Polymeric micelles in advanced photodynamic therapy: Design, delivery and translational prospects

. 2025 Dec ; 10 () : 100439. [epub] 20251106

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41323842
Odkazy

PubMed 41323842
PubMed Central PMC12657331
DOI 10.1016/j.ijpx.2025.100439
PII: S2590-1567(25)00124-0
Knihovny.cz E-zdroje

Photodynamic therapy (PDT) is widely studied and complex method useful as a minimally invasive cancer treatment strategy, relying on photosensitizers (PSs), light, and oxygen to induce cytotoxicity. Indeed, the controlled delivery of conventional PSs is the key factor in achieving effective treatment outcome. Among many drug delivery systems, the polymeric micelles represent a promising platform to address the solubility, stability, and delivery challenges associated with PSs. The design of micelles, constructed from hydrophilic and hydrophobic polymeric blocks in diverse structures, enables precise tailoring of carrier properties to optimize PS delivery. This paper focuses on the potential applications and limitations of polymer micelles for the controlled delivery of PSs in the field anticancer therapy. Various methods of synthesis, incorporation of PSs as well as their release and activation are described in detail. The effect of micellar system employment on circulation time, off-target effects, and both passive and active targeting are thoroughly depicted. Despite the clinical promise, the limitations of PDT including shallow tissue penetration and restricted applicability to superficial or endoscope-accessible tumors are discussed, as well as the future prospects consisting in red-shifted or two-photon absorption systems.

Zobrazit více v PubMed

Abels C. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT) Photochem. Photobiol. Sci. 2004;3:765–771. doi: 10.1039/B314241H. PubMed DOI

Ahmetali E., Galstyan A., Süer N.C., Eren T., Şener M.K. Poly(oxanorbornene)s bearing triphenylphosphonium and PEGylated zinc(ii) phthalocyanine with boosted photobiological activity and singlet oxygen generation. Polym. Chem. 2023;14:259–267. doi: 10.1039/D2PY01297A. DOI

Ai X., Zhong L., Niu H., He Z. Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J. Pharm. Sci. 2014;9:244–250. doi: 10.1016/J.AJPS.2014.06.006. DOI

Akimoto J., Nakayama M., Sakai K., Okano T. Temperature-Induced Intracellular Uptake of Thermoresponsive Polymeric Micelles. Biomacromolecules. 2009;10:1331–1336. doi: 10.1021/bm900032r. PubMed DOI

Akimoto J., Nakayama M., Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J. Control. Release. 2014;193:2–8. doi: 10.1016/j.jconrel.2014.06.062. PubMed DOI

Algorri J.F., Ochoa M., Roldán-Varona P., Rodríguez-Cobo L., López-Higuera J.M. Light Technology for Efficient and Effective Photodynamic Therapy: a critical Review. Cancers (Basel) 2021;13 doi: 10.3390/cancers13143484. DOI

Aliabadi H.M., Elhasi S., Mahmud A., Gulamhusein R., Mahdipoor P., Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int. J. Pharm. 2007;329:158–165. doi: 10.1016/J.IJPHARM.2006.08.018. PubMed DOI

Allison R.R., Bansal S. Photodynamic therapy for peripheral lung cancer. Photodiagn. Photodyn. Ther. 2022;38 doi: 10.1016/j.pdpdt.2022.102825. DOI

Alvarez N., Sevilla A. Current advances in Photodynamic Therapy (PDT) and the Future potential of PDT-Combinatorial Cancer Therapies. Int. J. Mol. Sci. 2024;25 doi: 10.3390/ijms25021023. DOI

Appold M., Mari C., Lederle C., Elbert J., Schmidt C., Ott I., Stühn B., Gasser G., Gallei M. Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex. Polym. Chem. 2017;8:890–900. doi: 10.1039/C6PY02026G. DOI

Arnaut L.G. Design of porphyrin-based photosensitizers for photodynamic therapy. Adv. Inorg. Chem. 2011;63:187–233. doi: 10.1016/B978-0-12-385904-4.00006-8. DOI

Atanase L.I. Micellar Drug delivery Systems based on Natural Biopolymers. Polymers (Basel) 2021;13 doi: 10.3390/polym13030477. DOI

Avgoustakis K., Beletsi A., Panagi Z., Klepetsanis P., Karydas A.G., Ithakissios D.S. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release. 2002;79:123–135. doi: 10.1016/S0168-3659(01)00530-2. PubMed DOI

Ballestri M., Caruso E., Guerrini A., Ferroni C., Banfi S., Gariboldi M., Monti E., Sotgiu G., Varchi G. Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. J. Photochem. Photobiol. B. 2018;186:169–177. doi: 10.1016/j.jphotobiol.2018.07.013. PubMed DOI

Bao J., Hu M., Zhang Y., Zhang Q., Zhu F., Zou Q., Tang J. Novel active stealth micelles based on β2M achieved effective antitumor therapy. Biomed. Pharmacother. 2022;151 doi: 10.1016/j.biopha.2022.113175. DOI

Barenholz Y. Doxil® — the first FDA-approved nano-drug: Lessons learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/J.JCONREL.2012.03.020. PubMed DOI

Bartnikowski M., Dargaville T.R., Ivanovski S., Hutmacher D.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019;96:1–20. doi: 10.1016/j.progpolymsci.2019.05.004. DOI

Belali S., Savoie H., O’Brien J.M., Cafolla A.A., O’Connell B., Karimi A.R., Boyle R.W., Senge M.O. Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly(N-isopropylacrylamide)/Photosensitizer Hydrogels for applications in Photodynamic Therapy. Biomacromolecules. 2018;19:1592–1601. doi: 10.1021/ACS.BIOMAC.8B00293/ASSET/IMAGES/LARGE/BM-2018-00293G_0008.JPEG. PubMed DOI

Ben-Hur E., Zuk M.M., Chin S., Banerjee D., Kenney M.E., Horowitz B. Redistribution and virus inactivation efficacy of a silicon PHTHALOCYANINE in red blood cell concentrates as a function of delivery vehicle. Photochem. Photobiol. 1995;62:575–579. doi: 10.1111/j.1751-1097.1995.tb02387.x. PubMed DOI

Berillo D., Yeskendir A., Zharkinbekov Z., Raziyeva K., Saparov A. Peptide-Based Drug Delivery Systems. Medicina (B Aires) 2021;57 doi: 10.3390/medicina57111209. DOI

Böhmová E., Pola R. Peptide-targeted polymer cancerostatics. Physiol. Res. 2016;65:S153–S164. doi: 10.33549/PHYSIOLRES.933418. PubMed DOI

Bordat A., Boissenot T., Nicolas J., Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev. 2019;138:167–192. doi: 10.1016/j.addr.2018.10.005. PubMed DOI

Breitenbach Benjamin B., Steiert E., Konhäuser M., Vogt L.M., Wang Y., Parekh S.H., Wich P.R. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter. 2019;15:1423–1434. doi: 10.1039/C8SM02204F. PubMed DOI

Breitenbach Benjamin B., Steiert E., Konhäuser M., Vogt L.-M., Wang Y., Parekh S.H., Wich P.R. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter. 2019;15:1423–1434. doi: 10.1039/C8SM02204F. PubMed DOI

Burloiu A.M., Ozon E.A., Musuc A.M., Anastasescu M., Socoteanu R.P., Atkinson I., Culita D.C., Anuta V., Popescu I.A., Lupuliasa D., Mihai D.P., Gîrd C.E., Boscencu R. Porphyrin Photosensitizers into Polysaccharide-based Biopolymer Hydrogels for Topical Photodynamic Therapy: Physicochemical and Pharmacotechnical Assessments. Gels. 2024;10:499. doi: 10.3390/GELS10080499. PubMed DOI PMC

Campo M.A., Gabriel D., Kucera P., Gurny R., Lange N. Polymeric Photosensitizer Prodrugs for Photodynamic Therapy. Photochem. Photobiol. 2007;83:958–965. doi: 10.1111/j.1751-1097.2007.00090.x. PubMed DOI

Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004;1:279–293. doi: 10.1016/S1572-1000(05)00007-4. DOI

Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther. 2005;2:1–23. doi: 10.1016/S1572-1000(05)00030-X. DOI

Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn. Photodyn. Ther. 2005;2:91–106. doi: 10.1016/S1572-1000(05)00060-8. DOI

