J, Planken RN, Henstra MJ, et al. CT determined psoas muscle area predicts mortality in women undergoing transcatheter aortic valve implantation. Catheter Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2019;93:E248–E254. PubMed PMC

Dhillon RJS, Hasni S. Pathogenesis and management of sarcopenia. Clin. Geriatr. Med. 2017;33:17–26. doi: 10.1016/j.cger.2016.08.002. PubMed DOI PMC

Brouessard C, Bobet AS, Mathieu M, Manigold T, Arrigoni PP, Le Tourneau T, et al. Impact of severe sarcopenia on rehospitalization and survival one year after a TAVR procedure in patients aged 75 and older. Clin. Interv. Aging. 2021;16:1285–1292. doi: 10.2147/CIA.S305635. PubMed DOI PMC

Heidari B, Al-Hijji MA, Moynagh MR, Takahashi N, Welle G, Eleid M, et al. Transcatheter aortic valve replacement outcomes in patients with sarcopaenia. EuroIntervention J. Eur. Collab. Work Group Interv. Cardiol. Eur. Soc. Cardiol. 2019;15:671–677. PubMed

Damluji AA, Rodriguez G, Noel T, Davis L, Dahya V, Tehrani B, et al. Sarcopenia and health-related quality of life in older adults after transcatheter aortic valve replacement. Am. Heart J. 2020;224:171–181. doi: 10.1016/j.ahj.2020.03.021. PubMed DOI PMC

Nemec U, Heidinger B, Sokas C, Chu L, Eisenberg RL. Diagnosing sarcopenia on thoracic computed tomography: Quantitative assessment of skeletal muscle mass in patients undergoing transcatheter aortic valve replacement. Acad. Radiol. 2017;24:1154–1161. doi: 10.1016/j.acra.2017.02.008. PubMed DOI

Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998;147:755–763. doi: 10.1093/oxfordjournals.aje.a009520. PubMed DOI

Foldyna B, Troschel FM, Addison D, Fintelmann FJ, Elmariah S, Furman D, et al. Computed tomography-based fat and muscle characteristics are associated with mortality after transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2018;12:223–228. doi: 10.1016/j.jcct.2018.03.007. PubMed DOI PMC

Murphy RA, Register TC, Shively CA, Carr JJ, Ge Y, Heilbrun ME, et al. Adipose tissue density, a novel biomarker predicting mortality risk in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:109–117. doi: 10.1093/gerona/glt070. PubMed DOI PMC

Rosenquist KJ, Pedley A, Massaro JM, Therkelsen KE, Murabito JM, Hoffmann U, et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging. 2013;6:762–771. doi: 10.1016/j.jcmg.2012.11.021. PubMed DOI PMC

Lee JJ, Pedley A, Hoffmann U, Massaro JM, Keaney JF, Vasan RS, et al. Cross-sectional associations of computed tomography (CT)-derived adipose tissue density and adipokines: The framingham heart study. J. Am. Heart Assoc. 2026;5:e002545. doi: 10.1161/JAHA.115.002545. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...