Polymeric micelles in advanced photodynamic therapy: Design, delivery and translational prospects
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41323842
PubMed Central
PMC12657331
DOI
10.1016/j.ijpx.2025.100439
PII: S2590-1567(25)00124-0
Knihovny.cz E-zdroje
- Klíčová slova
- Conjugation, Encapsulation, Micelle, Polymer, Release,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Photodynamic therapy (PDT) is widely studied and complex method useful as a minimally invasive cancer treatment strategy, relying on photosensitizers (PSs), light, and oxygen to induce cytotoxicity. Indeed, the controlled delivery of conventional PSs is the key factor in achieving effective treatment outcome. Among many drug delivery systems, the polymeric micelles represent a promising platform to address the solubility, stability, and delivery challenges associated with PSs. The design of micelles, constructed from hydrophilic and hydrophobic polymeric blocks in diverse structures, enables precise tailoring of carrier properties to optimize PS delivery. This paper focuses on the potential applications and limitations of polymer micelles for the controlled delivery of PSs in the field anticancer therapy. Various methods of synthesis, incorporation of PSs as well as their release and activation are described in detail. The effect of micellar system employment on circulation time, off-target effects, and both passive and active targeting are thoroughly depicted. Despite the clinical promise, the limitations of PDT including shallow tissue penetration and restricted applicability to superficial or endoscope-accessible tumors are discussed, as well as the future prospects consisting in red-shifted or two-photon absorption systems.
Zobrazit více v PubMed
Abels C. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT) Photochem. Photobiol. Sci. 2004;3:765–771. doi: 10.1039/B314241H. PubMed DOI
Ahmetali E., Galstyan A., Süer N.C., Eren T., Şener M.K. Poly(oxanorbornene)s bearing triphenylphosphonium and PEGylated zinc(ii) phthalocyanine with boosted photobiological activity and singlet oxygen generation. Polym. Chem. 2023;14:259–267. doi: 10.1039/D2PY01297A. DOI
Ai X., Zhong L., Niu H., He Z. Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J. Pharm. Sci. 2014;9:244–250. doi: 10.1016/J.AJPS.2014.06.006. DOI
Akimoto J., Nakayama M., Sakai K., Okano T. Temperature-Induced Intracellular Uptake of Thermoresponsive Polymeric Micelles. Biomacromolecules. 2009;10:1331–1336. doi: 10.1021/bm900032r. PubMed DOI
Akimoto J., Nakayama M., Okano T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J. Control. Release. 2014;193:2–8. doi: 10.1016/j.jconrel.2014.06.062. PubMed DOI
Algorri J.F., Ochoa M., Roldán-Varona P., Rodríguez-Cobo L., López-Higuera J.M. Light Technology for Efficient and Effective Photodynamic Therapy: a critical Review. Cancers (Basel) 2021;13 doi: 10.3390/cancers13143484. DOI
Aliabadi H.M., Elhasi S., Mahmud A., Gulamhusein R., Mahdipoor P., Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int. J. Pharm. 2007;329:158–165. doi: 10.1016/J.IJPHARM.2006.08.018. PubMed DOI
Allison R.R., Bansal S. Photodynamic therapy for peripheral lung cancer. Photodiagn. Photodyn. Ther. 2022;38 doi: 10.1016/j.pdpdt.2022.102825. DOI
Alvarez N., Sevilla A. Current advances in Photodynamic Therapy (PDT) and the Future potential of PDT-Combinatorial Cancer Therapies. Int. J. Mol. Sci. 2024;25 doi: 10.3390/ijms25021023. DOI
Appold M., Mari C., Lederle C., Elbert J., Schmidt C., Ott I., Stühn B., Gasser G., Gallei M. Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex. Polym. Chem. 2017;8:890–900. doi: 10.1039/C6PY02026G. DOI
Arnaut L.G. Design of porphyrin-based photosensitizers for photodynamic therapy. Adv. Inorg. Chem. 2011;63:187–233. doi: 10.1016/B978-0-12-385904-4.00006-8. DOI
Atanase L.I. Micellar Drug delivery Systems based on Natural Biopolymers. Polymers (Basel) 2021;13 doi: 10.3390/polym13030477. DOI
Avgoustakis K., Beletsi A., Panagi Z., Klepetsanis P., Karydas A.G., Ithakissios D.S. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release. 2002;79:123–135. doi: 10.1016/S0168-3659(01)00530-2. PubMed DOI
Ballestri M., Caruso E., Guerrini A., Ferroni C., Banfi S., Gariboldi M., Monti E., Sotgiu G., Varchi G. Core–shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy. J. Photochem. Photobiol. B. 2018;186:169–177. doi: 10.1016/j.jphotobiol.2018.07.013. PubMed DOI
Bao J., Hu M., Zhang Y., Zhang Q., Zhu F., Zou Q., Tang J. Novel active stealth micelles based on β2M achieved effective antitumor therapy. Biomed. Pharmacother. 2022;151 doi: 10.1016/j.biopha.2022.113175. DOI
Barenholz Y. Doxil® — the first FDA-approved nano-drug: Lessons learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/J.JCONREL.2012.03.020. PubMed DOI
Bartnikowski M., Dargaville T.R., Ivanovski S., Hutmacher D.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019;96:1–20. doi: 10.1016/j.progpolymsci.2019.05.004. DOI
Belali S., Savoie H., O’Brien J.M., Cafolla A.A., O’Connell B., Karimi A.R., Boyle R.W., Senge M.O. Synthesis and Characterization of Temperature-Sensitive and Chemically Cross-Linked Poly(N-isopropylacrylamide)/Photosensitizer Hydrogels for applications in Photodynamic Therapy. Biomacromolecules. 2018;19:1592–1601. doi: 10.1021/ACS.BIOMAC.8B00293/ASSET/IMAGES/LARGE/BM-2018-00293G_0008.JPEG. PubMed DOI
Ben-Hur E., Zuk M.M., Chin S., Banerjee D., Kenney M.E., Horowitz B. Redistribution and virus inactivation efficacy of a silicon PHTHALOCYANINE in red blood cell concentrates as a function of delivery vehicle. Photochem. Photobiol. 1995;62:575–579. doi: 10.1111/j.1751-1097.1995.tb02387.x. PubMed DOI
Berillo D., Yeskendir A., Zharkinbekov Z., Raziyeva K., Saparov A. Peptide-Based Drug Delivery Systems. Medicina (B Aires) 2021;57 doi: 10.3390/medicina57111209. DOI
Böhmová E., Pola R. Peptide-targeted polymer cancerostatics. Physiol. Res. 2016;65:S153–S164. doi: 10.33549/PHYSIOLRES.933418. PubMed DOI
Bordat A., Boissenot T., Nicolas J., Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv. Drug Deliv. Rev. 2019;138:167–192. doi: 10.1016/j.addr.2018.10.005. PubMed DOI
Breitenbach Benjamin B., Steiert E., Konhäuser M., Vogt L.M., Wang Y., Parekh S.H., Wich P.R. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter. 2019;15:1423–1434. doi: 10.1039/C8SM02204F. PubMed DOI
Breitenbach Benjamin B., Steiert E., Konhäuser M., Vogt L.-M., Wang Y., Parekh S.H., Wich P.R. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. Soft Matter. 2019;15:1423–1434. doi: 10.1039/C8SM02204F. PubMed DOI
Burloiu A.M., Ozon E.A., Musuc A.M., Anastasescu M., Socoteanu R.P., Atkinson I., Culita D.C., Anuta V., Popescu I.A., Lupuliasa D., Mihai D.P., Gîrd C.E., Boscencu R. Porphyrin Photosensitizers into Polysaccharide-based Biopolymer Hydrogels for Topical Photodynamic Therapy: Physicochemical and Pharmacotechnical Assessments. Gels. 2024;10:499. doi: 10.3390/GELS10080499. PubMed DOI PMC
Campo M.A., Gabriel D., Kucera P., Gurny R., Lange N. Polymeric Photosensitizer Prodrugs for Photodynamic Therapy. Photochem. Photobiol. 2007;83:958–965. doi: 10.1111/j.1751-1097.2007.00090.x. PubMed DOI
