Susceptibility to metazoan parasite infection in amphimictic diploid and induced triploid tench (Tinca tinca L., 1758): the role of parasites in fish aquaculture

. 2025 ; 12 () : 1686708. [epub] 20251113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41321577

INTRODUCTION: Artificial induction of polyploidy in fishes is a widely used method in commercial aquaculture due to its economic potential and its association with changes in cell morphology and physiology that can significantly affect individual fitness. Using tench (Tinca tinca, Cyprinidae), a fish species extensively farmed in European aquaculture, we investigated differences in parasite susceptibility between triploid and diploid fish and analyzed the potential effect of metazoan parasite infection on fish condition, physiology, and health status. METHODS: Amphimictic diploid and induced triploid specimens collected from a breeding pond were examined during four sampling events over the course of one year, focusing on the presence of metazoan parasites and selected fish condition, physiological, and immune parameters. RESULTS: Diploids generally exhibited a higher overall parasite load than triploids throughout the year; however, this difference was statistically significant only in summer, coinciding with the extremely high abundance of the tench-specific Asymphylodora tincae. Host ploidy appeared to influence susceptibility or resistance to particular parasite species. While amphimictic diploid tench showed higher susceptibility to adult trematode A. tincae, triploid tench were more parasitized by the larval cestode Valipora campylancristrota. No difference in abundance of monogenean Gyrodactylus tincae was observed between amphimictic diploid and induced triploid specimens. Other parasites were relatively rare in both groups. Although no clear association between parasite infection and the measured physiological or immune parameters was found, significant negative correlations were more frequently observed in diploid fish than in triploids. DISCUSSION: The differences in parasite infection between triploid and diploid tench and the associations between parasite load and condition- and health-related traits may be explained by (1) presumed higher heterozygosity in triploids, (2) physiological differences related to cell size and number of cells in key organs and tissues, (3) variation in feeding performance, and (4) host-parasite coevolutionary interactions.

Zobrazit více v PubMed

Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. (2000) 34:401–37. doi: 10.1146/annurev.genet.34.1.401, PMID: PubMed DOI

Benfey TJ. The physiology and behaviour of triploid fishes. Rev Fish Sci. (1999) 7:39–67. doi: 10.1080/10641269991319162 DOI

King KC, Seppälä O, Neiman M. Is more better? Polyploidy and parasite resistance. Biol Lett. (2012) 8:598–600. doi: 10.1098/rsbl.2011.1152, PMID: PubMed DOI PMC

Leggatt RA, Iwama GK. Occurrence of polyploidy in the fishes. Rev Fish Biol Fish. (2003) 13:237–46. doi: 10.1023/B:RFBF.0000033049.00668.fe DOI

Cunha C, Doadrio I, Abrantes J, Coelho MM. The evolutionary history of the allopolyploid PubMed DOI PMC

Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, PubMed DOI PMC

Schreier AD, May B, Gille DA. Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon, DOI

Dunham R. Aquaculture and fisheries biotechnology: Genetic approaches. 1st ed CABI; (2011).

Manan H, Noor Hidayati AB, Lyana NA, Amin-Safwan A, Ma H, Kasan NA, et al. A review of gynogenesis manipulation in aquatic animals. Aquac Fish. (2022) 7:1–6. doi: 10.1016/j.aaf.2020.11.006 DOI

Piferrer F, Beaumont A, Falguière J-C, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. (2009) 293:125–56. doi: 10.1016/j.aquaculture.2009.04.036 DOI

Flajšhans M, Gela D, Kocour M, Buchtová H, Rodina M, Pšenička M, et al. A review on the potential of triploid tench for aquaculture. Rev Fish Biol Fish. (2010) 20:317–29. doi: 10.1007/s11160-009-9144-z DOI

Buchtová H, Svobodová Z, Flajšhans M, Vorlová L. Analysis of growth, weight and relevant indices of diploid and triploid population of tench DOI

Buchtová H, Smutná M, Vorlová L, Svobodová Z, Flajšhans M. Fatty acid composition of diploid and triploid populations of tench ( DOI

Buchtová H, Smutná M, Vorlová L, Svobodová Z, Flajšhans M. Amino acid composition of muscle proteins of diploid and triploid tench ( DOI

Tiwary BK, Kirubagaran R, Ray AK. The biology of triploid fish. Rev Fish Biol Fish. (2004) 14:391–402. doi: 10.1007/s11160-004-8361-8 DOI

Tolarová S, Dávidová M, Šimková A, Flajšhans M, Hyršl P. The seasonal changes of innate immunity of tench, DOI

Svobodová Z, Kolářová J, Flajšhans M. The first findings of the differences in complete blood count between diploid and triploid tench, DOI

