Ultrastructural and Proteomic Analyses Revealed the Mechanism by Which Foliar Spraying of Se Nanoparticles Alleviated the Toxicity of Microplastics in Pistia stratiotes L

. 2025 Oct 30 ; 13 (11) : . [epub] 20251030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41304490

Grantová podpora
Guizhou Science Support [2025] General 095 2025 Guizhou Science and Technology Support Plan Project
Foundation of Guizhou science cooperation-ZK[2024] General 490 Guizhou Provincial Science and Technology Projects in 2024, China

The uptake and accumulation of nanoplastics by plants have emerged as a major research focus. Exogenous selenium nanoparticles (SeNPs) are widely used to mitigate the toxicity of abiotic stresses, such as nanoplastics (NPs) and polyethylene (PE-NPs) nanoplastics, and represent a feasible strategy to enhance plant performance. However, the molecular mechanisms by which SeNPs alleviate the phytotoxicity of microplastics and nanoplastics remain poorly defined. To address this gap, we used Pistia stratiotes L. (P. stratiotes) as a model and silicon dioxide nanoparticles (SiO2NPs) as a comparator, integrating physiological assays, ultrastructural observations, and proteomic analyses. We found that NP stress caused ultrastructural damage in root tips, exacerbated oxidative stress, and intensified membrane lipid peroxidation. SeNPs treatment significantly mitigated NP-induced oxidative injury and metabolic suppression. Compared to the NPs group, SeNPs increased T-AOC by 38.2% while reducing MDA and ·OH by 33.3% and 89.6%, respectively. Antioxidant enzymes were also elevated, with CAT and POD rising by 47.1% and 39.2%. SeNPs further enhanced the photosynthetic capacity and osmotic adjustment, reflected by increases in chlorophyll a, chlorophyll b, and soluble sugar by 49.7%, 43.8%, and 27.0%, respectively. In contrast, proline decreased by 17.4%, indicating stress alleviation rather than an osmotic compensation response. Overall, SeNPs outperformed SiO2NPs. These results indicate that SeNPs broadly strengthen anti-oxidative defenses and metabolic regulation in P. stratiotes, effectively alleviating NP-induced oxidative damage. Proteomics further showed that SeNPs specifically activated the MAPK signaling cascade, phenylpropanoid biosynthesis, and energy metabolic pathways, enhancing cell-wall lignification to improve the mechanical barrier and limiting NPs translocation via a phytochelatin-mediated vacuolar sequestration mechanism. SiO2NPs produced similar but weaker alleviative effects. Collectively, these findings elucidate the molecular basis by which SeNPs mitigate NPs' phytotoxicity and provide a theoretical foundation and practical outlook for using nanomaterials to enhance phytoremediation in aquatic systems.

Zobrazit více v PubMed

Geyer R., Jambeck J.R., Law K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017;3:e1700782. doi: 10.1126/sciadv.1700782. PubMed DOI PMC

Rillig M.C., Lehmann A. Microplastics in Terrestrial Ecosystems. Science. 2020;368:1430–1431. doi: 10.1126/science.abb5979. PubMed DOI PMC

Sun Y.Z., Ji J.H., Tao J.G., Yang Y.Y., Wu D., Han L.F., Li S., Wang J. Current Advances in Interactions between Microplastics and Dissolved Organic Matter in Aquatic and Terrestrial Ecosystems. TrAC Trends Anal. Chem. 2023;158:116882. doi: 10.1016/j.trac.2022.116882. DOI

He P., Chen L., Shao L., Zhang H., Lü F. Municipal Solid Waste (MSW) Landfill: A Source of Microplastics?—Evidence of Microplastics in Landfill Leachate. Water Res. 2019;159:38–45. doi: 10.1016/j.watres.2019.04.060. PubMed DOI

Carr S.A., Liu J., Tesoro A.G. Transport and Fate of Microplastic Particles in Wastewater Treatment Plants. Water Res. 2016;91:174–182. doi: 10.1016/j.watres.2016.01.002. PubMed DOI