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004;1:279–293. doi: 10.1016/S1572-1000(05)00007-4. DOI
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodyn. Ther. 2005;2:1–23. doi: 10.1016/S1572-1000(05)00030-X. DOI
Castano A.P., Demidova T.N., Hamblin M.R. Mechanisms in photodynamic therapy: part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagn. Photodyn. Ther. 2005;2:91–106. doi: 10.1016/S1572-1000(05)00060-8. DOI
Çetinkaya A., Sadak A.E., Ayhan M.M., Zorlu Y., Kahveci M.U. Porphyrin-based covalent organic polymer by inverse electron demand Diels-Alder reaction. Eur. Polym. J. 2021;157 doi: 10.1016/j.eurpolymj.2021.110664. DOI
Chakraborty P., Bhattacharyya C., Sahu R., Dua T.K., Kandimalla R., Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol. 2024;91 doi: 10.1016/j.jddst.2023.105267. DOI
Chan D.P.Y., Owen S.C., Shoichet M.S. Double Click: dual Functionalized Polymeric Micelles with Antibodies and Peptides. Bioconjug. Chem. 2013;24:105–113. doi: 10.1021/bc300511a. PubMed DOI
Chang M.-H., Pai C.-L., Chen Y.-C., Yu H.-P., Hsu C.-Y., Lai P.-S. Enhanced Antitumor Effects of Epidermal Growth factor Receptor Targetable Cetuximab-Conjugated Polymeric Micelles for Photodynamic Therapy. Nanomaterials. 2018;8 doi: 10.3390/nano8020121. DOI
Chen Y., Li Z., Wang H., Wang Y., Han H., Jin Q., Ji J. IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS Appl. Mater. Interfaces. 2016;8:6852–6858. doi: 10.1021/ACSAMI.6B00251/ASSET/IMAGES/LARGE/AM-2016-00251R_0007.JPEG. PubMed DOI
Chen S., Li Q., Li H., Yang L., Yi J.Z., Xie M., Zhang L.M. Long-circulating zein-polysulfobetaine conjugate-based nanocarriers for enhancing the stability and pharmacokinetics of curcumin. Mater. Sci. Eng. C. 2020;109 doi: 10.1016/J.MSEC.2020.110636. DOI
Cheng R., Feng F., Meng F., Deng C., Feijen J., Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release. 2011;152:2–12. doi: 10.1016/j.jconrel.2011.01.030. PubMed DOI
Cheng C.-C., Huang J.-J., Lee A.-W., Huang S.-Y., Huang C.-Y., Lai J.-Y. Highly Effective Photocontrollable Drug delivery Systems based on Ultrasensitive Light-Responsive Self-Assembled Polymeric Micelles: An in Vitro Therapeutic Evaluation. ACS Appl. Bio Mater. 2019;2:2162–2170. doi: 10.1021/acsabm.9b00146. DOI
Chin W.W.L., Lau W.K.O., Bhuvaneswari R., Heng P.W.S., Olivo M. Chlorin e6-polyvinylpyrrolidone as a fluorescent marker for fluorescence diagnosis of human bladder cancer implanted on the chick chorioallantoic membrane model. Cancer Lett. 2007;245:127–133. doi: 10.1016/J.CANLET.2005.12.041. PubMed DOI
Chin W.W.L., Heng P.W.S., Thong P.S.P., Bhuvaneswari R., Hirt W., Kuenzel S., Soo K.C., Olivo M. Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. Eur. J. Pharm. Biopharm. 2008;69:1083–1093. doi: 10.1016/J.EJPB.2008.02.013. PubMed DOI
Chinna Ayya Swamy P., Sivaraman G., Priyanka R.N., Raja S.O., Ponnuvel K., Shanmugpriya J., Gulyani A. Near infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord. Chem. Rev. 2020;411 doi: 10.1016/j.ccr.2020.213233. DOI
Choi Y., Weissleder R., Tung C.-H. Protease-Mediated Phototoxicity of a Polylysine–Chlorine6 Conjugate. ChemMedChem. 2006;1:698–701. doi: 10.1002/cmdc.200600053. PubMed DOI
Choi Y., Weissleder R., Tung C.-H. Selective Antitumor effect of Novel Protease-Mediated Photodynamic Agent. Cancer Res. 2006;66:7225–7229. doi: 10.1158/0008-5472.CAN-06-0448. PubMed DOI
Copley L., van der Watt P., Wirtz K.W., Parker M.I., Leaner V.D. Photolon™, a chlorin e6 derivative, triggers ROS production and light-dependent cell death via necrosis. Int. J. Biochem. Cell Biol. 2008;40:227–235. doi: 10.1016/J.BIOCEL.2007.07.014. PubMed DOI
Correia José H., Rodrigues J.A., Pimenta S., Dong T., Yang Z. Photodynamic Therapy Review: Principles, Photosensitizers, applications, and Future Directions. Pharmaceutics. 2021;13 doi: 10.3390/pharmaceutics13091332. DOI
Costa-Tuna A., Chaves O.A., Loureiro R.J.S., Pinto S., Pina J., Serpa C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int. J. Biol. Macromol. 2024;255 doi: 10.1016/j.ijbiomac.2023.128210. DOI
Dabrowski J. Advances in Inorganic Chemistry. 2017. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of their Generation and Potentiation. DOI
Dąbrowski J.M. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of their Generation and Potentiation. Adv. Inorg. Chem. 2017;70:343–394. doi: 10.1016/BS.ADIOCH.2017.03.002. DOI
Dai L., Cai R., Li M., Luo Z., Yu Y., Chen W., Shen X., Pei Y., Zhao X., Cai K. Dual-Targeted Cascade-Responsive Prodrug Micelle System for Tumor Therapy in Vivo. Chem. Mater. 2017;29:6976–6992. doi: 10.1021/acs.chemmater.7b02513. DOI
Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Dantas K.C.F., dos Rosário J.S., Silva-Caldeira P.P. Polymeric Nanosystems Applied for Metal-based drugs and Photosensitizers delivery: the State of the Art and recent Advancements. Pharmaceutics. 2022;14 doi: 10.3390/pharmaceutics14071506. DOI
de Loos F., Reynhout I.C., Cornelissen J.J.L.M., Rowan A.E., Nolte R.J.M. Construction of functional porphyrin polystyrene nano-architectures by ATRP. Chem. Commun. 2005;60–62 doi: 10.1039/B412067A. DOI
De Rosa F.S., Bentley M.V.L.B. Photodynamic therapy of skin cancers: Sensitizers, clinical studies and future directives. Pharm. Res. 2000;17:1447–1455. doi: 10.1023/A:1007612905378/METRICS. PubMed DOI
Debele T.A., Mekuria S.L., Tsai H.C. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. Int. J. Biol. Macromol. 2017;98:125–138. doi: 10.1016/J.IJBIOMAC.2017.01.103. PubMed DOI
Desai N., Rana D., Salave S., Benival D., Khunt D., Prajapati B.G. Achieving Endo/Lysosomal Escape using Smart Nanosystems for Efficient Cellular delivery. Molecules. 2024;29 doi: 10.3390/molecules29133131. DOI
Ding H., Sumer B.D., Kessinger C.W., Dong Y., Huang G., Boothman D.A., Gao J. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J. Control. Release. 2011;151:271–277. doi: 10.1016/j.jconrel.2011.01.004. PubMed DOI PMC
Ding H., Yu H., Dong Y., Tian R., Huang G., Boothman D.A., Sumer B.D., Gao J. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J. Control. Release. 2011;156:276–280. doi: 10.1016/J.JCONREL.2011.08.019. PubMed DOI PMC
Donohoe C., Senge M.O., Arnaut L.G., Gomes-da-Silva L.C. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochimica et Biophysica Acta (BBA) - Reviews on. Cancer. 2019;1872 doi: 10.1016/j.bbcan.2019.07.003. DOI
Dou X., Nomoto T., Takemoto H., Matsui M., Tomoda K., Nishiyama N. Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Sci. Rep. 2018;8:8126. doi: 10.1038/s41598-018-26593-0. PubMed DOI PMC
El-Faham A., Albericio F. Peptide Coupling Reagents, more than a Letter Soup. Chem. Rev. 2011;111:6557–6602. doi: 10.1021/cr100048w. PubMed DOI
Endo M., Aida T., Inoue S. Immortal polymerization of .epsilon.-caprolactone initiated by aluminum porphyrin in the presence of alcohol. Macromolecules. 1987;20:2982–2988. doi: 10.1021/ma00178a005. DOI
Esparza K., Onyuksel H. Development of co-solvent freeze-drying method for the encapsulation of water-insoluble thiostrepton in sterically stabilized micelles. Int. J. Pharm. 2019;556:21–29. doi: 10.1016/J.IJPHARM.2018.12.001. PubMed DOI