Çetinkaya A., Sadak A.E., Ayhan M.M., Zorlu Y., Kahveci M.U. Porphyrin-based covalent organic polymer by inverse electron demand Diels-Alder reaction. Eur. Polym. J. 2021;157 doi: 10.1016/j.eurpolymj.2021.110664. DOI

Chakraborty P., Bhattacharyya C., Sahu R., Dua T.K., Kandimalla R., Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol. 2024;91 doi: 10.1016/j.jddst.2023.105267. DOI

Chan D.P.Y., Owen S.C., Shoichet M.S. Double Click: dual Functionalized Polymeric Micelles with Antibodies and Peptides. Bioconjug. Chem. 2013;24:105–113. doi: 10.1021/bc300511a. PubMed DOI

Chang M.-H., Pai C.-L., Chen Y.-C., Yu H.-P., Hsu C.-Y., Lai P.-S. Enhanced Antitumor Effects of Epidermal Growth factor Receptor Targetable Cetuximab-Conjugated Polymeric Micelles for Photodynamic Therapy. Nanomaterials. 2018;8 doi: 10.3390/nano8020121. DOI

Chen Y., Li Z., Wang H., Wang Y., Han H., Jin Q., Ji J. IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS Appl. Mater. Interfaces. 2016;8:6852–6858. doi: 10.1021/ACSAMI.6B00251/ASSET/IMAGES/LARGE/AM-2016-00251R_0007.JPEG. PubMed DOI

Chen S., Li Q., Li H., Yang L., Yi J.Z., Xie M., Zhang L.M. Long-circulating zein-polysulfobetaine conjugate-based nanocarriers for enhancing the stability and pharmacokinetics of curcumin. Mater. Sci. Eng. C. 2020;109 doi: 10.1016/J.MSEC.2020.110636. DOI

Cheng R., Feng F., Meng F., Deng C., Feijen J., Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release. 2011;152:2–12. doi: 10.1016/j.jconrel.2011.01.030. PubMed DOI

Cheng C.-C., Huang J.-J., Lee A.-W., Huang S.-Y., Huang C.-Y., Lai J.-Y. Highly Effective Photocontrollable Drug delivery Systems based on Ultrasensitive Light-Responsive Self-Assembled Polymeric Micelles: An in Vitro Therapeutic Evaluation. ACS Appl. Bio Mater. 2019;2:2162–2170. doi: 10.1021/acsabm.9b00146. DOI

Chin W.W.L., Lau W.K.O., Bhuvaneswari R., Heng P.W.S., Olivo M. Chlorin e6-polyvinylpyrrolidone as a fluorescent marker for fluorescence diagnosis of human bladder cancer implanted on the chick chorioallantoic membrane model. Cancer Lett. 2007;245:127–133. doi: 10.1016/J.CANLET.2005.12.041. PubMed DOI

Chin W.W.L., Heng P.W.S., Thong P.S.P., Bhuvaneswari R., Hirt W., Kuenzel S., Soo K.C., Olivo M. Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. Eur. J. Pharm. Biopharm. 2008;69:1083–1093. doi: 10.1016/J.EJPB.2008.02.013. PubMed DOI

Chinna Ayya Swamy P., Sivaraman G., Priyanka R.N., Raja S.O., Ponnuvel K., Shanmugpriya J., Gulyani A. Near infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord. Chem. Rev. 2020;411 doi: 10.1016/j.ccr.2020.213233. DOI

Choi Y., Weissleder R., Tung C.-H. Protease-Mediated Phototoxicity of a Polylysine–Chlorine6 Conjugate. ChemMedChem. 2006;1:698–701. doi: 10.1002/cmdc.200600053. PubMed DOI

Choi Y., Weissleder R., Tung C.-H. Selective Antitumor effect of Novel Protease-Mediated Photodynamic Agent. Cancer Res. 2006;66:7225–7229. doi: 10.1158/0008-5472.CAN-06-0448. PubMed DOI

Copley L., van der Watt P., Wirtz K.W., Parker M.I., Leaner V.D. Photolon™, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. Int. J. Biochem. Cell Biol. 2008;40:227–235. doi: 10.1016/J.BIOCEL.2007.07.014. PubMed DOI

Correia José H., Rodrigues J.A., Pimenta S., Dong T., Yang Z. Photodynamic Therapy Review: Principles, Photosensitizers, applications, and Future Directions. Pharmaceutics. 2021;13 doi: 10.3390/pharmaceutics13091332. DOI

Costa-Tuna A., Chaves O.A., Loureiro R.J.S., Pinto S., Pina J., Serpa C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int. J. Biol. Macromol. 2024;255 doi: 10.1016/j.ijbiomac.2023.128210. DOI

Dabrowski J. Advances in Inorganic Chemistry. 2017. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of their Generation and Potentiation. DOI

Dąbrowski J.M. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of their Generation and Potentiation. Adv. Inorg. Chem. 2017;70:343–394. doi: 10.1016/BS.ADIOCH.2017.03.002. DOI

Dai L., Cai R., Li M., Luo Z., Yu Y., Chen W., Shen X., Pei Y., Zhao X., Cai K. Dual-Targeted Cascade-Responsive Prodrug Micelle System for Tumor Therapy in Vivo. Chem. Mater. 2017;29:6976–6992. doi: 10.1021/acs.chemmater.7b02513. DOI

Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI

Dantas K.C.F., dos Rosário J.S., Silva-Caldeira P.P. Polymeric Nanosystems Applied for Metal-based drugs and Photosensitizers delivery: the State of the Art and recent Advancements. Pharmaceutics. 2022;14 doi: 10.3390/pharmaceutics14071506. DOI

de Loos F., Reynhout I.C., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M. Construction of functional porphyrin polystyrene nano-architectures by ATRP. Chem. Commun. 2005;60–62 doi: 10.1039/B412067A. DOI

De Rosa F.S., Bentley M.V.L.B. Photodynamic therapy of skin cancers: Sensitizers, clinical studies and future directives. Pharm. Res. 2000;17:1447–1455. doi: 10.1023/A:1007612905378/METRICS. PubMed DOI

Debele T.A., Mekuria S.L., Tsai H.C. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. Int. J. Biol. Macromol. 2017;98:125–138. doi: 10.1016/J.IJBIOMAC.2017.01.103. PubMed DOI

Desai N., Rana D., Salave S., Benival D., Khunt D., Prajapati B.G. Achieving Endo/Lysosomal Escape using Smart Nanosystems for Efficient Cellular delivery. Molecules. 2024;29 doi: 10.3390/molecules29133131. DOI

Ding H., Sumer B.D., Kessinger C.W., Dong Y., Huang G., Boothman D.A., Gao J. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J. Control. Release. 2011;151:271–277. doi: 10.1016/j.jconrel.2011.01.004. PubMed DOI PMC

Ding H., Yu H., Dong Y., Tian R., Huang G., Boothman D.A., Sumer B.D., Gao J. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J. Control. Release. 2011;156:276–280. doi: 10.1016/J.JCONREL.2011.08.019. PubMed DOI PMC

Donohoe C., Senge M.O., Arnaut L.G., Gomes-da-Silva L.C. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochimica et Biophysica Acta (BBA) - Reviews on. Cancer. 2019;1872 doi: 10.1016/j.bbcan.2019.07.003. DOI

Dou X., Nomoto T., Takemoto H., Matsui M., Tomoda K., Nishiyama N. Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Sci. Rep. 2018;8:8126. doi: 10.1038/s41598-018-26593-0. PubMed DOI PMC

El-Faham A., Albericio F. Peptide Coupling Reagents, more than a Letter Soup. Chem. Rev. 2011;111:6557–6602. doi: 10.1021/cr100048w. PubMed DOI

Endo M., Aida T., Inoue S. Immortal polymerization of .epsilon.-caprolactone initiated by aluminum porphyrin in the presence of alcohol. Macromolecules. 1987;20:2982–2988. doi: 10.1021/ma00178a005. DOI

Esparza K., Onyuksel H. Development of co-solvent freeze-drying method for the encapsulation of water-insoluble thiostrepton in sterically stabilized micelles. Int. J. Pharm. 2019;556:21–29. doi: 10.1016/J.IJPHARM.2018.12.001. PubMed DOI

Ezike T.C., Okpala U.S., Onoja U.L., Nwike C.P., Ezeako E.C., Okpara O.J., Okoroafor C.C., Eze S.C., Kalu O.L., Odoh E.C., Nwadike U.G., Ogbodo J.O., Umeh B.U., Ossai E.C., Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e17488. DOI