Vivekanand A.C., Mohapatra S., Tyagi V.K. Microplastics in aquatic environment: Challenges and perspectives. Chemosphere. 2021;282:131151. doi: 10.1016/j.chemosphere.2021.131151. PubMed DOI

Shi R., Liu W., Lian Y., Wang Q., Zeb A., Tang J. Phytotoxicity of polystyrene, polyethylene, and polypropylene microplastics on tomato (Lycopersicon esculentum L.) J. Environ. Manag. 2022;317:115441. doi: 10.1016/j.jenvman.2022.115441. PubMed DOI

Lian J., Liu W., Sun Y., Men S., Wu J., Zeb A., Yang T., Ma L.Q., Zhou Q. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. J. Hazard. Mater. 2022;423:127241. doi: 10.1016/j.jhazmat.2021.127241. PubMed DOI

Zhuang H., Qin M., Liu B., Li R., Li Z. Combination of transcriptomics, metabolomics, and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon, and nitrogen metabolism in cucumber (Cucumis sativus L.) Plant Physiol. Biochem. 2023;205:108201. doi: 10.1016/j.plaphy.2023.108201. PubMed DOI

Sun X., Yuan X., Jia Y., Feng L., Zhu F., Dong S., Liu J., Kong X., Tian H., Duan J., et al. Differentially Charged Nanoplastics Demonstrate Distinct Accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 2020;15:755–760. doi: 10.1038/s41565-020-0707-4. PubMed DOI

Zhou C., Lu C., Mai L., Bao L., Liu L., Zeng E. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at the seedling stage. J. Hazard. Mater. 2021;401:123412. doi: 10.1016/j.jhazmat.2020.123412. PubMed DOI

Tang N., Li X., Gao X., Liu X., Xing W. The adsorption of arsenic on micro- and nano-plastics intensifies the toxic effect on submerged macrophytes. Environ. Pollut. 2022;311:119896. doi: 10.1016/j.envpol.2022.119896. PubMed DOI

Zhang S., Wang H., Liu M., Yu H., Peng J., Cao X., Wang C., Liu R., Kamali M., Qu J. Press Perturbations of Microplastics and Antibiotics on Freshwater Micro-Ecosystem: Case Study for the Ecological Restoration of Submerged Plants. Water Res. 2022;226:119248. doi: 10.1016/j.watres.2022.119248. PubMed DOI

Casella C., Ballaz S.J. Genotoxic and Neurotoxic Potential of Intracellular Nanoplastics: A Review. J. Appl. Toxicol. 2024;44:1657–1678. doi: 10.1002/jat.4598. PubMed DOI

Reich H.J., Hondal R.J. Why nature chose selenium. ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031. PubMed DOI

Tolu J., Bouchet S., Helfenstein J., Hausheer O., Chekifi S., Frossard E., Tamburini F., Chadwick O.A., Winkel L.H.E. Understanding soil selenium accumulation and bioavailability through size-resolved and elemental characterization of soil extracts. Nat. Commun. 2022;13:6974. doi: 10.1038/s41467-022-34731-6. PubMed DOI PMC

Cheng B., Wang C., Chen F., Yue L., Cao X., Liu X., Yao Y., Wang Z., Xing B. Multiomics understanding of improved quality in cherry radish (Raphanus sativus L. var. Radculus pers) after foliar application of selenium nanomaterials. Sci. Total Environ. 2022;824:153712. doi: 10.1016/j.scitotenv.2022.153712. PubMed DOI

Wang M., Wang Y.X., Ge C.H., Jing F., Wu S., Li H.B., Zhou D.M. Foliar selenium nanoparticles application promotes the growth of maize (Zea mays L.) seedlings by regulating carbon, nitrogen, and oxidative stress metabolism. Sci. Hortic. 2023;311:111816. doi: 10.1016/j.scienta.2022.111816. DOI

Zhu S., Sun S., Zhao W., Yang X., Mao H., Sheng L., Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC Plant Biol. 2024;24:360. doi: 10.1186/s12870-024-05076-7. PubMed DOI PMC