Ezike T.C., Okpala U.S., Onoja U.L., Nwike C.P., Ezeako E.C., Okpara O.J., Okoroafor C.C., Eze S.C., Kalu O.L., Odoh E.C., Nwadike U.G., Ogbodo J.O., Umeh B.U., Ossai E.C., Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e17488. DOI
Fan F., Wang L., Li F., Fu Y., Xu H. Stimuli-Responsive Layer-by-Layer Tellurium-Containing Polymer Films for the Combination of Chemotherapy and Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2016;8:17004–17010. doi: 10.1021/acsami.6b04998. PubMed DOI
Fang J., Šubr V., Islam W., Hackbarth S., Islam R., Etrych T., Ulbrich K., Maeda H. N-(2-hydroxypropyl)methacrylamide polymer conjugated pyropheophorbide-a, a promising tumor-targeted theranostic probe for photodynamic therapy and imaging. Eur. J. Pharm. Biopharm. 2018;130:165–176. doi: 10.1016/j.ejpb.2018.06.005. PubMed DOI
Feng C., Zhu D., Chen L., Lu Y., Liu J., Kim N.Y., Liang S., Zhang X., Lin Y., Ma Y., Dong C. Targeted delivery of Chlorin e6 via Redox Sensitive Diselenide-Containing Micelles for improved Photodynamic Therapy in Cluster of Differentiation 44-Overexpressing Breast Cancer. Front. Pharmacol. 2019;10-2019 doi: 10.3389/fphar.2019.00369. DOI
Finlayson L., Barnard I.R.M., McMillan L., Ibbotson S.H., Brown C.T.A., Eadie E., Wood K. Depth Penetration of Light into Skin as a Function of Wavelength from 200 to 1000 nm. Photochem. Photobiol. 2022;98:974–981. doi: 10.1111/php.13550. PubMed DOI
Ganzleben I., Hohmann M., Grünberg A., Gonzales-Menezes J., Vieth M., Liebing E., Günther C., Thonn V., Beß D., Becker C., Schmidt M., Neurath M.F., Waldner M.J. Topical application of Chlorin e6-PVP (Ce6-PVP) for improved endoscopic detection of neoplastic lesions in a murine colitis-associated cancer model. Sci. Rep. 2020;10(1):1–10. doi: 10.1038/s41598-020-69570-2. PubMed DOI PMC
Gao D., Lo P.-C. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J. Control. Release. 2018;282:46–61. doi: 10.1016/j.jconrel.2018.04.030. PubMed DOI
Gibot L., Lemelle A., Till U., Moukarzel B., Mingotaud A.F., Pimienta V., Saint-Aguet P., Rols M.P., Gaucher M., Violleau F., Chassenieux C., Vicendo P. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules. 2014;15:1443–1455. doi: 10.1021/BM5000407. PubMed DOI
Gibot L., Demazeau M., Pimienta V., Mingotaud A.-F., Vicendo P., Collin F., Martins-Froment N., Dejean S., Nottelet B., Roux C., Lonetti B. Role of Polymer Micelles in the delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020;12 doi: 10.3390/cancers12020384. DOI
Gierlich P., Mucha S.G., Robbins E., Gomes-da-Silva L.C., Matczyszyn K., Senge M.O. One-Photon and Two-Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (Temoporfin) Derivatives as potential Two-Photon-Induced Photodynamic Therapy Agents. ChemPhotoChem. 2022;6 doi: 10.1002/cptc.202100249. DOI
Gjuroski I., Girousi E., Meyer C., Hertig D., Stojkov D., Fux M., Schnidrig N., Bucher J., Pfister S., Sauser L., Simon H.U., Vermathen P., Furrer J., Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J. Control. Release. 2019;316:150–167. doi: 10.1016/J.JCONREL.2019.10.010. PubMed DOI
Gjuroski I., Furrer J., Vermathen M., Zacharis C.K., Tzanavaras P.D. Probing the Interactions of Porphyrins with Macromolecules using NMR Spectroscopy Techniques. Molecules. 2021;26:1942. doi: 10.3390/MOLECULES26071942. PubMed DOI PMC
Gohy J.-F., Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem. Soc. Rev. 2013;42:7117–7129. doi: 10.1039/C3CS35469E. PubMed DOI
Gomes A.T.P.C., Fernandes R., Ribeiro C.F., Tomé J.P.C., Neves M.G.P.M.S., de Silva F.C., da Ferreira V.F., Cavaleiro J.A.S. Synthesis, Characterization and Photodynamic activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules. 2020;25 doi: 10.3390/molecules25071607. DOI
Gong H., Dong Z., Liu Y., Yin S., Cheng L., Xi W., Xiang J., Liu K., Li Y., Liu Z. Engineering of Multifunctional Nano-Micelles for combined Photothermal and Photodynamic Therapy under the Guidance of Multimodal Imaging. Adv. Funct. Mater. 2014;24:6492–6502. doi: 10.1002/adfm.201401451. DOI
Gorman A., Killoran J., O’Shea C., Kenna T., Gallagher W.M., O’Shea D.F. In Vitro Demonstration of the Heavy-Atom effect for Photodynamic Therapy. J. Am. Chem. Soc. 2004;126:10619–10631. doi: 10.1021/ja047649e. PubMed DOI
Grin M., Suvorov N., Ostroverkhov P., Pogorilyy V., Kirin N., Popov A., Sazonova A., Filonenko E. Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys. Rev. 2022;14:941–963. doi: 10.1007/s12551-022-00962-6. PubMed DOI PMC
Gu Z.W., Spikes J.D., Kopeckova P., Kopecek J. Synthesis and photoproperties of a substituted zinc(ii) phthalocyanine-n-(2-hydroxypropyl)methacrylamide copolymer conjugate. Collect. Czechoslov. Chem. Commun. 1993;58:2321–2336. doi: 10.1135/cccc19932321. DOI
Hadjichristidis N., Pispas S., Floudas G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. Block Copolymers: Synthetic strategies. Physical Properties, and Applications. 2024;1–435 doi: 10.1002/0471269808. DOI
Han K., Wang S.-B., Lei Q., Zhu J.-Y., Zhang X.-Z. Ratiometric Biosensor for Aggregation-Induced Emission-Guided Precise Photodynamic Therapy. ACS Nano. 2015;9:10268–10277. doi: 10.1021/acsnano.5b04243. PubMed DOI
He Y., Hower J., Chen S., Bernards M.T., Chang Y., Jiang S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence of water. Langmuir. 2008;24:10358–10364. doi: 10.1021/LA8013046/ASSET/IMAGES/LA-2008-013046_M005.GIF. PubMed DOI
He M., Zhang Z., Jiao Z., Yan M., Miao P., Wei Z., Leng X., Li Y., Fan J., Sun W., Peng X. Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chin. Chem. Lett. 2023;34 doi: 10.1016/J.CCLET.2022.05.088. DOI
Herzberger J., Niederer K., Pohlit H., Seiwert J., Worm M., Wurm F.R., Frey H. Polymerization of Ethylene Oxide, propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016;116:2170–2243. doi: 10.1021/acs.chemrev.5b00441. PubMed DOI
High L.R.H., Holder S.J., Penfold H.V. Synthesis of Star Polymers of Styrene and Alkyl (Meth)acrylates from a Porphyrin Initiator Core via ATRP. Macromolecules. 2007;40:7157–7165. doi: 10.1021/ma062870s. DOI
Hsu C.Y., Allela O.Q.B., Hussein A.M., Mustafa M.A., Kaur M., Alaraj M., Al-Hussainy A.F., Radi U.K., Ubaid M., Idan A.H., Alsaikhan F., Narmani A., Farhood B. Recent advances in polysaccharide-based drug delivery systems for cancer therapy: a comprehensive review. Artif Cells Nanomed Biotechnol. 2024;52:564–586. doi: 10.1080/21691401.2024.2436350. PubMed DOI
Hu Y., Yin S.-Y., Liu W., Li Z., Chen Y., Li J. Rationally designed monoamine oxidase A-activatable AIE molecular photosensitizer for the specific imaging and cellular therapy of tumors. Aggregate. 2023;4 doi: 10.1002/agt2.256. DOI
Huang X., Brazel C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release. 2001;73:121–136. doi: 10.1016/S0168-3659(01)00248-6. PubMed DOI
Huang S., Yin D., Zhao Y., Gu Y. Twelfth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014) 9230. 2014. Optimization and characterization of the photosensitive N-succinyl-N’-4-(2-nitrobenzyloxy)-succinyl-chitosan micelles; p. 92300C. DOI
