Beyond BMI: An opinion on the clinical value of AI-powered CT body composition analysis
Jazyk angličtina Země Bosna a Hercegovina Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40631924
PubMed Central
PMC12461277
DOI
10.17305/bb.2025.12774
Knihovny.cz E-zdroje
- MeSH
- index tělesné hmotnosti * MeSH
- lidé MeSH
- obezita diagnostické zobrazování MeSH
- počítačová rentgenová tomografie * metody MeSH
- složení těla * MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Body Mass Index (BMI) has long been used as a standard measure for assessing population-level health risks, but its clinical adequacy has increasingly been called into question. This opinion paper challenges the clinical adequacy of BMI and presents AI-enhanced CT body composition analysis as a superior alternative for individualized risk assessment. While BMI serves population-level screening, its inability to differentiate between tissue types leads to critical misclassifications, particularly for sarcopenic obesity. AI-powered analysis of CT imaging at the L3 vertebra level provides precise quantification of skeletal muscle index, visceral, and subcutaneous adipose tissues -metrics that consistently outperform BMI in predicting outcomes across oncology, cardiology, and critical care. Recent technological advances have transformed this approach: the "opportunistic" use of existing clinical CT scans eliminates radiation concerns, while AI automation has reduced analysis time from 15-20 minutes to mere seconds. These innovations effectively address previous implementation barriers and enable practical clinical application with minimal resource demands, creating opportunities for targeted interventions and personalized care pathways.
Zobrazit více v PubMed
Pekař M, Pekařová A, Bužga M, Holéczy P, Soltes M. The risk of sarcopenia 24 months after bariatric surgery—assessment by dual energy X-ray absorptiometry (DEXA): a prospective study. Wideochir Inne Tech Maloinwazyjne. 2020 Dec;15(4):583–7. https://doi.org/10.5114/wiitm.2020.93463. PubMed PMC
Pekař M, Jiravský O, Novák J, Branny P, Balušík J, Daniš D, et al. Sarcopenia and adipose tissue evaluation by artificial intelligence predicts the overall survival after TAVI. Sci Rep. 2024 Apr 17;14(1):8842. https://doi.org/10.1038/s41598-024-59134-z. Erratum in: Sci Rep 2024 May 10;14(1):10749. https://doi.org/10.1038/s41598-024-61601-6. PubMed PMC
Khanna D, Peltzer C, Kahar P, Parmar MS. Body mass index (BMI): a screening tool analysis. Cureus. 2022;14(2):e22119. https://doi.org/10.7759/cureus.22119. PubMed PMC
Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, Batsis JA, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin Nutr. 2022 Apr;41(4):990–1000. https://doi.org/10.1016/j.clnu.2021.11.014. PubMed
Elhakim T, Trinh K, Mansur A, Bridge C, Daye D. Role of machine learning-based CT body composition in risk prediction and prognostication: current state and future directions. Diagnostics (Basel) 2023 Mar 3;13(5):968. https://doi.org/10.3390/diagnostics13050968. PubMed PMC
Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, et al. Association of muscle and adiposity measured by computed tomography with survival in patients with non-metastatic breast cancer. JAMA Oncol. 2018;4(6):798–804. https://doi.org/10.1001/jamaoncol.2018.0137. PubMed PMC
Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005 Aug 30;173(5):489–95. https://doi.org/10.1503/cmaj.050051. PubMed PMC
Paris MT, Tandon P, Heyland DK, Furberg H, Premji T, Low G, et al. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin Nutr. 2020 Oct;39(10):3049–55. https://doi.org/10.1016/j.clnu.2020.01.008. PubMed PMC
Tokuda T, Yamamoto M, Kagase A, Koyama Y, Otsuka T, Tada N, et al. Importance of combined assessment of skeletal muscle mass and density by computed tomography in predicting clinical outcomes after transcatheter aortic valve replacement. Int J Cardiovasc Imaging. 2020 May;36(5):929–38. https://doi.org/10.1007/s10554-020-01776-x. PubMed
Mok M, Allende R, Leipsic J, Altisent OA, Del Trigo M, Campelo-Parada F, et al. Prognostic value of fat mass and skeletal muscle mass determined by computed tomography in patients who underwent transcatheter aortic valve implantation. Am J Cardiol. 2016 Mar 1;117(5):828–33. https://doi.org/10.1016/j.amjcard.2015.12.015. PubMed
Heidari B, Al-Hijji MA, Moynagh MR, Takahashi N, Welle G, Eleid M, et al. Transcatheter aortic valve replacement outcomes in patients with sarcopaenia. EuroIntervention. 2019 Oct 20;15(8):671–7. https://doi.org/10.4244/EIJ-D-19-00110. PubMed
Saad RK, Ghezzawi M, Horanieh R, Khamis AM, Saunders KH, Batsis JA, et al. Abdominal visceral adipose tissue and all-cause mortality: a systematic review. Front Endocrinol (Lausanne) 2022 Aug 22;13:922931. https://doi.org/10.3389/fendo.2022.922931. PubMed PMC
Martin L, Tom M, Basualdo-Hammond C, Baracos VE, Gramlich L. Explanatory sequential mixed-methods approach to understand how registered dietitians implemented computed tomography skeletal muscle assessments in clinical practice. Nutr Clin Pract. 2024;39(2):409–25. https://doi.org/10.1002/ncp.11093. PubMed
Bazzocchi A, Gazzotti S, Santarpia L, Madeddu C, Petroni ML, Aparisi Gómez MP. Editorial: importance of body composition analysis in clinical nutrition. Front Nutr. 2023;9:1080636. https://doi.org/10.3389/fnut.2022.1080636. PubMed PMC
Bernardi L, Roesel R, Vagelli F, Majno-Hurst P, Cristaudi A. Imaging-based body composition profiling and outcomes after oncologic liver surgery: a systematic review. Front Oncol. 2022;12:1007771. https://doi.org/10.3389/fonc.2022.1007771. PubMed PMC
van Helsdingen CPM, van Wijlick JGA, de Vries R, Bouvy ND, Leeflang MMG, Hemke R, et al. Association of computed tomography–derived body composition and complications after colorectal cancer surgery: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2024;15(6):2234–69. https://doi.org/10.1002/jcsm.13580. PubMed PMC
Chandarana H, Pisuchpen N, Krieger R, Dane B, Mikheev A, Feng Y, et al. Association of body composition parameters measured on CT with risk of hospitalization in patients with COVID-19. Eur J Radiol. 2021;145:110031. https://doi.org/10.1016/j.ejrad.2021.110031. PubMed PMC
Chen SJ, Wang SL, Chen CS, Xie Y, Lin YY, Chen CR, et al. Metabolic score tool for personalized acute pancreatitis prognosis: a multicenter analysis. Biomol Biomed. 2024 Mar 19;24(4):1004–15. https://doi.org/10.17305/bb.2024.10222. PubMed PMC
Saunders MJ, Blevins JE, Broeder CE. Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Med Sci Sports Exerc. 1998 Jun;30(6):885–92. https://doi.org/10.1097/00005768-199806000-00017. PubMed
Ackermans LLGC, Rabou J, Basrai M, Schweinlin A, Bischoff SC, Cussenot O, et al. Screening, diagnosis and monitoring of sarcopenia: when to use which tool? Clin Nutr ESPEN. 2022 Apr;48:36–44. https://doi.org/10.1016/j.clnesp.2022.01.027. PubMed