Susceptibility to metazoan parasite infection in amphimictic diploid and induced triploid tench (Tinca tinca L., 1758): the role of parasites in fish aquaculture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41321577
PubMed Central
PMC12661311
DOI
10.3389/fvets.2025.1686708
Knihovny.cz E-zdroje
- Klíčová slova
- fish condition, immunity, metazoan parasites, physiology, ploidy, tench,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Artificial induction of polyploidy in fishes is a widely used method in commercial aquaculture due to its economic potential and its association with changes in cell morphology and physiology that can significantly affect individual fitness. Using tench (Tinca tinca, Cyprinidae), a fish species extensively farmed in European aquaculture, we investigated differences in parasite susceptibility between triploid and diploid fish and analyzed the potential effect of metazoan parasite infection on fish condition, physiology, and health status. METHODS: Amphimictic diploid and induced triploid specimens collected from a breeding pond were examined during four sampling events over the course of one year, focusing on the presence of metazoan parasites and selected fish condition, physiological, and immune parameters. RESULTS: Diploids generally exhibited a higher overall parasite load than triploids throughout the year; however, this difference was statistically significant only in summer, coinciding with the extremely high abundance of the tench-specific Asymphylodora tincae. Host ploidy appeared to influence susceptibility or resistance to particular parasite species. While amphimictic diploid tench showed higher susceptibility to adult trematode A. tincae, triploid tench were more parasitized by the larval cestode Valipora campylancristrota. No difference in abundance of monogenean Gyrodactylus tincae was observed between amphimictic diploid and induced triploid specimens. Other parasites were relatively rare in both groups. Although no clear association between parasite infection and the measured physiological or immune parameters was found, significant negative correlations were more frequently observed in diploid fish than in triploids. DISCUSSION: The differences in parasite infection between triploid and diploid tench and the associations between parasite load and condition- and health-related traits may be explained by (1) presumed higher heterozygosity in triploids, (2) physiological differences related to cell size and number of cells in key organs and tissues, (3) variation in feeding performance, and (4) host-parasite coevolutionary interactions.
Faculty of Science Department of Botany and Zoology Masaryk University Brno Czechia
Faculty of Science Department of Experimental Biology Masaryk University Brno Czechia
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. (2000) 34:401–37. doi: 10.1146/annurev.genet.34.1.401, PMID: PubMed DOI
Benfey TJ. The physiology and behaviour of triploid fishes. Rev Fish Sci. (1999) 7:39–67. doi: 10.1080/10641269991319162 DOI
King KC, Seppälä O, Neiman M. Is more better? Polyploidy and parasite resistance. Biol Lett. (2012) 8:598–600. doi: 10.1098/rsbl.2011.1152, PMID: PubMed DOI PMC
Leggatt RA, Iwama GK. Occurrence of polyploidy in the fishes. Rev Fish Biol Fish. (2003) 13:237–46. doi: 10.1023/B:RFBF.0000033049.00668.fe DOI
Cunha C, Doadrio I, Abrantes J, Coelho MM. The evolutionary history of the allopolyploid PubMed DOI PMC
Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, PubMed DOI PMC
Schreier AD, May B, Gille DA. Incidence of spontaneous autopolyploidy in cultured populations of white sturgeon, DOI
Dunham R. Aquaculture and fisheries biotechnology: Genetic approaches. 1st ed CABI; (2011).
Manan H, Noor Hidayati AB, Lyana NA, Amin-Safwan A, Ma H, Kasan NA, et al. A review of gynogenesis manipulation in aquatic animals. Aquac Fish. (2022) 7:1–6. doi: 10.1016/j.aaf.2020.11.006 DOI
Piferrer F, Beaumont A, Falguière J-C, Flajšhans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture. (2009) 293:125–56. doi: 10.1016/j.aquaculture.2009.04.036 DOI
Flajšhans M, Gela D, Kocour M, Buchtová H, Rodina M, Pšenička M, et al. A review on the potential of triploid tench for aquaculture. Rev Fish Biol Fish. (2010) 20:317–29. doi: 10.1007/s11160-009-9144-z DOI
Buchtová H, Svobodová Z, Flajšhans M, Vorlová L. Analysis of growth, weight and relevant indices of diploid and triploid population of tench DOI
Buchtová H, Smutná M, Vorlová L, Svobodová Z, Flajšhans M. Fatty acid composition of diploid and triploid populations of tench ( DOI
Buchtová H, Smutná M, Vorlová L, Svobodová Z, Flajšhans M. Amino acid composition of muscle proteins of diploid and triploid tench ( DOI
Tiwary BK, Kirubagaran R, Ray AK. The biology of triploid fish. Rev Fish Biol Fish. (2004) 14:391–402. doi: 10.1007/s11160-004-8361-8 DOI
Tolarová S, Dávidová M, Šimková A, Flajšhans M, Hyršl P. The seasonal changes of innate immunity of tench, DOI
Svobodová Z, Kolářová J, Flajšhans M. The first findings of the differences in complete blood count between diploid and triploid tench, DOI
Ballarin L, Dall’Oro M, Bertotto D, Libertini A, Francescon A, Barbaro A. Haematological parameters in PubMed DOI
Peruzzi S, Varsamos S, Chatain B, Fauvel C, Menu B, Falguière JC, et al. Haematological and physiological characteristics of diploid and triploid sea bass, DOI
Vetešník L, Halačka K, Šimková A. The effect of ploidy and temporal changes in the biochemical profile of gibel carp ( PubMed DOI
Šimková A, Košař M, Vetešník L, Vyskočilová M. MHC genes and parasitism in PubMed DOI PMC
O’Keffe RA, Benfey TJ. The feeding response of diploid and triploid Atlantic salmon and brook trout. J Fish Biol. (1997) 51:989–97. doi: 10.1111/j.1095-8649.1997.tb01537.x DOI
Poulin R. Evolutionary ecology of parasites: From individuals to communities. London: Chapman & Hall; (1998).
Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B. (2010) 277:979–88. doi: 10.1098/rspb.2009.2084, PMID: PubMed DOI PMC
Osnas EE, Lively CM. Host ploidy, parasitism and immune defence in a coevolutionary snail-trematode system. J Evol Biol. (2006) 19:42–8. doi: 10.1111/j.1420-9101.2005.00994.x, PMID: PubMed DOI
Hakoyama H, Nishimura T, Matsubara N, Iguchi K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of DOI
Langston AL, Johnstone R, Ellis AE. The kinetics of the hypoferraemic response and changes in levels of alternative complement activity in diploid and triploid Atlantic salmon, following injection of lipopolyssacharide. Fish Shellfish Immunol. (2001) 11:333–45. doi: 10.1006/fsim.2000.0319 PubMed DOI
Fuad MMH, Tichopád T, Ondračková M, Civánová Křížová K, Seifertová M, Voříšková K, et al. Trematode PubMed DOI PMC
Nuismer SL, Thompson JN. Plant polyploidy and non-uniform effects on insect herbivores. Proc R Soc Lond B. (2001) 268:1937–40. doi: 10.1098/rspb.2001.1760, PMID: PubMed DOI PMC
Flajšhans M. Reproduction sterility caused by spontaneous triploidy in tench (
Flajšhans M, Kvasnička P, Ráb P. Genetic studies in tench ( DOI
Svobodová Z, Kolářová J. A review of the diseases and contaminant related mortalities of tench ( DOI
Piačková V, Flajšhans M. Long-term examination of health conditions in monoculture of communally tested amphimictic diploid, diploid gynogenic and triploid tench, DOI
Flajšhans M, Linhart O, Kvasnička P. Genetic studies of tench ( DOI
Pravda D, Svobodová Z. Haematology of fishes In: Doubek J, Bouda J, Doubek M, Fürll M, Knotková Z, Pejřilová S, et al., editors. Veterinary Haematology. Brno: Noviko; (2003). 381–97.
Rohlenová K, Morand S, Hyršl P, Tolarová S, Flajšhans M, Šimková A. Are fish immune systems really affected by parasites? An immunoecological study of common carp ( PubMed DOI PMC
Vindelov LL, Christensen IJ. Review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flow cytometric DNA analysis. Cytometry. (1990) 11:753–70. doi: 10.1002/cyto.990110702 PubMed DOI
Ergens R, Lom J. Causative agents of parasitic fish diseases. Prague: Academia; (1970).
Malmberg G. The excretory systems and the marginal hooks as a basis for the systematics of
Georgiev B, Biserkov V, Genov T.
Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology onits own terms: Margolis et al. revisited. J Parasitol. (1997) 83:575–83. doi: 10.2307/3284227 PubMed DOI
Gusev AV. Monogenea In: Bauer ON, editor. Key to the parasites of the freshwater fish fauna of the USSR, vol. 2. Leningrad: Nauka; (1985)
Našincová V, Scholz T. The life cycle of PubMed DOI
Moravec F. Checklist of the metazoan parasites of fishes of the Czech Republic and the Slovak Republic. Prague: Academie; (2001).
Svobodová Z, Pravda D, Paláčková J. Universal methods of haematological investigations in fish. Edice Metodik: VÚRH Vodňany, Czech Republic; (1986).
Hrubec TC, Smith SA. Hematology of fish In: Feldman BV, Zinkl JG, Jain NC, editors. Schalm's veterinary hematology. 5th ed. Ames, Iowa: Blackwell Publishing; (2000). 1120–5.
Buchtíková S, Šimková A, Rohlenová K, Flajšhans M, Lojek A, Lilius E-M, et al. The seasonal changes in innate immunity of the common carp ( DOI
Poisot T, Šimková A, Hyršl P, Morand S. Interactions between immunocompetence, somatic condition and parasitism in the chub PubMed DOI
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. New York: Springer; (2009).