Schiavon M., Pilon-Smits E.A.H. The Fascinating Facets of Plant Selenium Accumulation—Biochemistry, Physiology, Evolution, and Ecology. New Phytol. 2017;213:1582–1596. doi: 10.1111/nph.14378. PubMed DOI

Jin J., Ghouri F., Xia W., Wang J., Shahid M.Q. Alleviation of Nanoplastic Stress in Rice: Evidence from Biochemical, Cytological, Physiological, and Transcriptome Analysis. J. Agric. Food Chem. 2025;73:16612–16626. doi: 10.1021/acs.jafc.5c03920. PubMed DOI

Zhao W., Chen Z.B., Yang X.Q., Sheng L.Y., Mao H., Zhu S.X. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J. Hazard. Mater. 2023;452:131214. doi: 10.1016/j.jhazmat.2023.131214. PubMed DOI

Chen H., Jin J., Hu S., Shen L., Zhang P., Li Z., Fang Z., Liu H. Metabolomics and proteomics reveal the toxicological mechanisms of florfenicol stress on wheat (Triticum aestivum L.) seedlings. J. Hazard. Mater. 2023;443:130264. doi: 10.1016/j.jhazmat.2022.130264. PubMed DOI

Li X., Hu N., Li Y., Tang H., Huang X., Yang T., Xu J. Integrated ultrastructural, physiological, transcriptomic, and metabolomic analysis uncovers the mechanisms by which nicotinamide alleviates cadmium toxicity in Pistia stratiotes L. J. Hazard. Mater. 2024;467:133702. doi: 10.1016/j.jhazmat.2024.133702. PubMed DOI

Zhao Y., Gong J., Shi R., Wu Z., Liu S., Chen S., Tao Y., Li S., Tian J. Application of proteomics in investigating the responses of plant to abiotic stresses. Planta. 2025;261:128. doi: 10.1007/s00425-025-04707-z. PubMed DOI

Yu Y., Wang Q., Wan Y., Huang Q., Li H. Transcriptome analysis reveals different mechanisms of selenite and selenate regulation of cadmium translocation in Brassica rapa. J. Hazard. Mater. 2023;452:131218. doi: 10.1016/j.jhazmat.2023.131218. PubMed DOI

Yuan W., Xu E.G., Li L., Zhou A., Peijnenburg W.J.G.M., Grossart H.-P., Liu W., Yang Y. Tracing and trapping micro- and nanoplastics: Untapped mitigation potential of aquatic plants? Water Res. 2023;242:120249. doi: 10.1016/j.watres.2023.120249. PubMed DOI

Zhu S., Sun S., Zhao W., Yang X., Chen Z., Mao H., Sheng L. Comprehensive physiology and proteomics analysis revealed the resistance mechanism of rice (Oryza sativa L.) to cadmium stress. Ecotoxicol. Environ. Saf. 2024;278:116413. doi: 10.1016/j.ecoenv.2024.116413. PubMed DOI

Eitzen L., Ruhl A.S., Jekel M. Particle Size and Pre-Treatment Effects on Polystyrene Microplastic Settlement in Water: Implications for Environmental Behavior and Ecotoxicological Tests. Water. 2020;12:3436. doi: 10.3390/w12123436. DOI

Sixi Z., Sun S., Zhao W., Yang X., Mao H., Sheng L. Comprehensive physiology and proteomics analysis revealed the molecular toxicological mechanism of Se stress on indica and japonica rice. Chemosphere. 2024;358:142190. doi: 10.1016/j.chemosphere.2024.142190. PubMed DOI

Zhang Y., Yang S., Zeng Y., Chen Y., Liu H., Yan X., Pu S. A new quantitative insight: Interaction of polyethylene microplastics with soil–microbiome–crop. J. Hazard. Mater. 2023;460:132302. doi: 10.1016/j.jhazmat.2023.132302. PubMed DOI

Xu L., Liu C., Ren Y., Huang Y., Liu Y., Feng S., Zhong X., Fu D., Zhou X., Wang J., et al. Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. ‘74/76′ revealed by multi-omics analysis. J. Hazard. Mater. 2024;470:134148. doi: 10.1016/j.jhazmat.2024.134148. PubMed DOI