Fan F., Wang L., Li F., Fu Y., Xu H. Stimuli-Responsive Layer-by-Layer Tellurium-Containing Polymer Films for the Combination of Chemotherapy and Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2016;8:17004–17010. doi: 10.1021/acsami.6b04998. PubMed DOI

Fang J., Šubr V., Islam W., Hackbarth S., Islam R., Etrych T., Ulbrich K., Maeda H. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI

Feng C., Zhu D., Chen L., Lu Y., Liu J., Kim N.Y., Liang S., Zhang X., Lin Y., Ma Y., Dong C. Targeted delivery of Chlorin e6 via Redox Sensitive Diselenide-Containing Micelles for improved Photodynamic Therapy in Cluster of Differentiation 44-Overexpressing Breast Cancer. Front. Pharmacol. 2019;10-2019 doi: 10.3389/fphar.2019.00369. DOI

Finlayson L., Barnard I.R.M., McMillan L., Ibbotson S.H., Brown C.T.A., Eadie E., Wood K. Depth Penetration of Light into Skin as a Function of Wavelength from 200 to 1000 nm. Photochem. Photobiol. 2022;98:974–981. doi: 10.1111/php.13550. PubMed DOI

Ganzleben I., Hohmann M., Grünberg A., Gonzales-Menezes J., Vieth M., Liebing E., Günther C., Thonn V., Beß D., Becker C., Schmidt M., Neurath M.F., Waldner M.J. Topical application of Chlorin e6-PVP (Ce6-PVP) for improved endoscopic detection of neoplastic lesions in a murine colitis-associated cancer model. Sci. Rep. 2020;10(1):1–10. doi: 10.1038/s41598-020-69570-2. PubMed DOI PMC

Gao D., Lo P.-C. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J. Control. Release. 2018;282:46–61. doi: 10.1016/j.jconrel.2018.04.030. PubMed DOI

Gibot L., Lemelle A., Till U., Moukarzel B., Mingotaud A.F., Pimienta V., Saint-Aguet P., Rols M.P., Gaucher M., Violleau F., Chassenieux C., Vicendo P. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules. 2014;15:1443–1455. doi: 10.1021/BM5000407. PubMed DOI

Gibot L., Demazeau M., Pimienta V., Mingotaud A.-F., Vicendo P., Collin F., Martins-Froment N., Dejean S., Nottelet B., Roux C., Lonetti B. Role of Polymer Micelles in the delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020;12 doi: 10.3390/cancers12020384. DOI

Gierlich P., Mucha S.G., Robbins E., Gomes-da-Silva L.C., Matczyszyn K., Senge M.O. One-Photon and Two-Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (Temoporfin) Derivatives as potential Two-Photon-Induced Photodynamic Therapy Agents. ChemPhotoChem. 2022;6 doi: 10.1002/cptc.202100249. DOI

Gjuroski I., Girousi E., Meyer C., Hertig D., Stojkov D., Fux M., Schnidrig N., Bucher J., Pfister S., Sauser L., Simon H.U., Vermathen P., Furrer J., Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J. Control. Release. 2019;316:150–167. doi: 10.1016/J.JCONREL.2019.10.010. PubMed DOI

Gjuroski I., Furrer J., Vermathen M., Zacharis C.K., Tzanavaras P.D. Probing the Interactions of Porphyrins with Macromolecules using NMR Spectroscopy Techniques. Molecules. 2021;26:1942. doi: 10.3390/MOLECULES26071942. PubMed DOI PMC

Gohy J.-F., Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev. 2013;42:7117–7129. doi: 10.1039/C3CS35469E. PubMed DOI

Gomes A.T.P.C., Fernandes R., Ribeiro C.F., Tomé J.P.C., Neves M.G.P.M.S., de Silva F.C., da Ferreira V.F., Cavaleiro J.A.S. Synthesis, Characterization and Photodynamic activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules. 2020;25 doi: 10.3390/molecules25071607. DOI

Gong H., Dong Z., Liu Y., Yin S., Cheng L., Xi W., Xiang J., Liu K., Li Y., Liu Z. Engineering of Multifunctional Nano-Micelles for combined Photothermal and Photodynamic Therapy under the Guidance of Multimodal Imaging. Adv. Funct. Mater. 2014;24:6492–6502. doi: 10.1002/adfm.201401451. DOI

Gorman A., Killoran J., O’Shea C., Kenna T., Gallagher W.M., O’Shea D.F. In Vitro Demonstration of the Heavy-Atom effect for Photodynamic Therapy. J. Am. Chem. Soc. 2004;126:10619–10631. doi: 10.1021/ja047649e. PubMed DOI

Grin M., Suvorov N., Ostroverkhov P., Pogorilyy V., Kirin N., Popov A., Sazonova A., Filonenko E. Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys. Rev. 2022;14:941–963. doi: 10.1007/s12551-022-00962-6. PubMed DOI PMC

Gu Z.W., Spikes J.D., Kopeckova P., Kopecek J. Synthesis and photoproperties of a substituted zinc(ii) phthalocyanine-n-(2-hydroxypropyl)methacrylamide copolymer conjugate. Collect. Czechoslov. Chem. Commun. 1993;58:2321–2336. doi: 10.1135/cccc19932321. DOI

Hadjichristidis N., Pispas S., Floudas G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. Block Copolymers: Synthetic strategies. Physical Properties, and Applications. 2024;1–435 doi: 10.1002/0471269808. DOI

Han K., Wang S.-B., Lei Q., Zhu J.-Y., Zhang X.-Z. Ratiometric Biosensor for Aggregation-Induced Emission-Guided Precise Photodynamic Therapy. ACS Nano. 2015;9:10268–10277. doi: 10.1021/acsnano.5b04243. PubMed DOI

He Y., Hower J., Chen S., Bernards M.T., Chang Y., Jiang S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir. 2008;24:10358–10364. doi: 10.1021/LA8013046/ASSET/IMAGES/LA-2008-013046_M005.GIF. PubMed DOI

He M., Zhang Z., Jiao Z., Yan M., Miao P., Wei Z., Leng X., Li Y., Fan J., Sun W., Peng X. Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chin. Chem. Lett. 2023;34 doi: 10.1016/J.CCLET.2022.05.088. DOI

Herzberger J., Niederer K., Pohlit H., Seiwert J., Worm M., Wurm F.R., Frey H. Polymerization of Ethylene Oxide, propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016;116:2170–2243. doi: 10.1021/acs.chemrev.5b00441. PubMed DOI

High L.R.H., Holder S.J., Penfold H.V. Synthesis of Star Polymers of Styrene and Alkyl (Meth)acrylates from a Porphyrin Initiator Core via ATRP. Macromolecules. 2007;40:7157–7165. doi: 10.1021/ma062870s. DOI

Hsu C.Y., Allela O.Q.B., Hussein A.M., Mustafa M.A., Kaur M., Alaraj M., Al-Hussainy A.F., Radi U.K., Ubaid M., Idan A.H., Alsaikhan F., Narmani A., Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. Artif Cells Nanomed Biotechnol. 2024;52:564–586. doi: 10.1080/21691401.2024.2436350. PubMed DOI

Hu Y., Yin S.-Y., Liu W., Li Z., Chen Y., Li J. Rationally designed monoamine oxidase A-activatable AIE molecular photosensitizer for the specific imaging and cellular therapy of tumors. Aggregate. 2023;4 doi: 10.1002/agt2.256. DOI

Huang X., Brazel C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release. 2001;73:121–136. doi: 10.1016/S0168-3659(01)00248-6. PubMed DOI

Huang S., Yin D., Zhao Y., Gu Y. Twelfth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014) 9230. 2014. Optimization and characterization of the photosensitive N-succinyl-N’-4-(2-nitrobenzyloxy)-succinyl-chitosan micelles; p. 92300C. DOI

Huang Y., Qiu F., Shen L., Chen D., Su Y., Yang C., Li B., Yan D., Zhu X. Combining Two-Photon-Activated Fluorescence Resonance Energy transfer and Near-infrared Photothermal effect of Unimolecular Micelles for Enhanced Photodynamic Therapy. ACS Nano. 2016;10:10489–10499. doi: 10.1021/ACSNANO.6B06450. PubMed DOI

Huang L., Zhao S., Wu J., Yu L., Singh N., Yang K., Lan M., Wang P., Kim J.S. Photodynamic therapy for hypoxic tumors: advances and perspectives. Coord. Chem. Rev. 2021;438 doi: 10.1016/j.ccr.2021.213888. DOI