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. (2008) 50:346–63. doi: 10.1002/bimj.200810425, PMID: PubMed DOI
R Core Team . R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: (2021).
Venables WN, Ripley BD. Modern applied statistics with S. Fourth edition. New York: Springer; (2002).
Lenth RV. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.2. (2022). Available online at: https://CRAN.R-project.org/package=emmeans.
Oswald BP, Nuismer SL. Neopolyploidy and pathogen resistance. Proc R Soc B. (2007) 274:2393–7. doi: 10.1098/rspb.2007.0692, PMID: PubMed DOI PMC
Ozerov MY, Lumme J, Päkk P, Rintamäki P, Ziętara MS, Barskaya Y, et al. High PubMed DOI
Van de Peer Y, Ashman T-L, Soltis PS, Soltis DE. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell. (2021) 33:11–26. doi: 10.1093/plcell/koaa015, PMID: PubMed DOI PMC
Petkevičiūtė R, Stunžėnas V, Stanevičiūtė G. Diversity of European lissorchiid trematodes from fish and snail hosts with comments on the validity of the genus PubMed DOI
Scholz T, Bray RA, Kuchta R, Řepová R. Larvae of gryporhynchid cestodes (Cyclophyllidea) from fish: a review. Folia Parasitol. (2004) 51:131–52. doi: 10.14411/fp.2004.018, PMID: PubMed DOI
Nuismer SL, Otto SP. Host–parasite interactions and the evolution of ploidy. Proc Natl Acad Sci USA. (2004) 101:11036–9. doi: 10.1073/pnas.0403151101 PubMed DOI PMC
Flajšhans M, Kašpar V, Prchal M, Musatova I, Prášková E, Kašpar J, et al. The assessment of the effects of genomic heterozygosity and sterility on the performance of triploid brook trout DOI
Leung K, van de Zande L, Beukeboom LW. Effects of polyploidization and their evolutionary implications are revealed by heritable polyploidy in the haplodiploid wasp PubMed DOI PMC
Goo IB, Im JH, Gil HW, Lim SG, Park IS. Comparison of cell and nuclear size difference between diploid and induced triploid in marine medaka, PubMed DOI PMC
Carter CG, McCarthy ID, Houlihan DF, Johnstone R, Walsingham MV, Mitchell AI. Food consumption, feeding behaviour, and growth of triploid and diploid Atlantic salmon, DOI
Johnsen BO, Jensen AJ. The DOI
Bakke TA, Cable J, Harris PD. The biology of gyrodactylid monogeneans: the "Russian-doll killers". Adv Parasitol. (2007) 64:161. doi: 10.1016/S0065-308X(06)64003-7 PubMed DOI
Buchmann K. “
Levy-Pereira N, Carriero MM, Yasui GS, Meira CM, de Moro Sousa RL, Maia AAM, et al. Effects of triploid induction on innate immunity and hematology in PubMed DOI
Rożyński R, Dobosz S, Rożyński M, Ocalewicz K. The effect of triploidy on gonadal development, hematology and biochemistry in the European Grayling ( PubMed DOI PMC
Svobodová Z, Flajšhans M, Kolářová J, Modrá H, Svoboda M, Vajcová V. Leukocyte profile of diploid and triploid tench, DOI
Linhart O, Rodina M, Flajšhans M, Mavrodiev N, Nebesářová J, Gela D, et al. Studies on sperm of diploid and triploid tench ( DOI
Benfey TJ, Biron M. Acute stress response in triploid rainbow trout ( DOI
Budiño B, Cal RM, Piazzon CM, Jesús L. The activity of several components of the innate immune system in diploid and triploid turbot. Comp Biochem Physiol A Mol Integr Physiol. (2006) 145:108–13. doi: 10.1016/j.cbpa.2006.05.007 PubMed DOI
Chalmers L, Thompson KD, Taylor JF, Black S, Migaud H, North B, et al. A comparison of the response of diploid and triploid Atlantic salmon ( PubMed DOI PMC
Maxime V. The physiology of triploid fish: current knowledge and comparison with tidploid fish. Fish Fisher. (2008) 9:67–78. doi: 10.1111/j.1467-2979.2007.00269.x DOI
Jablonska O, Duda S, Gajowniczek S, Nitkiewicz A, Fopp-Bayat D. Toll-like receptor type 2 and 13 gene expression and immune cell profiles in diploid and triploid sterlets ( PubMed DOI PMC
Chalmers L, Taylor JF, Roy W, Preston AC, Migaud H, Adams A. A comparison of disease susceptibility and innate immune response between diploid and triploid Atlantic salmon ( PubMed DOI PMC
Pakosta T, Vetešník L, Janáč M, Hyršl P, Šimková A. Vigour-related traits of gibel carp ( DOI