Huang Y., Qiu F., Shen L., Chen D., Su Y., Yang C., Li B., Yan D., Zhu X. Combining Two-Photon-Activated Fluorescence Resonance Energy transfer and Near-infrared Photothermal effect of Unimolecular Micelles for Enhanced Photodynamic Therapy. ACS Nano. 2016;10:10489–10499. doi: 10.1021/ACSNANO.6B06450. PubMed DOI
Huang L., Zhao S., Wu J., Yu L., Singh N., Yang K., Lan M., Wang P., Kim J.S. Photodynamic therapy for hypoxic tumors: advances and perspectives. Coord. Chem. Rev. 2021;438 doi: 10.1016/j.ccr.2021.213888. DOI
Huntošová V., Datta S., Lenkavská L., MáčAjová M., Bilčík B., Kundeková B., Čavarga I., Kronek J., Jutková A., Miškovský P., Jancura D. Alkyl Chain Length in Poly(2-oxazoline)-based Amphiphilic Gradient Copolymers Regulates the delivery of Hydrophobic Molecules: a Case of the Biodistribution and the Photodynamic activity of the Photosensitizer Hypericin. Biomacromolecules. 2021;22:4199–4216. doi: 10.1021/ACS.BIOMAC.1C00768/ASSET/IMAGES/LARGE/BM1C00768_0014.JPEG. PubMed DOI
Huotari J., Helenius A. Endosome maturation. EMBO J. 2011;30 doi: 10.1038/emboj.2011.286. 3481-3500–3500. DOI
Hussein Y.H.A., Youssry M. Polymeric Micelles of Biodegradable Diblock Copolymers: Enhanced Encapsulation of Hydrophobic Drugs. Materials. 2018;11 doi: 10.3390/ma11050688. DOI
Isaacson K.J., Martin Jensen M., Subrahmanyam N.B., Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J. Control. Release. 2017;259:62–75. doi: 10.1016/j.jconrel.2017.01.034. PubMed DOI PMC
Ishida T., Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008;354:56–62. doi: 10.1016/J.IJPHARM.2007.11.005. PubMed DOI
Islam R., Kotalík K., Šubr V., Gao S., Zhou J.-R., Yokomizo K., Etrych T., Fang J. HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties. Nanomedicine. 2023;48 doi: 10.1016/j.nano.2022.102636. DOI
Izquierdo-Barba I., Colilla M., Vallet-Regí M. Zwitterionic ceramics for biomedical applications. Acta Biomater. 2016;40:201–211. doi: 10.1016/J.ACTBIO.2016.02.027. PubMed DOI
Jang W.-D., Nakagishi Y., Nishiyama N., Kawauchi S., Morimoto Y., Kikuchi M., Kataoka K. Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J. Control. Release. 2006;113:73–79. doi: 10.1016/j.jconrel.2006.03.009. PubMed DOI
Ji Y., Sun Y., Hei M., Cheng D., Wang B., Tang Y., Fu Y., Zhu W., Xu Y., Qian X. NIR Activated Upper critical solution Temperature Polymeric Micelles for Trimodal Combinational Cancer Therapy. Biomacromolecules. 2022;23:937–947. doi: 10.1021/acs.biomac.1c01356. PubMed DOI
Jia W., Liu R., Wang Y., Hu C., Yu W., Zhou Y., Wang L., Zhang M., Gao H., Gao X. Dual-responsive nanoparticles with transformable shape and reversible charge for amplified chemo-photodynamic therapy of breast cancer. Acta Pharm. Sin. B. 2022;12:3354–3366. doi: 10.1016/j.apsb.2022.03.010. PubMed DOI PMC
Jiang J., Qi B., Lepage M., Zhao Y. Polymer Micelles Stabilization on demand through Reversible Photo-Cross-linking. Macromolecules. 2007;40:790–792. doi: 10.1021/ma062493j. DOI
Jiang D., Chen C., Xue Y., Cao H., Wang C., Yang G., Gao Y., Wang P., Zhang W. NIR-Triggered “OFF/ON” Photodynamic Therapy through a Upper critical solution Temperature Block Copolymer. ACS Appl. Mater. Interfaces. 2019;11:37121–37129. doi: 10.1021/acsami.9b12889. PubMed DOI
Jin Q., Mitschang F., Agarwal S. Biocompatible Drug delivery System for Photo-Triggered Controlled Release of 5-Fluorouracil. Biomacromolecules. 2011;12:3684–3691. doi: 10.1021/bm2009125. PubMed DOI
Josefsen Leanne B., Boyle R.W. Photodynamic Therapy and the Development of Metal-based Photosensitisers. Metal-Based Drugs. 2008;2008 doi: 10.1155/2008/276109. DOI
Josefsen Leanne B., Boyle R.W. Photodynamic Therapy and the Development of Metal-based Photosensitisers. Metal-Based Drugs. 2008;2008 doi: 10.1155/2008/276109. DOI
Kathuria I., Kumar S. Emerging frontiers in spiropyran-driven photoresponsive drug delivery systems and technologies. Dyes Pigments. 2025;239 doi: 10.1016/j.dyepig.2025.112793. DOI
Kato H., Furukawa K., Sato M., Okunaka T., Kusunoki Y., Kawahara M., Fukuoka M., Miyazawa T., Yana T., Matsui K., Shiraishi T., Horinouchi H. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42 doi: 10.1016/S0169-5002(03)00242-3. DOI
Kierstead P.H., Okochi H., Venditto V.J., Chuong T.C., Kivimae S., Fréchet J.M.J., Szoka F.C. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J. Control. Release. 2015;213:1–9. doi: 10.1016/J.JCONREL.2015.06.023. PubMed DOI PMC
Kiew L.V., Cheah H.Y., Voon S.H., Gallon E., Movellan J., Ng K.H., Alpugan S., Lee H.B., Dumoulin F., Vicent M.J., Chung L.Y. Near-infrared activatable phthalocyanine-poly-L-glutamic acid conjugate: increased cellular uptake and light–dark toxicity ratio toward an effective photodynamic cancer therapy. Nanomedicine. 2017;13:1447–1458. doi: 10.1016/j.nano.2017.02.002. PubMed DOI
Kim T.H., Chen Y., Mount C.W., Gombotz W.R., Li X., Pun S.H. Evaluation of Temperature-Sensitive, Indocyanine Green-Encapsulating Micelles for Noninvasive Near-infrared Tumor Imaging. Pharm. Res. 2010;27:1900–1913. doi: 10.1007/s11095-010-0190-y. PubMed DOI
Kimura M., Ueki H., Ohta K., Hanabusa K., Shirai H., Kobayashi N. Aggregation Behavior of Amphiphilic Phthalocyanine Block Copolymers. Langmuir. 2002;18:7683–7687. doi: 10.1021/la020275n. DOI
Kochneva E.V., Filonenko E.V., Vakulovskaya E.G., Scherbakova E.G., Seliverstov O.V., Markichev N.A., Reshetnickov A.V. Photosensitizer Radachlorin ® : Skin cancer PDT phase II clinical trials. Photodiagn. Photodyn. Ther. 2010;7:258–267. doi: 10.1016/j.pdpdt.2010.07.006. DOI
Kong C., Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: a Review. Int. J. Nanomedicine. 2022;17:6427–6446. doi: 10.2147/IJN.S388996. PubMed DOI PMC
Kong L., Campbell F., Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horiz. 2019;4:378–387. doi: 10.1039/C8NH00417J. PubMed DOI
Koo H., Lee H., Lee S., Min K.H., Kim M.S., Lee D.S., Choi Y., Kwon I.C., Kim K., Jeong S.Y. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem. Commun. 2010;46:5668–5670. doi: 10.1039/C0CC01413C. DOI
Kotta S., Aldawsari H.M., Badr-Eldin S.M., Nair A.B., Yt K. Progress in Polymeric Micelles for Drug delivery applications. Pharmaceutics. 2022;14 doi: 10.3390/pharmaceutics14081636. DOI
Kozma G.T., Shimizu T., Ishida T., Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 2020;154–155:163–175. doi: 10.1016/j.addr.2020.07.024. DOI
Krinick N.L., Sun Y., Joyner D.A., Reed R., Spikes J.D., Straight R.C., Kopecek J. SPIE Proceedings. SPIE; 1992. Polymer-bound meso-chlorin e6 for PDT (Invited Paper) pp. 142–154. DOI
Kübler A.C. Photodynamic therapy. Med. Laser Application. 2005;20:37–45. doi: 10.1016/J.MLA.2005.02.001. DOI
Kumar S.S., Harikrishnan K.K., Urmila S.P., Gauri V., Saritha A., Gangopadhyay M. Comprehensive review of Pluronic® polymers of different shapes with prominent applications in photodynamic therapy. Eur. Polym. J. 2023;200 doi: 10.1016/j.eurpolymj.2023.112534. DOI
Kumari P., Rompicharla S.V.K., Bhatt H., Ghosh B., Biswas S. Development of Chlorin E6-Conjugated Poly(Ethylene Glycol)-Poly(D,L-Lactide) Nanoparticles for Photodynamic Therapy. Nanomedicine. 2019;14:819–834. doi: 10.2217/NNM-2018-0255. PubMed DOI