Huntošová V., Datta S., Lenkavská L., MáčAjová M., Bilčík B., Kundeková B., Čavarga I., Kronek J., Jutková A., Miškovský P., Jancura D. Alkyl Chain Length in Poly(2-oxazoline)-based Amphiphilic Gradient Copolymers Regulates the delivery of Hydrophobic Molecules: a Case of the Biodistribution and the Photodynamic activity of the Photosensitizer Hypericin. Biomacromolecules. 2021;22:4199–4216. doi: 10.1021/ACS.BIOMAC.1C00768/ASSET/IMAGES/LARGE/BM1C00768_0014.JPEG. PubMed DOI

Huotari J., Helenius A. Endosome maturation. EMBO J. 2011;30 doi: 10.1038/emboj.2011.286. 3481-3500–3500. DOI

Hussein Y.H.A., Youssry M. Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. Materials. 2018;11 doi: 10.3390/ma11050688. DOI

Isaacson K.J., Martin Jensen M., Subrahmanyam N.B., Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J. Control. Release. 2017;259:62–75. doi: 10.1016/j.jconrel.2017.01.034. PubMed DOI PMC

Ishida T., Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008;354:56–62. doi: 10.1016/J.IJPHARM.2007.11.005. PubMed DOI

Islam R., Kotalík K., Šubr V., Gao S., Zhou J.-R., Yokomizo K., Etrych T., Fang J. HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties. Nanomedicine. 2023;48 doi: 10.1016/j.nano.2022.102636. DOI

Izquierdo-Barba I., Colilla M., Vallet-Regí M. Zwitterionic ceramics for biomedical applications. Acta Biomater. 2016;40:201–211. doi: 10.1016/J.ACTBIO.2016.02.027. PubMed DOI

Jang W.-D., Nakagishi Y., Nishiyama N., Kawauchi S., Morimoto Y., Kikuchi M., Kataoka K. Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J. Control. Release. 2006;113:73–79. doi: 10.1016/j.jconrel.2006.03.009. PubMed DOI

Ji Y., Sun Y., Hei M., Cheng D., Wang B., Tang Y., Fu Y., Zhu W., Xu Y., Qian X. NIR Activated Upper critical solution Temperature Polymeric Micelles for Trimodal Combinational Cancer Therapy. Biomacromolecules. 2022;23:937–947. doi: 10.1021/acs.biomac.1c01356. PubMed DOI

Jia W., Liu R., Wang Y., Hu C., Yu W., Zhou Y., Wang L., Zhang M., Gao H., Gao X. Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharm. Sin. B. 2022;12:3354–3366. doi: 10.1016/j.apsb.2022.03.010. PubMed DOI PMC

Jiang J., Qi B., Lepage M., Zhao Y. Polymer Micelles Stabilization on demand through Reversible Photo-Cross-linking. Macromolecules. 2007;40:790–792. doi: 10.1021/ma062493j. DOI

Jiang D., Chen C., Xue Y., Cao H., Wang C., Yang G., Gao Y., Wang P., Zhang W. NIR-Triggered “OFF/ON” Photodynamic Therapy through a Upper critical solution Temperature Block Copolymer. ACS Appl. Mater. Interfaces. 2019;11:37121–37129. doi: 10.1021/acsami.9b12889. PubMed DOI

Jin Q., Mitschang F., Agarwal S. Biocompatible Drug delivery System for Photo-Triggered Controlled Release of 5-Fluorouracil. Biomacromolecules. 2011;12:3684–3691. doi: 10.1021/bm2009125. PubMed DOI

Josefsen Leanne B., Boyle R.W. Photodynamic Therapy and the Development of Metal-based Photosensitisers. Metal-Based Drugs. 2008;2008 doi: 10.1155/2008/276109. DOI

Josefsen Leanne B., Boyle R.W. Photodynamic Therapy and the Development of Metal-based Photosensitisers. Metal-Based Drugs. 2008;2008 doi: 10.1155/2008/276109. DOI

Kathuria I., Kumar S. Emerging frontiers in spiropyran-driven photoresponsive drug delivery systems and technologies. Dyes Pigments. 2025;239 doi: 10.1016/j.dyepig.2025.112793. DOI

Kato H., Furukawa K., Sato M., Okunaka T., Kusunoki Y., Kawahara M., Fukuoka M., Miyazawa T., Yana T., Matsui K., Shiraishi T., Horinouchi H. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42 doi: 10.1016/S0169-5002(03)00242-3. DOI

Kierstead P.H., Okochi H., Venditto V.J., Chuong T.C., Kivimae S., Fréchet J.M.J., Szoka F.C. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J. Control. Release. 2015;213:1–9. doi: 10.1016/J.JCONREL.2015.06.023. PubMed DOI PMC

Kiew L.V., Cheah H.Y., Voon S.H., Gallon E., Movellan J., Ng K.H., Alpugan S., Lee H.B., Dumoulin F., Vicent M.J., Chung L.Y. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light–dark toxicity ratio toward an effective photodynamic cancer therapy. Nanomedicine. 2017;13:1447–1458. doi: 10.1016/j.nano.2017.02.002. PubMed DOI

Kim T.H., Chen Y., Mount C.W., Gombotz W.R., Li X., Pun S.H. Evaluation of Temperature-Sensitive, Indocyanine Green-Encapsulating Micelles for Noninvasive Near-infrared Tumor Imaging. Pharm. Res. 2010;27:1900–1913. doi: 10.1007/s11095-010-0190-y. PubMed DOI

Kimura M., Ueki H., Ohta K., Hanabusa K., Shirai H., Kobayashi N. Aggregation Behavior of Amphiphilic Phthalocyanine Block Copolymers. Langmuir. 2002;18:7683–7687. doi: 10.1021/la020275n. DOI

Kochneva E.V., Filonenko E.V., Vakulovskaya E.G., Scherbakova E.G., Seliverstov O.V., Markichev N.A., Reshetnickov A.V. Photosensitizer Radachlorin ® : Skin cancer PDT phase II clinical trials. Photodiagn. Photodyn. Ther. 2010;7:258–267. doi: 10.1016/j.pdpdt.2010.07.006. DOI

Kong C., Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: a Review. Int. J. Nanomedicine. 2022;17:6427–6446. doi: 10.2147/IJN.S388996. PubMed DOI PMC

Kong L., Campbell F., Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horiz. 2019;4:378–387. doi: 10.1039/C8NH00417J. PubMed DOI

Koo H., Lee H., Lee S., Min K.H., Kim M.S., Lee D.S., Choi Y., Kwon I.C., Kim K., Jeong S.Y. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem. Commun. 2010;46:5668–5670. doi: 10.1039/C0CC01413C. DOI

Kotta S., Aldawsari H.M., Badr-Eldin S.M., Nair A.B., Yt K. Progress in Polymeric Micelles for Drug delivery applications. Pharmaceutics. 2022;14 doi: 10.3390/pharmaceutics14081636. DOI

Kozma G.T., Shimizu T., Ishida T., Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 2020;154–155:163–175. doi: 10.1016/j.addr.2020.07.024. DOI

Krinick N.L., Sun Y., Joyner D.A., Reed R., Spikes J.D., Straight R.C., Kopecek J. SPIE Proceedings. SPIE; 1992. Polymer-bound meso-chlorin e6 for PDT (Invited Paper) pp. 142–154. DOI

Kübler A.C. Photodynamic therapy. Med. Laser Application. 2005;20:37–45. doi: 10.1016/J.MLA.2005.02.001. DOI

Kumar S.S., Harikrishnan K.K., Urmila S.P., Gauri V., Saritha A., Gangopadhyay M. Comprehensive review of Pluronic® polymers of different shapes with prominent applications in photodynamic therapy. Eur. Polym. J. 2023;200 doi: 10.1016/j.eurpolymj.2023.112534. DOI

Kumari P., Rompicharla S.V.K., Bhatt H., Ghosh B., Biswas S. Development of Chlorin E6-Conjugated Poly(Ethylene Glycol)-Poly(D,L-Lactide) Nanoparticles for Photodynamic Therapy. Nanomedicine. 2019;14:819–834. doi: 10.2217/NNM-2018-0255. PubMed DOI