Wang M., Li H., Dang F., Cheng B., Cheng C., Ge C., Zhou D. Common metabolism and transcription responses of low-cadmium-accumulative wheat (Triticum aestivum L.) cultivars sprayed with nano-selenium. Sci. Total. Environ. 2024;948:174936. doi: 10.1016/j.scitotenv.2024.174936. PubMed DOI

Guo X., Luo J., Du Y., Li J., Liu Y., Liang Y., Li T. Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii. Environ. Pollut. 2021;268:115665. doi: 10.1016/j.envpol.2020.115665. PubMed DOI

Wang J., Chen X., Chu S., You Y., Chi Y., Wang R., Yang X., Hayat K., Zhang D., Zhou P. Comparative cytology combined with transcriptomic and metabolomic analyses of Solanum nigrum L. in response to Cd toxicity. J. Hazard. Mater. 2022;423:127168. doi: 10.1016/j.jhazmat.2021.127168. PubMed DOI

Krämer U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010;61:517–534. doi: 10.1146/annurev-arplant-042809-112156. PubMed DOI

Yadav V., Arif N., Kovac J., Singh V.P., Tripathi D.K., Chauhan D.K., Vaculik M. Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiol. Biochem. 2021;159:100–112. doi: 10.1016/j.plaphy.2020.11.047. PubMed DOI

Zhu C.Q., Cao X.C., Zhu L.F., Hu W.J., Hu A.Y., Bai Z.G., Zhong C., Sun L.M., Liang Q.D., Huang J., et al. Ammonium mitigates Cd toxicity in rice (Oryza sativa) via putrescine-dependent alterations of cell wall composition. Plant Physiol. Biochem. 2018;132:189–201. doi: 10.1016/j.plaphy.2018.09.005. PubMed DOI

Di X., Jing R., Qin X., Wei Y., Liang X., Wang L., Xu Y., Sun Y., Huang Q. Transcriptome analysis reveals the molecular mechanism of different forms of selenium in reducing cadmium uptake and accumulation in wheat seedlings. Chemosphere. 2023;340:139888. doi: 10.1016/j.chemosphere.2023.139888. PubMed DOI

Agarwal S., Kumari S., Singh N., Khan S. Fate of plastic nanoparticles (PNPs) in soil and plant systems: Current status & research gaps. J. Hazard. Mater. Adv. 2023;11:100345. doi: 10.1016/j.hazadv.2023.100345. DOI

Tang N., Huang W., Li X., Gao X., Liu X., Wang L., Xing W. Drilling into the physiology, transcriptomics, and metabolomics to enhance insight on Vallisneria denseserrulata responses to nanoplastics and metalloid co-stress. J. Clean. Prod. 2024;448:141653. doi: 10.1016/j.jclepro.2024.141653. DOI

Wang M., Mu C., Lin X., Ma W., Wu H., Si D., Ge C., Cheng C., Zhao L., Li H., et al. Foliar Application of Nanoparticles Reduced Cadmium Content in Wheat (Triticum aestivum L.) Grains via Long-Distance “Leaf–Root–Microorganism” Regulation. Environ. Sci. Technol. 2024;58:6900–6912. doi: 10.1021/acs.est.3c10506. PubMed DOI

Wan Y., Wang K., Liu Z., Yu Y., Wang Q., Li H. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.) Environ. Sci. Pollut. Res. 2019;26:16220–16228. doi: 10.1007/s11356-019-04975-9. PubMed DOI

Cui J., Liu T., Li Y., Li F. Selenium Reduces Cadmium Uptake into Rice Suspension Cells by Regulating the Expression of Lignin Synthesis and Cadmium-Related Genes. Sci. Total. Environ. 2018;644:602–610. doi: 10.1016/j.scitotenv.2018.07.002. PubMed DOI

Baryla A., Laborde C., Montillet J.L., Triantaphylidès C., Chagvardieff P. Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper. Environ. Pollut. 2000;109:131–135. doi: 10.1016/S0269-7491(99)00232-8. PubMed DOI