Kunjachan S., Pola R., Gremse F., Theek B., Ehling J., Moeckel D., Hermanns-Sachweh B., Pechar M., Ulbrich K., Hennink W.E., Storm G., Lederle W., Kiessling F., Lammers T. Passive versus active Tumor Targeting using RGD- and NGR-Modified Polymeric Nanomedicines. Nano Lett. 2014;14:972–981. doi: 10.1021/nl404391r. PubMed DOI PMC
Kuperkar K., Patel D., Atanase L.I., Bahadur P. Amphiphilic Block Copolymers: their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug delivery Vehicles. Polymers (Basel) 2022;14 doi: 10.3390/polym14214702. DOI
Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049. PubMed DOI
Lamch Ł., Gancarz R., Tsirigotis-Maniecka M., Moszyńska I.M., Ciejka J., Wilk K.A. Studying the “rigid-flexible” Properties of Polymeric Micelle Core-Forming Segments with a Hydrophobic Phthalocyanine Probe using NMR and UV Spectroscopy. Langmuir. 2021;37:4316–4330. doi: 10.1021/ACS.LANGMUIR.1C00328/SUPPL_FILE/LA1C00328_SI_001.PDF. PubMed DOI PMC
Le Clainche T., Abdelhamid A.G.A., Carigga Gutierrez N.M., Jourdain M.-A., Leo S., Sancey L., Hurbin A., Coll J.-L., Elena-Herrmann B., Broekgaarden M. Photodynamic drug delivery for cancer therapy: Designing liposomes for light-controlled release and enhanced drug efficacy. Eur. J. Pharm. Sci. 2025;213 doi: 10.1016/j.ejps.2025.107221. DOI
Le Garrec D., Taillefer J., Van Lier J.E., Lenaerts V., Leroux J.C. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J. Drug Target. 2002;10:429–437. doi: 10.1080/1061186021000001887. PubMed DOI
Lee J.-E., Ahn E., Bak J.M., Jung S.-H., Park J.M., Kim B.-S., Lee H. Polymeric micelles based on photocleavable linkers tethered with a model drug. Polymer (Guildf) 2014;55:1436–1442. doi: 10.1016/j.polymer.2014.01.026. DOI
Li W., Zheng C., Pan Z., Chen C., Hu D., Gao G., Kang S., Cui H., Gong P., Cai L. Smart hyaluronidase-actived theranostic micelles for dual-modal imaging guided photodynamic therapy. Biomaterials. 2016;101:10–19. doi: 10.1016/j.biomaterials.2016.05.019. PubMed DOI
Li X., Gao M., Xin K., Zhang L., Ding D., Kong D., Wang Z., Shi Y., Kiessling F., Lammers T., Cheng J., Zhao Y. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J. Control. Release. 2017;260:12–21. doi: 10.1016/j.jconrel.2017.05.025. PubMed DOI
Li Y., Zhao D., Li Yanwei, Liu Y., Duan Q., Kakuchi T. Synthesis of water-soluble and thermoresponsive phthalocyanine ended block copolymers as potential photosensitizer. Dyes Pigments. 2017;142:88–99. doi: 10.1016/j.dyepig.2017.03.010. DOI
Li F., Chen C., Yang Xixi, He X., Zhao Z., Li J., Yu Y., Yang Xianzhu, Wang J. Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2018;10:21198–21205. doi: 10.1021/acsami.8b06758. PubMed DOI
Li J., Meng X., Deng J., Lu D., Zhang X., Chen Y., Zhu J., Fan A., Ding D., Kong D., Wang Z., Zhao Y. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer delivery. ACS Appl. Mater. Interfaces. 2018;10:17117–17128. doi: 10.1021/acsami.8b06299. PubMed DOI
Liang H., Zhou Z., Luo R., Sang M., Liu B., Sun M., Qu W., Feng F., Liu W. Tumor-specific activated photodynamic therapy with an oxidation-regulated strategy for enhancing anti-tumor efficacy. Theranostics. 2018;8:5059–5071. doi: 10.7150/thno.28344. PubMed DOI PMC
Liao C., Liu X., Zhang C., Zhang Q. Tumor hypoxia: from basic knowledge to therapeutic implications. Semin. Cancer Biol. 2023;88:172–186. doi: 10.1016/j.semcancer.2022.12.011. PubMed DOI PMC
Liu F., Ma Y., Xu L., Liu L., Zhang W. Redox-responsive supramolecular amphiphiles constructed via host–guest interactions for photodynamic therapy. Biomater. Sci. 2015;3:1218–1227. doi: 10.1039/C5BM00045A. PubMed DOI
Liu L., Ruan Z., Li T., Yuan P., Yan L. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2. Biomater. Sci. 2016;4:1638–1645. doi: 10.1039/C6BM00581K. PubMed DOI
Liu L., Wang R., Wang C., Wang J., Chen L., Cheng J. Light-triggered release of drug conjugates for an efficient combination of chemotherapy and photodynamic therapy. Biomater. Sci. 2018;6:997–1001. doi: 10.1039/C7BM01114H. PubMed DOI
Liu Y., Fens M.H.A.M., Capomaccio R.B., Mehn D., Scrivano L., Kok R.J., Oliveira S., Hennink W.E., van Nostrum C.F. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer. J. Control. Release. 2020;328:942–951. doi: 10.1016/j.jconrel.2020.10.040. PubMed DOI
Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015;115:1990–2042. doi: 10.1021/CR5004198/ASSET/IMAGES/LARGE/CR-2014-004198_0033.JPEG. PubMed DOI
Luo L., Yin Z., Qi Y., Liu S., Yi Y., Tian X., Wu Y., Zhong D., Gu Z., Zhang H., Luo K. An intracellular enzyme-responsive polymeric prodrug with synergistic effect of chemotherapy and two-photon photodynamic therapy. Appl. Mater. Today. 2021;23 doi: 10.1016/j.apmt.2021.100996. DOI
Luo Y., Chen M., Zhang T., Peng Q. 2D nanomaterials-based delivery systems and their potentials in anticancer synergistic photo-immunotherapy. Colloids Surf. B: Biointerfaces. 2024;242 doi: 10.1016/j.colsurfb.2024.114074. DOI
Luxenhofer R., Schulz A., Roques C., Li S., Bronich T.K., Batrakova E.V., Jordan R., Kabanov A.V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–4979. doi: 10.1016/J.BIOMATERIALS.2010.02.057. PubMed DOI PMC
Ma S., Zhou J., Zhang Y., Yang B., He Y., Tian C., Xu X., Gu Z. An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers. ACS Appl. Mater. Interfaces. 2019;11:7731–7742. doi: 10.1021/acsami.8b19840. PubMed DOI
Makhseed S., Cook A., McKeown B. Phthalocyanine-containing polystyrenes. Chem. Commun. 1999;419–420 doi: 10.1039/A900069K. DOI
Malarz K., Borzęcka W., Ziola P., Domiński A., Rawicka P., Bialik-Wąs K., Kurcok P., Torres T., Mrozek-Wilczkiewicz A. pH-sensitive phthalocyanine-loaded polymeric nanoparticles as a novel treatment strategy for breast cancer. Bioorg. Chem. 2025;155 doi: 10.1016/j.bioorg.2025.108127. DOI
Markovsky E., Baabur-Cohen H., Eldar-Boock A., Omer L., Tiram G., Ferber S., Ofek P., Polyak D., Scomparin A., Satchi-Fainaro R. Administration, distribution, metabolism and elimination of polymer therapeutics. J. Control. Release. 2012;161:446–460. doi: 10.1016/j.jconrel.2011.12.021. PubMed DOI
Master A.M., Qi Y., Oleinick N.L., Gupta A. Sen. EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine. 2012;8:655–664. doi: 10.1016/j.nano.2011.09.012. PubMed DOI PMC
Matsumoto Y., Nichols J.W., Toh K., Nomoto T., Cabral H., Miura Y., Christie R.J., Yamada N., Ogura T., Kano M.R., Matsumura Y., Nishiyama N., Yamasoba T., Bae Y.H., Kataoka K. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 2016;11:533–538. doi: 10.1038/nnano.2015.342. PubMed DOI
Matsumura Y., Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986;46:6387–6392. PubMed
McDonald A.G., Tipton K.F. Enzyme nomenclature and classification: the state of the art. FEBS J. 2023;290:2214–2231. doi: 10.1111/febs.16274. PubMed DOI
Mehraban N., Freeman H.S. Developments in PDT Sensitizers for increased Selectivity and Singlet Oxygen Production. Materials. 2015;8:4421–4456. doi: 10.3390/ma8074421. PubMed DOI PMC
Mfouo-Tynga I.S., Dias L.D., Inada N.M., Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagn. Photodyn. Ther. 2021;34 doi: 10.1016/J.PDPDT.2020.102091. DOI