Kunjachan S., Pola R., Gremse F., Theek B., Ehling J., Moeckel D., Hermanns-Sachweh B., Pechar M., Ulbrich K., Hennink W.E., Storm G., Lederle W., Kiessling F., Lammers T. Passive versus active Tumor Targeting using RGD- and NGR-Modified Polymeric Nanomedicines. Nano Lett. 2014;14:972–981. doi: 10.1021/nl404391r. PubMed DOI PMC

Kuperkar K., Patel D., Atanase L.I., Bahadur P. Amphiphilic Block Copolymers: their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug delivery Vehicles. Polymers (Basel) 2022;14 doi: 10.3390/polym14214702. DOI

Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049. PubMed DOI

Lamch Ł., Gancarz R., Tsirigotis-Maniecka M., Moszyńska I.M., Ciejka J., Wilk K.A. Studying the “rigid-flexible” Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe using NMR and UV Spectroscopy. Langmuir. 2021;37:4316–4330. doi: 10.1021/ACS.LANGMUIR.1C00328/SUPPL_FILE/LA1C00328_SI_001.PDF. PubMed DOI PMC

Le Clainche T., Abdelhamid A.G.A., Carigga Gutierrez N.M., Jourdain M.-A., Leo S., Sancey L., Hurbin A., Coll J.-L., Elena-Herrmann B., Broekgaarden M. Photodynamic drug delivery for cancer therapy: Designing liposomes for light-controlled release and enhanced drug efficacy. Eur. J. Pharm. Sci. 2025;213 doi: 10.1016/j.ejps.2025.107221. DOI

Le Garrec D., Taillefer J., Van Lier J.E., Lenaerts V., Leroux J.C. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug Target. 2002;10:429–437. doi: 10.1080/1061186021000001887. PubMed DOI

Lee J.-E., Ahn E., Bak J.M., Jung S.-H., Park J.M., Kim B.-S., Lee H. Polymeric micelles based on photocleavable linkers tethered with a model drug. Polymer (Guildf) 2014;55:1436–1442. doi: 10.1016/j.polymer.2014.01.026. DOI

Li W., Zheng C., Pan Z., Chen C., Hu D., Gao G., Kang S., Cui H., Gong P., Cai L. Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials. 2016;101:10–19. doi: 10.1016/j.biomaterials.2016.05.019. PubMed DOI

Li X., Gao M., Xin K., Zhang L., Ding D., Kong D., Wang Z., Shi Y., Kiessling F., Lammers T., Cheng J., Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J. Control. Release. 2017;260:12–21. doi: 10.1016/j.jconrel.2017.05.025. PubMed DOI

Li Y., Zhao D., Li Yanwei, Liu Y., Duan Q., Kakuchi T. Synthesis of water-soluble and thermoresponsive phthalocyanine ended block copolymers as potential photosensitizer. Dyes Pigments. 2017;142:88–99. doi: 10.1016/j.dyepig.2017.03.010. DOI

Li F., Chen C., Yang Xixi, He X., Zhao Z., Li J., Yu Y., Yang Xianzhu, Wang J. Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2018;10:21198–21205. doi: 10.1021/acsami.8b06758. PubMed DOI

Li J., Meng X., Deng J., Lu D., Zhang X., Chen Y., Zhu J., Fan A., Ding D., Kong D., Wang Z., Zhao Y. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer delivery. ACS Appl. Mater. Interfaces. 2018;10:17117–17128. doi: 10.1021/acsami.8b06299. PubMed DOI

Liang H., Zhou Z., Luo R., Sang M., Liu B., Sun M., Qu W., Feng F., Liu W. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8:5059–5071. doi: 10.7150/thno.28344. PubMed DOI PMC

Liao C., Liu X., Zhang C., Zhang Q. Tumor hypoxia: from basic knowledge to therapeutic implications. Semin. Cancer Biol. 2023;88:172–186. doi: 10.1016/j.semcancer.2022.12.011. PubMed DOI PMC

Liu F., Ma Y., Xu L., Liu L., Zhang W. Redox-responsive supramolecular amphiphiles constructed via host–guest interactions for photodynamic therapy. Biomater. Sci. 2015;3:1218–1227. doi: 10.1039/C5BM00045A. PubMed DOI

Liu L., Ruan Z., Li T., Yuan P., Yan L. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2. Biomater. Sci. 2016;4:1638–1645. doi: 10.1039/C6BM00581K. PubMed DOI

Liu L., Wang R., Wang C., Wang J., Chen L., Cheng J. Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomater. Sci. 2018;6:997–1001. doi: 10.1039/C7BM01114H. PubMed DOI

Liu Y., Fens M.H.A.M., Capomaccio R.B., Mehn D., Scrivano L., Kok R.J., Oliveira S., Hennink W.E., van Nostrum C.F. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer. J. Control. Release. 2020;328:942–951. doi: 10.1016/j.jconrel.2020.10.040. PubMed DOI

Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015;115:1990–2042. doi: 10.1021/CR5004198/ASSET/IMAGES/LARGE/CR-2014-004198_0033.JPEG. PubMed DOI

Luo L., Yin Z., Qi Y., Liu S., Yi Y., Tian X., Wu Y., Zhong D., Gu Z., Zhang H., Luo K. An intracellular enzyme-responsive polymeric prodrug with synergistic effect of chemotherapy and two-photon photodynamic therapy. Appl. Mater. Today. 2021;23 doi: 10.1016/j.apmt.2021.100996. DOI

Luo Y., Chen M., Zhang T., Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf. B: Biointerfaces. 2024;242 doi: 10.1016/j.colsurfb.2024.114074. DOI

Luxenhofer R., Schulz A., Roques C., Li S., Bronich T.K., Batrakova E.V., Jordan R., Kabanov A.V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–4979. doi: 10.1016/J.BIOMATERIALS.2010.02.057. PubMed DOI PMC

Ma S., Zhou J., Zhang Y., Yang B., He Y., Tian C., Xu X., Gu Z. An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers. ACS Appl. Mater. Interfaces. 2019;11:7731–7742. doi: 10.1021/acsami.8b19840. PubMed DOI

Makhseed S., Cook A., McKeown B. Phthalocyanine-containing polystyrenes. Chem. Commun. 1999;419–420 doi: 10.1039/A900069K. DOI

Malarz K., Borzęcka W., Ziola P., Domiński A., Rawicka P., Bialik-Wąs K., Kurcok P., Torres T., Mrozek-Wilczkiewicz A. pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer. Bioorg. Chem. 2025;155 doi: 10.1016/j.bioorg.2025.108127. DOI

Markovsky E., Baabur-Cohen H., Eldar-Boock A., Omer L., Tiram G., Ferber S., Ofek P., Polyak D., Scomparin A., Satchi-Fainaro R. Administration, distribution, metabolism and elimination of polymer therapeutics. J. Control. Release. 2012;161:446–460. doi: 10.1016/j.jconrel.2011.12.021. PubMed DOI

Master A.M., Qi Y., Oleinick N.L., Gupta A. Sen. EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine. 2012;8:655–664. doi: 10.1016/j.nano.2011.09.012. PubMed DOI PMC

Matsumoto Y., Nichols J.W., Toh K., Nomoto T., Cabral H., Miura Y., Christie R.J., Yamada N., Ogura T., Kano M.R., Matsumura Y., Nishiyama N., Yamasoba T., Bae Y.H., Kataoka K. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 2016;11:533–538. doi: 10.1038/nnano.2015.342. PubMed DOI

Matsumura Y., Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986;46:6387–6392. PubMed

McDonald A.G., Tipton K.F. Enzyme nomenclature and classification: the state of the art. FEBS J. 2023;290:2214–2231. doi: 10.1111/febs.16274. PubMed DOI

Mehraban N., Freeman H.S. Developments in PDT Sensitizers for increased Selectivity and Singlet Oxygen Production. Materials. 2015;8:4421–4456. doi: 10.3390/ma8074421. PubMed DOI PMC

Mfouo-Tynga I.S., Dias L.D., Inada N.M., Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagn. Photodyn. Ther. 2021;34 doi: 10.1016/J.PDPDT.2020.102091. DOI

Miller T., Van Colen G., Sander B., Golas M.M., Uezguen S., Weigandt M., Goepferich A. Drug loading of polymeric micelles. Pharm. Res. 2013;30:584–595. doi: 10.1007/S11095-012-0903-5. PubMed DOI

Mir M., Ahmed N., Ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B: Biointerfaces. 2017;159:217–231. doi: 10.1016/J.COLSURFB.2017.07.038. PubMed DOI