Kang Y., Qin H., Wang G., Lei B., Yang X., Zhong M. Selenium nanoparticles mitigate cadmium stress in tomato through enhanced accumulation and transport of sulfate/selenite and polyamines. J. Agric. Food Chem. 2024;72:1473–1486. doi: 10.1021/acs.jafc.3c07504. PubMed DOI PMC

Wang J., Zhang T., Gao J., Li B., Han L., Ge W., Wang Z. The accumulation of cadmium and lead in wheat grains is primarily determined by the soil-reducible cadmium level during wheat tillering. Chemosphere. 2024;361:142509. doi: 10.1016/j.chemosphere.2024.142509. PubMed DOI

Handa N., Kohli S.K., Sharma A., Thukral A.K., Bhardwaj R., Abd E.F., Alqarawi A.A., Ahmad P. Dynamics of antioxidative defence expression, photosynthetic attributes, and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ. Exp. Bot. 2019;161:180–192. doi: 10.1016/j.envexpbot.2018.11.009. DOI

Taylor S.S., Kornev A.P. Protein Kinases: Evolution of Dynamic Regulatory Proteins. Trends Biochem. Sci. 2011;36:65–77. doi: 10.1016/j.tibs.2010.09.006. PubMed DOI PMC

Brigelius-Flohé R., Flohé L. Selenium and Redox Signaling. Arch. Biochem. Biophys. 2017;617:48–59. doi: 10.1016/j.abb.2016.08.003. PubMed DOI

Lin L., Wu J., Jiang M., Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int. J. Mol. Sci. 2021;22:1543. doi: 10.3390/ijms22041543. PubMed DOI PMC

Feng R., Wei C., Tu S. The Roles of Selenium in Protecting Plants against Abiotic Stresses. Environ. Exp. Bot. 2013;87:58–68. doi: 10.1016/j.envexpbot.2012.09.002. DOI

Galant A., Preuss M.L., Cameron J.C., Jez J.M. Plant glutathione biosynthesis: Diversity in biochemical regulation and reaction products. Front. Plant Sci. 2011;2:45. doi: 10.3389/fpls.2011.00045. PubMed DOI PMC

Song W.-Y., Park J., Mendoza-Cózatl D.G., Suter-Grotemeyer M., Shim D., Hörtensteiner S., Geisler M., Weder B., Rea P.A., Rentsch D., et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc. Natl. Acad. Sci. USA. 2010;107:21187–21192. doi: 10.1073/pnas.1013964107. PubMed DOI PMC

Abdalla M.A., Lentz C., Mühling K.H. Crosstalk between selenium and sulfur is associated with changes in primary metabolism in lettuce plants grown under Se and S enrichment. Plants. 2022;11:927. doi: 10.3390/plants11070927. PubMed DOI PMC

Kang L., Wu Y., Jia Y., Chen Z., Kang D., Zhang L., Pan C. Nano-selenium enhances melon resistance to Podosphaera xanthii by enhancing the antioxidant capacity and promoting alterations in the polyamine, phenylpropanoid and hormone signaling pathways. J. Nanobiotechnol. 2023;21:377. doi: 10.1186/s12951-023-02148-y. PubMed DOI PMC

Becker Y., Eaton C.J., Brasell E., May K.J., Becker M., Hassing B., Cartwright G.M., Reinhold L., Scott B. The Fungal Cell-Wall Integrity MAPK Cascade Is Crucial for Hyphal Network Formation and Maintenance of Restrictive Growth of Epichloë festucae in Symbiosis with Lolium perenne. Mol. Plant-Microbe Interact. 2015;28:69–85. doi: 10.1094/MPMI-06-14-0183-R. PubMed DOI

Maidment J.H.R., Franceschetti M., Maqbool A., Saitoh H., Jantasuriyarat C., Kamoun S., Terauchi R., Banfield M.J. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. J. Biol. Chem. 2021;296:100371. doi: 10.1016/j.jbc.2021.100371. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...