Miller T., Van Colen G., Sander B., Golas M.M., Uezguen S., Weigandt M., Goepferich A. Drug loading of polymeric micelles. Pharm. Res. 2013;30:584–595. doi: 10.1007/S11095-012-0903-5. PubMed DOI
Mir M., Ahmed N., Ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B: Biointerfaces. 2017;159:217–231. doi: 10.1016/J.COLSURFB.2017.07.038. PubMed DOI
Mohamed M.M., Sloane B.F. Multifunctional enzymes in cancer. Nat. Rev. Cancer. 2006;6:764–775. doi: 10.1038/nrc1949. PubMed DOI
Moore C.M., Nathan T.R., Lees W.R., Mosse C.A., Freeman A., Emberton M., Bown S.G. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mTHPC) in early prostate cancer. Lasers Surg. Med. 2006;38:356–363. doi: 10.1002/LSM.20275. PubMed DOI
Mundra V., Peng Y., Rana S., Natarajan A., Mahato R.I. Micellar formulation of indocyanine green for phototherapy of melanoma. J. Control. Release. 2015;220:130–140. doi: 10.1016/j.jconrel.2015.10.029. PubMed DOI
Nakayama M., Okano T., Miyazaki T., Kohori F., Sakai K., Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release. 2006;115:46–56. doi: 10.1016/j.jconrel.2006.07.007. PubMed DOI
Nathan T.R., Whitelaw D.E., Chang S.C., Lees W.R., Ripley P.M., Payne H., Jones L., Parkinson M.C., Emberton M., Gillams A.R., Mundy A.R., Bown S.G. Photodynamic Therapy for Prostate Cancer Recurrence after Radiotherapy: a phase I Study. J. Urol. 2002;168:1427–1432. doi: 10.1016/S0022-5347(05)64466-7. PubMed DOI
Naveen C., Shastri N.R. Polysaccharide nanomicelles as drug carriers. Polysaccharide Carriers for Drug Delivery. 2019;339–363 doi: 10.1016/B978-0-08-102553-6.00012-X. DOI
Negut I., Bita B. Polymeric Micellar Systems—a special Emphasis on “Smart” Drug delivery. Pharmaceutics. 2023;15 doi: 10.3390/pharmaceutics15030976. DOI
Nichols J.W., Bae Y.H. Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today. 2012;7:606–618. doi: 10.1016/j.nantod.2012.10.010. PubMed DOI PMC
Nichols J.W., Bae Y.H. EPR: evidence and fallacy. J. Control. Release. 2014;190:451–464. doi: 10.1016/j.jconrel.2014.03.057. PubMed DOI
Nowis D., Makowski M., Stokłosa T., Legat M., Issat T., Golab J. Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim. Pol. 2005;52:339–352. doi: 10.18388/abp.2005_3447. PubMed DOI
Obalola A.A., Abrahamse H., Dhilip Kumar S.S. Enhanced therapeutic precision using dual drug-loaded nanomaterials for targeted cancer photodynamic therapy. Biomed. Pharmacother. 2025;184 doi: 10.1016/j.biopha.2025.117909. DOI
Obata M., Masuda S., Takahashi M., Yazaki K., Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur. Polym. J. 2021;147 doi: 10.1016/J.EURPOLYMJ.2021.110325. DOI
Ojha T., Pathak V., Shi Y., Hennink W.E., Moonen C.T.W., Storm G., Kiessling F., Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017;119:44–60. doi: 10.1016/j.addr.2017.07.007. PubMed DOI PMC
Oudin A., Chauvin J., Gibot L., Rols M.P., Balor S., Goudounèche D., Payré B., Lonetti B., Vicendo P., Mingotaud A.F., Lapinte V. Amphiphilic polymers based on polyoxazoline as relevant nanovectors for photodynamic therapy. J. Mater. Chem. B. 2019;7:4973–4982. doi: 10.1039/C9TB00118B. PubMed DOI
Owen S.C., Chan D.P.Y., Shoichet M.S. Polymeric micelle stability. Nano Today. 2012;7:53–65. doi: 10.1016/J.NANTOD.2012.01.002. DOI
Paul M., Biswas S. Near Infrared-light responsive chlorin e6 pro-drug micellar photodynamic therapy for oral cancer. Bioeng Transl Med n/a. 2025;e70036 doi: 10.1002/btm2.70036. DOI
Pearson S., Vitucci D., Khine Y.Y., Dag A., Lu H., Save M., Billon L., Stenzel M.H. Light-responsive azobenzene-based glycopolymer micelles for targeted drug delivery to melanoma cells. Eur. Polym. J. 2015;69:616–627. doi: 10.1016/j.eurpolymj.2015.04.001. DOI
Pechnikova N., Lyubimtsev A., Ageeva T., Syrbu S., Semeikin A., Koifman O. Synthesis of porphyrin monomers on the basis of meso-mono-hydroxy- and aminophenylporphyrins. J. Porphyrins Phthalocyanines. 2014;18 doi: 10.1142/S1088424613501198. DOI
Pelicano H., Carney D., Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 2004;7:97–110. doi: 10.1016/j.drup.2004.01.004. PubMed DOI
Penetra M., Arnaut L.G., Gomes-Da-Silva L.C. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology. 2023;12 doi: 10.1080/2162402X.2023.2226535. DOI
Pitto-Barry A., Barry N.P.E. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014;5:3291–3297. doi: 10.1039/C4PY00039K. DOI
Plaetzer K., Krammer B., Berlanda J., Berr F., Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med. Sci. 2009;24:259–268. doi: 10.1007/S10103-008-0539-1. PubMed DOI
Potara M., Nagy-Simon T., Focsan M., Licarete E., Soritau O., Vulpoi A., Astilean S. Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer. Colloids Surf. B: Biointerfaces. 2021;203 doi: 10.1016/j.colsurfb.2021.111755. DOI
Prokopová I. přeprac. ed. Vydavatelství VŠCHT; Praha: 2007. Makromolekulární chemie, Vyd. 2.
Pucelik B., Arnaut L.G., Stochel G., Dąbrowski J.M. Design of Pluronic-Based Formulation for Enhanced Redaporfin-Photodynamic Therapy against Pigmented Melanoma. ACS Appl. Mater. Interfaces. 2016;8:22039–22055. doi: 10.1021/acsami.6b07031. PubMed DOI
Pucelik B., Gürol I., Ahsen V., Dumoulin F., Dąbrowski J.M. Fluorination of phthalocyanine substituents: improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. Eur. J. Med. Chem. 2016;124:284–298. doi: 10.1016/j.ejmech.2016.08.035. PubMed DOI
Ramsay D., Stevenson H., Jerjes W. From Basic Mechanisms to Clinical Research: Photodynamic Therapy applications in Head and Neck Malignancies and Vascular Anomalies. J. Clin. Med. 2021;10:4404. doi: 10.3390/JCM10194404. PubMed DOI PMC
Repetowski P., Warszyńska M., Kostecka A., Pucelik B., Barzowska A., Emami A., İşci Ü., Dumoulin F., Dąbrowski J.M. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2024;16:48937–48954. doi: 10.1021/acsami.4c04138. PubMed DOI PMC
Říhová B., Kopečková P., Strohalm J., Rossmann P., Větvička V., Kopeček J. Antibody-directed affinity therapy applied to the immune system: in vivo effectiveness and limited toxicity of daunomycin conjugated to HPMA copolymers and targeting antibody. Clin. Immunol. Immunopathol. 1988;46:100–114. doi: 10.1016/0090-1229(88)90010-4. PubMed DOI
Rodriguez V.B., Henry S.M., Hoffman A.S., Stayton P.S., Li X., Pun S.H. Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging. J. Biomed. Opt. 2008;13:14025. doi: 10.1117/1.2834296. DOI
Rudolph T., Crotty S., Schubert U.S., Schacher F.H. Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. e-Polymers. 2015;15:227–235. doi: 10.1515/epoly-2015-0041. DOI
Rwei A.Y., Wang W., Kohane D.S. Photoresponsive nanoparticles for drug delivery. Nano Today. 2015;10:451–467. doi: 10.1016/j.nantod.2015.06.004. PubMed DOI PMC
Rybkin A.Y., Kurmaz S.V., Urakova E.A., Filatova N.V., Sizov L.R., Kozlov A.V., Koifman M.O., Goryachev N.S. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and in Vitro Phototoxic activity. Pharmaceutics. 2023;15:273. doi: 10.3390/PHARMACEUTICS15010273/S1. PubMed DOI PMC
Sakamoto Y., Nishimura T. Recent advances in the self-assembly of sparsely grafted amphiphilic copolymers in aqueous solution. Polym. Chem. 2022;13:6343–6360. doi: 10.1039/D2PY01018F. DOI