Mohamed M.M., Sloane B.F. Multifunctional enzymes in cancer. Nat. Rev. Cancer. 2006;6:764–775. doi: 10.1038/nrc1949. PubMed DOI

Moore C.M., Nathan T.R., Lees W.R., Mosse C.A., Freeman A., Emberton M., Bown S.G. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg. Med. 2006;38:356–363. doi: 10.1002/LSM.20275. PubMed DOI

Mundra V., Peng Y., Rana S., Natarajan A., Mahato R.I. Micellar formulation of indocyanine green for phototherapy of melanoma. J. Control. Release. 2015;220:130–140. doi: 10.1016/j.jconrel.2015.10.029. PubMed DOI

Nakayama M., Okano T., Miyazaki T., Kohori F., Sakai K., Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release. 2006;115:46–56. doi: 10.1016/j.jconrel.2006.07.007. PubMed DOI

Nathan T.R., Whitelaw D.E., Chang S.C., Lees W.R., Ripley P.M., Payne H., Jones L., Parkinson M.C., Emberton M., Gillams A.R., Mundy A.R., Bown S.G. Photodynamic Therapy for Prostate Cancer Recurrence after Radiotherapy: a phase I Study. J. Urol. 2002;168:1427–1432. doi: 10.1016/S0022-5347(05)64466-7. PubMed DOI

Naveen C., Shastri N.R. Polysaccharide nanomicelles as drug carriers. Polysaccharide Carriers for Drug Delivery. 2019;339–363 doi: 10.1016/B978-0-08-102553-6.00012-X. DOI

Negut I., Bita B. Polymeric Micellar Systems—a special Emphasis on “Smart” Drug delivery. Pharmaceutics. 2023;15 doi: 10.3390/pharmaceutics15030976. DOI

Nichols J.W., Bae Y.H. Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 2012;7:606–618. doi: 10.1016/j.nantod.2012.10.010. PubMed DOI PMC

Nichols J.W., Bae Y.H. EPR: evidence and fallacy. J. Control. Release. 2014;190:451–464. doi: 10.1016/j.jconrel.2014.03.057. PubMed DOI

Nowis D., Makowski M., Stokłosa T., Legat M., Issat T., Golab J. Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim. Pol. 2005;52:339–352. doi: 10.18388/abp.2005_3447. PubMed DOI

Obalola A.A., Abrahamse H., Dhilip Kumar S.S. Enhanced therapeutic precision using dual drug-loaded nanomaterials for targeted cancer photodynamic therapy. Biomed. Pharmacother. 2025;184 doi: 10.1016/j.biopha.2025.117909. DOI

Obata M., Masuda S., Takahashi M., Yazaki K., Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur. Polym. J. 2021;147 doi: 10.1016/J.EURPOLYMJ.2021.110325. DOI

Ojha T., Pathak V., Shi Y., Hennink W.E., Moonen C.T.W., Storm G., Kiessling F., Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017;119:44–60. doi: 10.1016/j.addr.2017.07.007. PubMed DOI PMC

Oudin A., Chauvin J., Gibot L., Rols M.P., Balor S., Goudounèche D., Payré B., Lonetti B., Vicendo P., Mingotaud A.F., Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J. Mater. Chem. B. 2019;7:4973–4982. doi: 10.1039/C9TB00118B. PubMed DOI

Owen S.C., Chan D.P.Y., Shoichet M.S. Polymeric micelle stability. Nano Today. 2012;7:53–65. doi: 10.1016/J.NANTOD.2012.01.002. DOI

Paul M., Biswas S. Near Infrared-light responsive chlorin e6 pro-drug micellar photodynamic therapy for oral cancer. Bioeng Transl Med n/a. 2025;e70036 doi: 10.1002/btm2.70036. DOI

Pearson S., Vitucci D., Khine Y.Y., Dag A., Lu H., Save M., Billon L., Stenzel M.H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. Eur. Polym. J. 2015;69:616–627. doi: 10.1016/j.eurpolymj.2015.04.001. DOI

Pechnikova N., Lyubimtsev A., Ageeva T., Syrbu S., Semeikin A., Koifman O. Synthesis of porphyrin monomers on the basis of meso-mono-hydroxy- and aminophenylporphyrins. J. Porphyrins Phthalocyanines. 2014;18 doi: 10.1142/S1088424613501198. DOI

Pelicano H., Carney D., Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 2004;7:97–110. doi: 10.1016/j.drup.2004.01.004. PubMed DOI

Penetra M., Arnaut L.G., Gomes-Da-Silva L.C. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology. 2023;12 doi: 10.1080/2162402X.2023.2226535. DOI

Pitto-Barry A., Barry N.P.E. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014;5:3291–3297. doi: 10.1039/C4PY00039K. DOI

Plaetzer K., Krammer B., Berlanda J., Berr F., Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci. 2009;24:259–268. doi: 10.1007/S10103-008-0539-1. PubMed DOI

Potara M., Nagy-Simon T., Focsan M., Licarete E., Soritau O., Vulpoi A., Astilean S. Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer. Colloids Surf. B: Biointerfaces. 2021;203 doi: 10.1016/j.colsurfb.2021.111755. DOI

Prokopová I. přeprac. ed. Vydavatelství VŠCHT; Praha: 2007. Makromolekulární chemie, Vyd. 2.

Pucelik B., Arnaut L.G., Stochel G., Dąbrowski J.M. Design of Pluronic-Based Formulation for Enhanced Redaporfin-Photodynamic Therapy against Pigmented Melanoma. ACS Appl. Mater. Interfaces. 2016;8:22039–22055. doi: 10.1021/acsami.6b07031. PubMed DOI

Pucelik B., Gürol I., Ahsen V., Dumoulin F., Dąbrowski J.M. Fluorination of phthalocyanine substituents: improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. Eur. J. Med. Chem. 2016;124:284–298. doi: 10.1016/j.ejmech.2016.08.035. PubMed DOI

Ramsay D., Stevenson H., Jerjes W. From Basic Mechanisms to Clinical Research: Photodynamic Therapy applications in Head and Neck Malignancies and Vascular Anomalies. J. Clin. Med. 2021;10:4404. doi: 10.3390/JCM10194404. PubMed DOI PMC

Repetowski P., Warszyńska M., Kostecka A., Pucelik B., Barzowska A., Emami A., İşci Ü., Dumoulin F., Dąbrowski J.M. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2024;16:48937–48954. doi: 10.1021/acsami.4c04138. PubMed DOI PMC

Říhová B., Kopečková P., Strohalm J., Rossmann P., Větvička V., Kopeček J. Antibody-directed affinity therapy applied to the immune system: in vivo effectiveness and limited toxicity of daunomycin conjugated to HPMA copolymers and targeting antibody. Clin. Immunol. Immunopathol. 1988;46:100–114. doi: 10.1016/0090-1229(88)90010-4. PubMed DOI

Rodriguez V.B., Henry S.M., Hoffman A.S., Stayton P.S., Li X., Pun S.H. Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging. J. Biomed. Opt. 2008;13:14025. doi: 10.1117/1.2834296. DOI

Rudolph T., Crotty S., Schubert U.S., Schacher F.H. Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. e-Polymers. 2015;15:227–235. doi: 10.1515/epoly-2015-0041. DOI

Rwei A.Y., Wang W., Kohane D.S. Photoresponsive nanoparticles for drug delivery. Nano Today. 2015;10:451–467. doi: 10.1016/j.nantod.2015.06.004. PubMed DOI PMC

Rybkin A.Y., Kurmaz S.V., Urakova E.A., Filatova N.V., Sizov L.R., Kozlov A.V., Koifman M.O., Goryachev N.S. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and in Vitro Phototoxic activity. Pharmaceutics. 2023;15:273. doi: 10.3390/PHARMACEUTICS15010273/S1. PubMed DOI PMC

Sakamoto Y., Nishimura T. Recent advances in the self-assembly of sparsely grafted amphiphilic copolymers in aqueous solution. Polym. Chem. 2022;13:6343–6360. doi: 10.1039/D2PY01018F. DOI

Sant V.P., Smith D., Leroux J.C. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J. Control. Release. 2005;104:289–300. doi: 10.1016/J.JCONREL.2005.02.010. PubMed DOI

Seung Lee J., Kim J., Ye Y., Kim T. Materials and device design for advanced phototherapy systems. Adv. Drug Deliv. Rev. 2022;186 doi: 10.1016/j.addr.2022.114339. DOI