Ballarin L, Dall’Oro M, Bertotto D, Libertini A, Francescon A, Barbaro A. Haematological parameters in PubMed DOI

Peruzzi S, Varsamos S, Chatain B, Fauvel C, Menu B, Falguière JC, et al. Haematological and physiological characteristics of diploid and triploid sea bass, DOI

Vetešník L, Halačka K, Šimková A. The effect of ploidy and temporal changes in the biochemical profile of gibel carp ( PubMed DOI

Šimková A, Košař M, Vetešník L, Vyskočilová M. MHC genes and parasitism in PubMed DOI PMC

O’Keffe RA, Benfey TJ. The feeding response of diploid and triploid Atlantic salmon and brook trout. J Fish Biol. (1997) 51:989–97. doi: 10.1111/j.1095-8649.1997.tb01537.x DOI

Poulin R. Evolutionary ecology of parasites: From individuals to communities. London: Chapman & Hall; (1998).

Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B. (2010) 277:979–88. doi: 10.1098/rspb.2009.2084, PMID: PubMed DOI PMC

Osnas EE, Lively CM. Host ploidy, parasitism and immune defence in a coevolutionary snail-trematode system. J Evol Biol. (2006) 19:42–8. doi: 10.1111/j.1420-9101.2005.00994.x, PMID: PubMed DOI

Hakoyama H, Nishimura T, Matsubara N, Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of DOI

Langston AL, Johnstone R, Ellis AE. The kinetics of the hypoferraemic response and changes in levels of alternative complement activity in diploid and triploid Atlantic salmon, following injection of lipopolyssacharide. Fish Shellfish Immunol. (2001) 11:333–45. doi: 10.1006/fsim.2000.0319 PubMed DOI

Fuad MMH, Tichopád T, Ondračková M, Civánová Křížová K, Seifertová M, Voříšková K, et al. Trematode PubMed DOI PMC

Nuismer SL, Thompson JN. Plant polyploidy and non-uniform effects on insect herbivores. Proc R Soc Lond B. (2001) 268:1937–40. doi: 10.1098/rspb.2001.1760, PMID: PubMed DOI PMC

Flajšhans M. Reproduction sterility caused by spontaneous triploidy in tench (

Flajšhans M, Kvasnička P, Ráb P. Genetic studies in tench ( DOI

Svobodová Z, Kolářová J. A review of the diseases and contaminant related mortalities of tench ( DOI

Piačková V, Flajšhans M. Long-term examination of health conditions in monoculture of communally tested amphimictic diploid, diploid gynogenic and triploid tench, DOI

Flajšhans M, Linhart O, Kvasnička P. Genetic studies of tench ( DOI

Pravda D, Svobodová Z. Haematology of fishes In: Doubek J, Bouda J, Doubek M, Fürll M, Knotková Z, Pejřilová S, et al., editors. Veterinary Haematology. Brno: Noviko; (2003). 381–97.

Rohlenová K, Morand S, Hyršl P, Tolarová S, Flajšhans M, Šimková A. Are fish immune systems really affected by parasites? An immunoecological study of common carp ( PubMed DOI PMC

Vindelov LL, Christensen IJ. Review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flow cytometric DNA analysis. Cytometry. (1990) 11:753–70. doi: 10.1002/cyto.990110702 PubMed DOI

Ergens R, Lom J. Causative agents of parasitic fish diseases. Prague: Academia; (1970).

Malmberg G. The excretory systems and the marginal hooks as a basis for the systematics of

Georgiev B, Biserkov V, Genov T.

Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology onits own terms: Margolis et al. revisited. J Parasitol. (1997) 83:575–83. doi: 10.2307/3284227 PubMed DOI

Gusev AV. Monogenea In: Bauer ON, editor. Key to the parasites of the freshwater fish fauna of the USSR, vol. 2. Leningrad: Nauka; (1985)

Našincová V, Scholz T. The life cycle of PubMed DOI

Moravec F. Checklist of the metazoan parasites of fishes of the Czech Republic and the Slovak Republic. Prague: Academie; (2001).

Svobodová Z, Pravda D, Paláčková J. Universal methods of haematological investigations in fish. Edice Metodik: VÚRH Vodňany, Czech Republic; (1986).

Hrubec TC, Smith SA. Hematology of fish In: Feldman BV, Zinkl JG, Jain NC, editors. Schalm's veterinary hematology. 5th ed. Ames, Iowa: Blackwell Publishing; (2000). 1120–5.

Buchtíková S, Šimková A, Rohlenová K, Flajšhans M, Lojek A, Lilius E-M, et al. The seasonal changes in innate immunity of the common carp ( DOI

Poisot T, Šimková A, Hyršl P, Morand S. Interactions between immunocompetence, somatic condition and parasitism in the chub PubMed DOI

Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. New York: Springer; (2009).

Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. (2008) 50:346–63. doi: 10.1002/bimj.200810425, PMID: PubMed DOI

R Core Team . R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: (2021).

Venables WN, Ripley BD. Modern applied statistics with S. Fourth edition. New York: Springer; (2002).

Lenth RV. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.2. (2022). Available online at: https://CRAN.R-project.org/package=emmeans.

Oswald BP, Nuismer SL. Neopolyploidy and pathogen resistance. Proc R Soc B. (2007) 274:2393–7. doi: 10.1098/rspb.2007.0692, PMID: PubMed DOI PMC

Ozerov MY, Lumme J, Päkk P, Rintamäki P, Ziętara MS, Barskaya Y, et al. High PubMed DOI

Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell. (2021) 33:11–26. doi: 10.1093/plcell/koaa015, PMID: PubMed DOI PMC

Petkevičiūtė R, Stunžėnas V, Stanevičiūtė G. Diversity of European lissorchiid trematodes from fish and snail hosts with comments on the validity of the genus PubMed DOI

Scholz T, Bray RA, Kuchta R, Řepová R. Larvae of gryporhynchid cestodes (Cyclophyllidea) from fish: a review. Folia Parasitol. (2004) 51:131–52. doi: 10.14411/fp.2004.018, PMID: PubMed DOI

Nuismer SL, Otto SP. Host–parasite interactions and the evolution of ploidy. Proc Natl Acad Sci USA. (2004) 101:11036–9. doi: 10.1073/pnas.0403151101 PubMed DOI PMC

Flajšhans M, Kašpar V, Prchal M, Musatova I, Prášková E, Kašpar J, et al. The assessment of the effects of genomic heterozygosity and sterility on the performance of triploid brook trout DOI

Leung K, van de Zande L, Beukeboom LW. Effects of polyploidization and their evolutionary implications are revealed by heritable polyploidy in the haplodiploid wasp PubMed DOI PMC

Goo IB, Im JH, Gil HW, Lim SG, Park IS. Comparison of cell and nuclear size difference between diploid and induced triploid in marine medaka, PubMed DOI PMC

Carter CG, McCarthy ID, Houlihan DF, Johnstone R, Walsingham MV, Mitchell AI. Food consumption, feeding behaviour, and growth of triploid and diploid Atlantic salmon, DOI

Johnsen BO, Jensen AJ. The DOI

Bakke TA, Cable J, Harris PD. The biology of gyrodactylid monogeneans: the "Russian-doll killers". Adv Parasitol. (2007) 64:161. doi: 10.1016/S0065-308X(06)64003-7 PubMed DOI

Buchmann K. “

Levy-Pereira N, Carriero MM, Yasui GS, Meira CM, de Moro Sousa RL, Maia AAM, et al. Effects of triploid induction on innate immunity and hematology in PubMed DOI

Rożyński R, Dobosz S, Rożyński M, Ocalewicz K. The effect of triploidy on gonadal development, hematology and biochemistry in the European Grayling ( PubMed DOI PMC

Svobodová Z, Flajšhans M, Kolářová J, Modrá H, Svoboda M, Vajcová V. Leukocyte profile of diploid and triploid tench, DOI

Linhart O, Rodina M, Flajšhans M, Mavrodiev N, Nebesářová J, Gela D, et al. Studies on sperm of diploid and triploid tench ( DOI

Benfey TJ, Biron M. Acute stress response in triploid rainbow trout ( DOI

Budiño B, Cal RM, Piazzon CM, Jesús L. The activity of several components of the innate immune system in diploid and triploid turbot. Comp Biochem Physiol A Mol Integr Physiol. (2006) 145:108–13. doi: 10.1016/j.cbpa.2006.05.007 PubMed DOI

Chalmers L, Thompson KD, Taylor JF, Black S, Migaud H, North B, et al. A comparison of the response of diploid and triploid Atlantic salmon ( PubMed DOI PMC

Maxime V. The physiology of triploid fish: current knowledge and comparison with tidploid fish. Fish Fisher. (2008) 9:67–78. doi: 10.1111/j.1467-2979.2007.00269.x DOI

Jablonska O, Duda S, Gajowniczek S, Nitkiewicz A, Fopp-Bayat D. Toll-like receptor type 2 and 13 gene expression and immune cell profiles in diploid and triploid sterlets ( PubMed DOI PMC

Chalmers L, Taylor JF, Roy W, Preston AC, Migaud H, Adams A. A comparison of disease susceptibility and innate immune response between diploid and triploid Atlantic salmon ( PubMed DOI PMC

Pakosta T, Vetešník L, Janáč M, Hyršl P, Šimková A. Vigour-related traits of gibel carp ( DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...