Sant V.P., Smith D., Leroux J.C. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J. Control. Release. 2005;104:289–300. doi: 10.1016/J.JCONREL.2005.02.010. PubMed DOI
Seung Lee J., Kim J., Ye Y., Kim T. Materials and device design for advanced phototherapy systems. Adv. Drug Deliv. Rev. 2022;186 doi: 10.1016/j.addr.2022.114339. DOI
Sheehan F., Sementa D., Jain A., Kumar M., Tayarani-Najjaran M., Kroiss D., Ulijn R.V. Peptide-based Supramolecular Systems Chemistry. Chem. Rev. 2021;121:13869–13914. doi: 10.1021/acs.chemrev.1c00089. PubMed DOI
Shi L., Nguyen C., Daurat M., Richy N., Gauthier C., Rebecq E., Gary-Bobo M., Cammas-Marion S., Mongin O., Paul-Roth C.O., Paul F. Encapsulation of Hydrophobic Porphyrins into Biocompatible Nanoparticles: An Easy Way to Benefit of their Two-Photon Phototherapeutic effect without Hydrophilic Functionalization. Cancers (Basel) 2022;14 doi: 10.3390/cancers14102358. DOI
Shieh M.J., Peng C.L., Chiang W.L., Wang C.H., Hsu C.Y., Wang S.J.J., Lai P.S. Reduced skin photosensitivity with meta -tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)- b -poly(d, l -lactide) diblock copolymer in vivo. Mol. Pharm. 2010;7:1244–1253. doi: 10.1021/MP100060V. PubMed DOI
Shu M., Tang J., Chen L., Zeng Q., Li C., Xiao S., Jiang Z., Liu J. Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy. Biomaterials. 2021;268 doi: 10.1016/j.biomaterials.2020.120574. DOI
Sikder A., Vambhurkar G., Amulya E., Bagasariya D., Famta P., Shah S., Khatri D.K., Singh S.B., Sinha V.R., Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: a new horizon in cancer management. J. Control. Release. 2022;349:1009–1030. doi: 10.1016/j.jconrel.2022.08.008. PubMed DOI
Šmejkalová D., Muthný T., Nešporová K., Hermannová M., Achbergerová E., Huerta-Angeles G., Svoboda M., Čepa M., Machalová V., Luptáková D., Velebný V. Hyaluronan polymeric micelles for topical drug delivery. Carbohydr. Polym. 2017;156:86–96. doi: 10.1016/J.CARBPOL.2016.09.013. PubMed DOI
Stapert H.R., Nishiyama N., Jiang D.-L., Aida T., Kataoka K. Polyion complex Micelles Encapsulating Light-Harvesting Ionic Dendrimer Zinc Porphyrins. Langmuir. 2000;16:8182–8188. doi: 10.1021/la000423e. DOI
Su Z., Xiao Z., Huang J., Wang Y., An Y., Xiao H., Peng Y., Pang P., Han S., Zhu K., Shuai X. Dual-Sensitive PEG-Sheddable Nanodrug Hierarchically Incorporating PD-L1 Antibody and Zinc Phthalocyanine for improved Immuno-Photodynamic Therapy. ACS Appl. Mater. Interfaces. 2021;13:12845–12856. doi: 10.1021/acsami.0c20422. PubMed DOI
Tafech A., Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. Biology (Basel) 2024;13 doi: 10.3390/biology13040225. DOI
Talelli M., Hennink W.E. Thermosensitive Polymeric Micelles for Targeted Drug delivery. Nanomedicine. 2011;6:1245–1255. doi: 10.2217/nnm.11.91. PubMed DOI
Talelli M., Barz M., Rijcken C.J.F., Kiessling F., Hennink W.E., Lammers T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today. 2015;10:93–117. doi: 10.1016/j.nantod.2015.01.005. PubMed DOI PMC
Tavares M.R., Islam R., Šubr V., Hackbarth S., Gao S., Yang K., Lobaz V., Fang J., Etrych T. Polymer theranostics with multiple stimuli-based activation of photodynamic therapy and tumor imaging. Theranostics. 2023;13:4952–4973. doi: 10.7150/THNO.86211. PubMed DOI PMC
Throat S., Bhattacharya S. Macromolecular Poly(N-isopropylacrylamide) (PNIPAM) in Cancer Treatment and beyond. Adv. Polym. Technol. 2024:1444990. doi: 10.1155/2024/1444990. DOI
Throat S., Bhattacharya S. Macromolecular Poly(N-isopropylacrylamide) (PNIPAM) in Cancer Treatment and beyond. Adv. Polym. Technol. 2024:1444990. doi: 10.1155/2024/1444990. DOI
Trigo-Gutierrez J.K., Calori I.R., de Oliveira Bárbara G., Pavarina A.C., Gonçalves R.S., Caetano W., Tedesco A.C., de Mima E.G.O. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front. Microbiol. 2023;14-2023 doi: 10.3389/fmicb.2023.1132781. DOI
Tsakos M., Schaffert E., Clement L., Villadsen N., Poulsen T. Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat. Prod. Rep. 2015;32 doi: 10.1039/C4NP00106K. DOI
Tseng T.-H., Chen Chieh-Yu, Wu W.-C., Chen Ching-Yi. Targeted and oxygen-enriched polymeric micelles for enhancing photodynamic therapy. Nanotechnology. 2021;32 doi: 10.1088/1361-6528/ac020d. DOI
Van Butsele K., Sibret P., Fustin C.A., Gohy J.F., Passirani C., Benoit J.P., Jérôme R., Jérôme C. Synthesis and pH-dependent micellization of diblock copolymer mixtures. J. Colloid Interface Sci. 2009;329:235–243. doi: 10.1016/J.JCIS.2008.09.080. PubMed DOI
van Doeveren T.E.M., Karakullukçu M.B., van Veen R.L.P., Lopez-Yurda M., Schreuder W.H., Tan I.B. Adjuvant photodynamic therapy in head and neck cancer after tumor-positive resection margins. Laryngoscope. 2018;128:657–663. doi: 10.1002/LARY.26792. PubMed DOI
Vasey P.A., Kaye S.B., Morrison R., Twelves C., Wilson P., Duncan R., Thomson A.H., Murray L.S., Hilditch T.E., Murray T., Burtles S., Fraier D., Frigerio E., Cassidy J., Committee, on behalf of the C.R.C.P.I Phase I Clinical and Pharmacokinetic Study of PK1 [N-(2-Hydroxypropyl)methacrylamide Copolymer Doxorubicin]: first Member of a New Class of Chemotherapeutic Agents—Drug-Polymer Conjugates1. Clin. Cancer Res. 1999;5:83–94. PubMed
Vermathen M., Marzorati M., Bigler P. Self-assembling properties of porphyrinic photosensitizers and their effect on membrane interactions probed by NMR spectroscopy. J. Phys. Chem. B. 2013;117:6990–7001. doi: 10.1021/JP403331N/SUPPL_FILE/JP403331N_SI_001.PDF. PubMed DOI
Wan J., Sun L., Wu P., Wang F., Guo J., Cheng J., Wang C. Synthesis of indocyanine green functionalized comblike poly(aspartic acid) derivatives for enhanced cancer cell ablation by targeting the endoplasmic reticulum. Polym. Chem. 2018;9:1206–1215. doi: 10.1039/C7PY01994G. DOI
Wang D., Wang T., Liu J., Yu H., Jiao S., Feng B., Zhou F., Fu Y., Yin Q., Zhang P., Zhang Z., Zhou Z., Li Y. Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Lett. 2016;16:5503–5513. doi: 10.1021/acs.nanolett.6b01994. PubMed DOI
Wang S.-W., Lin Y.-K., Fang J.-Y., Lee R.-S. Photo-responsive polymeric micelles and prodrugs: synthesis and characterization. RSC Adv. 2018;8:29321–29337. doi: 10.1039/C8RA04580A. PubMed DOI PMC
Wang X., Wang J., Li J., Huang H., Sun X., Lv Y. Development and evaluation of hyaluronic acid-based polymeric micelles for targeted delivery of photosensitizer for photodynamic therapy in vitro. J Drug Deliv Sci Technol. 2018;48:414–421. doi: 10.1016/J.JDDST.2018.10.018. DOI
Wang L., Zhu L., Bernards M.T., Chen S., Sun H., Guo X., Xue W., Cui Y., Gao D. Dendrimer-based Biocompatible Zwitterionic Micelles for Efficient Cellular Internalization and Enhanced Antitumor Effects. ACS Appl Polym Mater. 2020;2:159–171. doi: 10.1021/ACSAPM.9B00026/ASSET/IMAGES/LARGE/AP-2019-000263_0011.JPEG. DOI
Wang C., Wang Beilei, Zou S., Wang Bo, Liu G., Zhang F., Wang Q., He Q., Zhang L. Cyclo-γ-polyglutamic acid-coated dual-responsive nanomicelles loaded with doxorubicin for synergistic chemo-photodynamic therapy. Biomater. Sci. 2021;9:5977–5987. doi: 10.1039/D1BM00713K. PubMed DOI