Sheehan F., Sementa D., Jain A., Kumar M., Tayarani-Najjaran M., Kroiss D., Ulijn R.V. Peptide-based Supramolecular Systems Chemistry. Chem. Rev. 2021;121:13869–13914. doi: 10.1021/acs.chemrev.1c00089. PubMed DOI

Shi L., Nguyen C., Daurat M., Richy N., Gauthier C., Rebecq E., Gary-Bobo M., Cammas-Marion S., Mongin O., Paul-Roth C.O., Paul F. Encapsulation of Hydrophobic Porphyrins into Biocompatible Nanoparticles: An Easy Way to Benefit of their Two-Photon Phototherapeutic effect without Hydrophilic Functionalization. Cancers (Basel) 2022;14 doi: 10.3390/cancers14102358. DOI

Shieh M.J., Peng C.L., Chiang W.L., Wang C.H., Hsu C.Y., Wang S.J.J., Lai P.S. Reduced skin photosensitivity with meta -tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)- b -poly(d, l -lactide) diblock copolymer in vivo. Mol. Pharm. 2010;7:1244–1253. doi: 10.1021/MP100060V. PubMed DOI

Shu M., Tang J., Chen L., Zeng Q., Li C., Xiao S., Jiang Z., Liu J. Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy. Biomaterials. 2021;268 doi: 10.1016/j.biomaterials.2020.120574. DOI

Sikder A., Vambhurkar G., Amulya E., Bagasariya D., Famta P., Shah S., Khatri D.K., Singh S.B., Sinha V.R., Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: a new horizon in cancer management. J. Control. Release. 2022;349:1009–1030. doi: 10.1016/j.jconrel.2022.08.008. PubMed DOI

Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., Svoboda M., Čepa M., Machalová V., Luptáková D., Velebný V. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017;156:86–96. doi: 10.1016/J.CARBPOL.2016.09.013. PubMed DOI

Stapert H.R., Nishiyama N., Jiang D.-L., Aida T., Kataoka K. Polyion complex Micelles Encapsulating Light-Harvesting Ionic Dendrimer Zinc Porphyrins. Langmuir. 2000;16:8182–8188. doi: 10.1021/la000423e. DOI

Su Z., Xiao Z., Huang J., Wang Y., An Y., Xiao H., Peng Y., Pang P., Han S., Zhu K., Shuai X. Dual-Sensitive PEG-Sheddable Nanodrug Hierarchically Incorporating PD-L1 Antibody and Zinc Phthalocyanine for improved Immuno-Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2021;13:12845–12856. doi: 10.1021/acsami.0c20422. PubMed DOI

Tafech A., Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. Biology (Basel) 2024;13 doi: 10.3390/biology13040225. DOI

Talelli M., Hennink W.E. Thermosensitive Polymeric Micelles for Targeted Drug delivery. Nanomedicine. 2011;6:1245–1255. doi: 10.2217/nnm.11.91. PubMed DOI

Talelli M., Barz M., Rijcken C.J.F., Kiessling F., Hennink W.E., Lammers T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today. 2015;10:93–117. doi: 10.1016/j.nantod.2015.01.005. PubMed DOI PMC

Tavares M.R., Islam R., Šubr V., Hackbarth S., Gao S., Yang K., Lobaz V., Fang J., Etrych T. Polymer theranostics with multiple stimuli-based activation of photodynamic therapy and tumor imaging. Theranostics. 2023;13:4952–4973. doi: 10.7150/THNO.86211. PubMed DOI PMC

Throat S., Bhattacharya S. Macromolecular Poly(N-isopropylacrylamide) (PNIPAM) in Cancer Treatment and beyond. Adv. Polym. Technol. 2024:1444990. doi: 10.1155/2024/1444990. DOI

Throat S., Bhattacharya S. Macromolecular Poly(N-isopropylacrylamide) (PNIPAM) in Cancer Treatment and beyond. Adv. Polym. Technol. 2024:1444990. doi: 10.1155/2024/1444990. DOI

Trigo-Gutierrez J.K., Calori I.R., de Oliveira Bárbara G., Pavarina A.C., Gonçalves R.S., Caetano W., Tedesco A.C., de Mima E.G.O. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front. Microbiol. 2023;14-2023 doi: 10.3389/fmicb.2023.1132781. DOI

Tsakos M., Schaffert E., Clement L., Villadsen N., Poulsen T. Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 2015;32 doi: 10.1039/C4NP00106K. DOI

Tseng T.-H., Chen Chieh-Yu, Wu W.-C., Chen Ching-Yi. Targeted and oxygen-enriched polymeric micelles for enhancing photodynamic therapy. Nanotechnology. 2021;32 doi: 10.1088/1361-6528/ac020d. DOI

Van Butsele K., Sibret P., Fustin C.A., Gohy J.F., Passirani C., Benoit J.P., Jérôme R., Jérôme C. Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interface Sci. 2009;329:235–243. doi: 10.1016/J.JCIS.2008.09.080. PubMed DOI

van Doeveren T.E.M., Karakullukçu M.B., van Veen R.L.P., Lopez-Yurda M., Schreuder W.H., Tan I.B. Adjuvant photodynamic therapy in head and neck cancer after tumor-positive resection margins. Laryngoscope. 2018;128:657–663. doi: 10.1002/LARY.26792. PubMed DOI

Vasey P.A., Kaye S.B., Morrison R., Twelves C., Wilson P., Duncan R., Thomson A.H., Murray L.S., Hilditch T.E., Murray T., Burtles S., Fraier D., Frigerio E., Cassidy J., Committee, on behalf of the C.R.C.P.I Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2-Hydroxypropyl)methacrylamide Copolymer Doxorubicin]: first Member of a New Class of Chemotherapeutic Agents—Drug-Polymer Conjugates1. Clin. Cancer Res. 1999;5:83–94. PubMed

Vermathen M., Marzorati M., Bigler P. Self-assembling properties of porphyrinic photosensitizers and their effect on membrane interactions probed by NMR spectroscopy. J. Phys. Chem. B. 2013;117:6990–7001. doi: 10.1021/JP403331N/SUPPL_FILE/JP403331N_SI_001.PDF. PubMed DOI

Wan J., Sun L., Wu P., Wang F., Guo J., Cheng J., Wang C. Synthesis of indocyanine green functionalized comblike poly(aspartic acid) derivatives for enhanced cancer cell ablation by targeting the endoplasmic reticulum. Polym. Chem. 2018;9:1206–1215. doi: 10.1039/C7PY01994G. DOI

Wang D., Wang T., Liu J., Yu H., Jiao S., Feng B., Zhou F., Fu Y., Yin Q., Zhang P., Zhang Z., Zhou Z., Li Y. Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Lett. 2016;16:5503–5513. doi: 10.1021/acs.nanolett.6b01994. PubMed DOI

Wang S.-W., Lin Y.-K., Fang J.-Y., Lee R.-S. Photo-responsive polymeric micelles and prodrugs: synthesis and characterization. RSC Adv. 2018;8:29321–29337. doi: 10.1039/C8RA04580A. PubMed DOI PMC

Wang X., Wang J., Li J., Huang H., Sun X., Lv Y. Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro. J Drug Deliv Sci Technol. 2018;48:414–421. doi: 10.1016/J.JDDST.2018.10.018. DOI

Wang L., Zhu L., Bernards M.T., Chen S., Sun H., Guo X., Xue W., Cui Y., Gao D. Dendrimer-based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects. ACS Appl Polym Mater. 2020;2:159–171. doi: 10.1021/ACSAPM.9B00026/ASSET/IMAGES/LARGE/AP-2019-000263_0011.JPEG. DOI

Wang C., Wang Beilei, Zou S., Wang Bo, Liu G., Zhang F., Wang Q., He Q., Zhang L. Cyclo-γ-polyglutamic acid-coated dual-responsive nanomicelles loaded with doxorubicin for synergistic chemo-photodynamic therapy. Biomater. Sci. 2021;9:5977–5987. doi: 10.1039/D1BM00713K. PubMed DOI

Wang S., Chen G., Chen J., Wang J., Deng S., Cheng D. Glutathione-depleting polymer delivering chlorin e6 for enhancing photodynamic therapy. RSC Adv. 2022;12:21609–21620. doi: 10.1039/D2RA01877B. PubMed DOI PMC