Wang S., Chen G., Chen J., Wang J., Deng S., Cheng D. Glutathione-depleting polymer delivering chlorin e6 for enhancing photodynamic therapy. RSC Adv. 2022;12:21609–21620. doi: 10.1039/D2RA01877B. PubMed DOI PMC
Wang B., Huang Y., Yang D., Xu J., Zhong X., Zhao S., Liang H. A S-substituted Nile Blue-derived bifunctional near-infrared fluorescent probe for in vivo carboxylesterase imaging-guided photodynamic therapy of hepatocellular carcinoma. J. Mater. Chem. B. 2023;11:7623–7628. doi: 10.1039/D3TB01213A. PubMed DOI
Wang X., Li Y., Hasrat K., Yang L., Qi Z. Sequence-Responsive Multifunctional Supramolecular Nanomicelles Act on the Regression of TNBC and its Lung Metastasis via Synergic Pyroptosis-Mediated Immune Activation. Small. 2023;19:2305101. doi: 10.1002/smll.202305101. DOI
Warszyńska M., Repetowski P., Dąbrowski J.M. Photodynamic therapy combined with immunotherapy: recent advances and future research directions. Coord. Chem. Rev. 2023;495 doi: 10.1016/j.ccr.2023.215350. DOI
Wennink J.W.H., Liu Y., Mäkinen P.I., Setaro F., de la Escosura A., Bourajjaj M., Lappalainen J.P., Holappa L.P., van den Dikkenberg J.B., al Fartousi M., Trohopoulos P.N., Ylä-Herttuala S., Torres T., Hennink W.E., van Nostrum C.F. Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric micelles: a possible treatment for cardiovascular diseases. Eur. J. Pharm. Sci. 2017;107:112–125. doi: 10.1016/j.ejps.2017.06.038. PubMed DOI
Wu L., McHale R., Feng G., Wang X. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers. Int. J. Polym. Sci. 2011;2011 doi: 10.1155/2011/109693. DOI
Wu J., Lin W., Wang Z., Chen S., Chang Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir. 2012;28:7436–7441. doi: 10.1021/LA300394C. PubMed DOI
Wu W., Wang W., Li J. Star polymers: advances in biomedical applications. Prog. Polym. Sci. 2015;46:55–85. doi: 10.1016/j.progpolymsci.2015.02.002. DOI
Xia H., Liang Y., Chen K., Guo C., Wang M., Cao J., Han S., Ma Q., Sun Y., He B. Reduction-sensitive polymeric micelles as amplifying oxidative stress vehicles for enhanced antitumor therapy. Colloids Surf. B: Biointerfaces. 2021;203 doi: 10.1016/j.colsurfb.2021.111733. DOI
Xiong L.-H., Yang L., Geng J., Tang B.Z., He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic–Photodynamic Therapy. ACS Nano. 2024;18:17837–17851. doi: 10.1021/acsnano.4c03879. PubMed DOI
Xu L., Chen J., Qian S., Zhang A.-K., Fu G., Li C., Kang E. PEGylated Metalloporphyrin Nanoparticles as a Promising Catalyst for the Heterogeneous Oxidation of Cyclohexene in Water. Macromol. Chem. Phys. 2014;216 doi: 10.1002/macp.201400477. DOI
Xu L., Liu L., Liu F., Cai H., Zhang W. Porphyrin-containing amphiphilic block copolymers for photodynamic therapy. Polym. Chem. 2015;6:2945–2954. doi: 10.1039/C5PY00039D. DOI
Xu L., Zhang Wenyan, Cai H., Liu F., Wang Y., Gao Y., Zhang Weian. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J. Mater. Chem. B. 2015;3:7417–7426. doi: 10.1039/C5TB01363A. PubMed DOI
Xu Z., Pan C., Yuan W. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater. Sci. 2020;8:3348–3358. doi: 10.1039/D0BM00328J. PubMed DOI
Xu Z., Meng R., Wang Y., Sun Y., Qiao J., Yao Y., Peng Q. Advances of Functional Two-Dimensional Nanomaterials in the Treatment of Oral Diseases. Bioengineering. 2025;12 doi: 10.3390/bioengineering12101021. DOI
Xue Y., Tian J., Xu L., Liu Z., Shen Y., Zhang W. Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. Eur. Polym. J. 2019;110:344–354. doi: 10.1016/j.eurpolymj.2018.11.033. DOI
Yakavets I., Millard M., Zorin V., Lassalle H.P., Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J. Control. Release. 2019;304:268–287. doi: 10.1016/J.JCONREL.2019.05.035. PubMed DOI
Yamada S., Sasaki E., Ohno H., Hanaoka K. Heat-guided drug delivery via thermally induced crosslinking of polymeric micelles. Commun Chem. 2024;7:287. doi: 10.1038/s42004-024-01383-0. PubMed DOI PMC
Yao C., Li Y., Wang Z., Song C., Hu X., Liu S. Cytosolic NQO1 Enzyme-Activated Near-infrared Fluorescence Imaging and Photodynamic Therapy with Polymeric Vesicles. ACS Nano. 2020;14:1919–1935. doi: 10.1021/acsnano.9b08285. PubMed DOI
Yokoyama N., Kanazawa A., Kanaoka S., Aoshima S. Synthesis of Highly Defined Graft Copolymers using a Cyclic Acetal Moiety as a Two-Stage Latent Initiating Site for Successive living Cationic Polymerization and Ring-opening Anionic Polymerization. Macromolecules. 2018;51:884–894. doi: 10.1021/acs.macromol.7b02622. DOI
Yoon H.Y., Koo H., Choi K.Y., Lee S.J., Kim K., Kwon I.C., Leary J.F., Park K., Yuk S.H., Park J.H., Choi K. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33:3980–3989. doi: 10.1016/j.biomaterials.2012.02.016. PubMed DOI
Young K., Yamane S., GharehTapeh E.A., Kasamatsu S., Ihara H., Hasegawa U. Manganese Porphyrin-Containing Polymeric Micelles: a Novel Approach for Intracellular Catalytic Formation of per/Polysulfide Species from a Hydrogen Sulfide Donor. Adv. Healthc. Mater. 2024;13:2302429. doi: 10.1002/adhm.202302429. PubMed DOI PMC
Yslas E.I., Alvarez M.G., Rumie Vittar N.B., Bertuzzi M., Durantini E.N., Rivarola V. Physiological parameters and biodistribution of 5,10,15,20-tetra (4-methoxyphenyl) porphyrin in rats. Biomed. Pharmacother. 2002;56:498–502. doi: 10.1016/S0753-3322(02)00289-5. PubMed DOI
Yu X.-T., Sui S.-Y., He Y.-X., Yu C.-H., Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomaterials Advances. 2022;135 doi: 10.1016/j.bioadv.2022.212725. DOI
Yusa S.-I., Endo T., Ito M. Synthesis of thermo-responsive 4-arm star-shaped porphyrin-centered poly(N,N-diethylacrylamide) via reversible addition-fragmentation chain transfer radical polymerization. J. Polym. Sci. A Polym. Chem. 2009;47:6827–6838. doi: 10.1002/pola.23722. DOI
Zhang G.-D., Harada A., Nishiyama N., Jiang D.-L., Koyama H., Aida T., Kataoka K. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J. Control. Release. 2003;93:141–150. doi: 10.1016/j.jconrel.2003.05.002. PubMed DOI
Zhang H., Tong X., Zhao Y. Diverse Thermoresponsive Behaviors of Uncharged UCST Block Copolymer Micelles in Physiological Medium. Langmuir. 2014;30:11433–11441. doi: 10.1021/la5026334. PubMed DOI
Zhang J., Zhang Z., Yu B., Wang C., Wu W., Jiang X. Synthesis and Biological Properties of Porphyrin-Containing Polymeric Micelles with Different Sizes. ACS Appl. Mater. Interfaces. 2016;8:5794–5803. doi: 10.1021/acsami.5b10876. PubMed DOI
Zhang J., Zhang Y., Zhang H., Zhai W., Shi X., Li C. A hypoxia-activatable theranostic agent with intrinsic endoplasmic reticulum affinity and type-I photosensitivity. J. Mater. Chem. B. 2023;11:4102–4110. doi: 10.1039/D3TB00328K. PubMed DOI
Zhang Y., Zhao M., Miao J., Gu W., Zhu J., Cheng B., Li Q., Miao Q. Hemicyanine-based Type I Photosensitizers for Antihypoxic Activatable Photodynamic Therapy. ACS Mater Lett. 2023;5:3058–3067. doi: 10.1021/acsmaterialslett.3c00933. DOI
Zhao C., Chen J., Zhong R., Chen D.S., Shi J., Song J. Oxidative-Species-Selective Materials for Diagnostic and Therapeutic applications. Angew. Chem. Int. Ed. 2021;60:9804–9827. doi: 10.1002/anie.201915833. DOI
Zhou Q., Xu L., Liu F., Zhang W. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. Polymer (Guildf) 2016;97:323–334. doi: 10.1016/j.polymer.2016.04.056. DOI