Wang B., Huang Y., Yang D., Xu J., Zhong X., Zhao S., Liang H. A S-substituted Nile Blue-derived bifunctional near-infrared fluorescent probe for in vivo carboxylesterase imaging-guided photodynamic therapy of hepatocellular carcinoma. J. Mater. Chem. B. 2023;11:7623–7628. doi: 10.1039/D3TB01213A. PubMed DOI

Wang X., Li Y., Hasrat K., Yang L., Qi Z. Sequence-Responsive Multifunctional Supramolecular Nanomicelles Act on the Regression of TNBC and its Lung Metastasis via Synergic Pyroptosis-Mediated Immune Activation. Small. 2023;19:2305101. doi: 10.1002/smll.202305101. DOI

Warszyńska M., Repetowski P., Dąbrowski J.M. Photodynamic therapy combined with immunotherapy: recent advances and future research directions. Coord. Chem. Rev. 2023;495 doi: 10.1016/j.ccr.2023.215350. DOI

Wennink J.W.H., Liu Y., Mäkinen P.I., Setaro F., de la Escosura A., Bourajjaj M., Lappalainen J.P., Holappa L.P., van den Dikkenberg J.B., al Fartousi M., Trohopoulos P.N., Ylä-Herttuala S., Torres T., Hennink W.E., van Nostrum C.F. Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles: a possible treatment for cardiovascular diseases. Eur. J. Pharm. Sci. 2017;107:112–125. doi: 10.1016/j.ejps.2017.06.038. PubMed DOI

Wu L., McHale R., Feng G., Wang X. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers. Int. J. Polym. Sci. 2011;2011 doi: 10.1155/2011/109693. DOI

Wu J., Lin W., Wang Z., Chen S., Chang Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir. 2012;28:7436–7441. doi: 10.1021/LA300394C. PubMed DOI

Wu W., Wang W., Li J. Star polymers: advances in biomedical applications. Prog. Polym. Sci. 2015;46:55–85. doi: 10.1016/j.progpolymsci.2015.02.002. DOI

Xia H., Liang Y., Chen K., Guo C., Wang M., Cao J., Han S., Ma Q., Sun Y., He B. Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy. Colloids Surf. B: Biointerfaces. 2021;203 doi: 10.1016/j.colsurfb.2021.111733. DOI

Xiong L.-H., Yang L., Geng J., Tang B.Z., He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic–Photodynamic Therapy. ACS Nano. 2024;18:17837–17851. doi: 10.1021/acsnano.4c03879. PubMed DOI

Xu L., Chen J., Qian S., Zhang A.-K., Fu G., Li C., Kang E. PEGylated Metalloporphyrin Nanoparticles as a Promising Catalyst for the Heterogeneous Oxidation of Cyclohexene in Water. Macromol. Chem. Phys. 2014;216 doi: 10.1002/macp.201400477. DOI

Xu L., Liu L., Liu F., Cai H., Zhang W. Porphyrin-containing amphiphilic block copolymers for photodynamic therapy. Polym. Chem. 2015;6:2945–2954. doi: 10.1039/C5PY00039D. DOI

Xu L., Zhang Wenyan, Cai H., Liu F., Wang Y., Gao Y., Zhang Weian. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J. Mater. Chem. B. 2015;3:7417–7426. doi: 10.1039/C5TB01363A. PubMed DOI

Xu Z., Pan C., Yuan W. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater. Sci. 2020;8:3348–3358. doi: 10.1039/D0BM00328J. PubMed DOI

Xu Z., Meng R., Wang Y., Sun Y., Qiao J., Yao Y., Peng Q. Advances of Functional Two-Dimensional Nanomaterials in the Treatment of Oral Diseases. Bioengineering. 2025;12 doi: 10.3390/bioengineering12101021. DOI

Xue Y., Tian J., Xu L., Liu Z., Shen Y., Zhang W. Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. Eur. Polym. J. 2019;110:344–354. doi: 10.1016/j.eurpolymj.2018.11.033. DOI

Yakavets I., Millard M., Zorin V., Lassalle H.P., Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J. Control. Release. 2019;304:268–287. doi: 10.1016/J.JCONREL.2019.05.035. PubMed DOI

Yamada S., Sasaki E., Ohno H., Hanaoka K. Heat-guided drug delivery via thermally induced crosslinking of polymeric micelles. Commun Chem. 2024;7:287. doi: 10.1038/s42004-024-01383-0. PubMed DOI PMC

Yao C., Li Y., Wang Z., Song C., Hu X., Liu S. Cytosolic NQO1 Enzyme-Activated Near-infrared Fluorescence Imaging and Photodynamic Therapy with Polymeric Vesicles. ACS Nano. 2020;14:1919–1935. doi: 10.1021/acsnano.9b08285. PubMed DOI

Yokoyama N., Kanazawa A., Kanaoka S., Aoshima S. Synthesis of Highly Defined Graft Copolymers using a Cyclic Acetal Moiety as a Two-Stage Latent Initiating Site for Successive living Cationic Polymerization and Ring-opening Anionic Polymerization. Macromolecules. 2018;51:884–894. doi: 10.1021/acs.macromol.7b02622. DOI

Yoon H.Y., Koo H., Choi K.Y., Lee S.J., Kim K., Kwon I.C., Leary J.F., Park K., Yuk S.H., Park J.H., Choi K. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33:3980–3989. doi: 10.1016/j.biomaterials.2012.02.016. PubMed DOI

Young K., Yamane S., GharehTapeh E.A., Kasamatsu S., Ihara H., Hasegawa U. Manganese Porphyrin-Containing Polymeric Micelles: a Novel Approach for Intracellular Catalytic Formation of per/Polysulfide Species from a Hydrogen Sulfide Donor. Adv. Healthc. Mater. 2024;13:2302429. doi: 10.1002/adhm.202302429. PubMed DOI PMC

Yslas E.I., Alvarez M.G., Rumie Vittar N.B., Bertuzzi M., Durantini E.N., Rivarola V. Physiological parameters and biodistribution of 5,10,15,20-tetra (4-methoxyphenyl) porphyrin in rats. Biomed. Pharmacother. 2002;56:498–502. doi: 10.1016/S0753-3322(02)00289-5. PubMed DOI

Yu X.-T., Sui S.-Y., He Y.-X., Yu C.-H., Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomaterials Advances. 2022;135 doi: 10.1016/j.bioadv.2022.212725. DOI

Yusa S.-I., Endo T., Ito M. Synthesis of thermo-responsive 4-arm star-shaped porphyrin-centered poly(N,N-diethylacrylamide) via reversible addition-fragmentation chain transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 2009;47:6827–6838. doi: 10.1002/pola.23722. DOI

Zhang G.-D., Harada A., Nishiyama N., Jiang D.-L., Koyama H., Aida T., Kataoka K. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J. Control. Release. 2003;93:141–150. doi: 10.1016/j.jconrel.2003.05.002. PubMed DOI

Zhang H., Tong X., Zhao Y. Diverse Thermoresponsive Behaviors of Uncharged UCST Block Copolymer Micelles in Physiological Medium. Langmuir. 2014;30:11433–11441. doi: 10.1021/la5026334. PubMed DOI

Zhang J., Zhang Z., Yu B., Wang C., Wu W., Jiang X. Synthesis and Biological Properties of Porphyrin-Containing Polymeric Micelles with Different Sizes. ACS Appl. Mater. Interfaces. 2016;8:5794–5803. doi: 10.1021/acsami.5b10876. PubMed DOI

Zhang J., Zhang Y., Zhang H., Zhai W., Shi X., Li C. A hypoxia-activatable theranostic agent with intrinsic endoplasmic reticulum affinity and type-I photosensitivity. J. Mater. Chem. B. 2023;11:4102–4110. doi: 10.1039/D3TB00328K. PubMed DOI

Zhang Y., Zhao M., Miao J., Gu W., Zhu J., Cheng B., Li Q., Miao Q. Hemicyanine-based Type I Photosensitizers for Antihypoxic Activatable Photodynamic Therapy. ACS Mater Lett. 2023;5:3058–3067. doi: 10.1021/acsmaterialslett.3c00933. DOI

Zhao C., Chen J., Zhong R., Chen D.S., Shi J., Song J. Oxidative-Species-Selective Materials for Diagnostic and Therapeutic applications. Angew. Chem. Int. Ed. 2021;60:9804–9827. doi: 10.1002/anie.201915833. DOI

Zhou Q., Xu L., Liu F., Zhang W. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. Polymer (Guildf) 2016;97:323–334. doi: 10.1016/j.polymer.2016.04.056. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...