Modulatory Effect of Nimbin on Isoproterenol Induced Mitochondrial and Lysosomal Enzymes Activities and Apoptosis Signaling in Rats
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
41329533
PubMed Central
PMC12746864
DOI
10.33549/physiolres.935530
PII: 935530
Knihovny.cz E-zdroje
- MeSH
- apoptóza * účinky léků fyziologie MeSH
- isoprenalin * toxicita farmakologie MeSH
- krysa rodu Rattus MeSH
- limoniny * farmakologie MeSH
- lyzozomy * účinky léků enzymologie MeSH
- mitochondrie * účinky léků enzymologie MeSH
- potkani Wistar MeSH
- signální transdukce účinky léků MeSH
- srdeční mitochondrie * účinky léků enzymologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isoprenalin * MeSH
- limoniny * MeSH
Nimbin, a bioactive triterpenoid compound isolated from the neem tree (Azadirachta indica), is known for its anti-inflammatory, antioxidant, antimicrobial, and hepatoprotective properties. The study aimed to explore the impact of nimbin on cardiac markers, mitochondrial and lysosomal enzyme activities, as well as apoptotic signaling in rats induced with isoproterenol. The subcutaneous injection of isoproterenol (ISO) at a dosage of 85 mg/kg body weight over the last two consecutive days led to notable increased in the activities/levels of the cardiac markers, lysosomal glycohydrolases and cathepsins. Conversely, reductions in the functioning of mitochondrial tricarboxylic acid cycle enzymes and respiratory chain enzymes in ISO-induced rats. In ISO-induced rats, there was an augmentation in the expressions of Bax, caspase-3, caspase-9, and cytochrome c, along with a diminished level of Bcl-2. Administration of nimbin resulted in decreased activities/levels cardiac markers, lysosomal glycohydrolases, cathepsins and increased functioning of mitochondrial tricarboxylic acid cycle enzymes and respiratory chain enzymes. Additionally, decreased expressions of Bax, executioner caspases and cytochrome c, along with heightened expression of Bcl-2, were noted in rats treated with nimbin. This indicates that nimbin possesses cardioprotective properties and mitigates mitochondrial and lysosomal dysfunction in rats induced with ISO. Key words Myocardial infarction " Tricarboxylic acid (TCA) cycle enzymes " Cathepsin-D " Cardiac markers " Triterpenoid.
Zobrazit více v PubMed
Goldsborough E, 3rd, Tasdighi E, Blaha MJ. Assessment of cardiovascular disease risk: a 2023 update. Curr Opin Lipidol. 2023;34:162–173. doi: 10.1097/MOL.0000000000000887. PubMed DOI
Akila P, Asaikumar L, Vennila L. Chlorogenic acid ameliorates isoproterenol-induced myocardial injury in rats by stabilizing mitochondrial and lysosomal enzymes. Biomed Pharmacother. 2017;85:582–591. doi: 10.1016/j.biopha.2016.11.067. PubMed DOI
Anderson JL, Morrow DA. Acute Myocardial Infarction. N Engl J Med. 2017;376:2053–2064. doi: 10.1056/NEJMra1606915. PubMed DOI
Thangaiyan R, Arjunan S, Govindasamy K, Khan HA, Alhomida AS, Prasad NR. Galangin Attenuates Isoproterenol-Induced Inflammation and Fibrosis in the Cardiac Tissue of Albino Wistar Rats. Front Pharmacol. 2020;11:585163. doi: 10.3389/fphar.2020.585163. PubMed DOI PMC
Mohanty I, Arya DS, Dinda A, Talwar KK, Joshi S, Gupta SK. Mechanisms of cardioprotective effect of Withania somnifera in experimentally induced myocardial infarction. Basic Clin Pharmacol Toxicol. 2004;94:184–190. doi: 10.1111/j.1742-7843.2004.pto940405.x. PubMed DOI
Wong ZW, Thanikachalam PV, Ramamurthy S. Molecular understanding of the protective role of natural products on isoproterenol-induced myocardial infarction: A review. Biomed Pharmacother. 2017;94:1145–1166. doi: 10.1016/j.biopha.2017.08.009. PubMed DOI
Rathod S, Agrawal Y, Sherikar A, Nakhate KT, Patil CR, Nagoor Meeran MF, Ojha S, Goyal SN. Thymoquinone Produces Cardioprotective Effect in β-Receptor Stimulated Myocardial Infarcted Rats via Subsiding Oxidative Stress and Inflammation. Nutrients. 2022;14:2742. doi: 10.3390/nu14132742. PubMed DOI PMC
Khalil MI, Ahmmed I, Ahmed R, Tanvir EM, Afroz R, Paul S, Gan SH, Alam N. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract. Biomed Res Int. 2015;2015:624159. doi: 10.1155/2015/624159. PubMed DOI PMC
Ferko M, Alanova P, Janko D, Opletalova B, Andelova N. Mitochondrial Peroxiredoxins and Monoamine Oxidase-A: Dynamic Regulators of ROS Signaling in Cardioprotection. Physiol Res. 2024;73:887–900. doi: 10.33549/physiolres.935513. PubMed DOI PMC
Huang Q, Chen Y. NADPH oxidase 4 contributes to oxidative stress in a mouse model of myocardial infarction. Physiol Res. 2023;72:177–186. doi: 10.33549/physiolres.934992. PubMed DOI PMC
Kumaran KS, Prince PS. Preventive effect of caffeic acid on lysosomal dysfunction in isoproterenol-induced myocardial infarcted rats. J Biochem Mol Toxicol. 2010;24:115–122. doi: 10.1002/jbt.20319. PubMed DOI
Decker RS, Poole AR, Griffin EE, Dingle JT, Wildenthal K. Altered distribution of lysosomal cathepsin D in ischemic myocardium. J Clin Invest. 1977;59:911–921. doi: 10.1172/JCI108713. PubMed DOI PMC
Sharma R, Kaushik S, Shyam H, Agarwal S, Balapure AK. Neem Seed Oil Induces Apoptosis in MCF-7 and MDA MB-231 Human Breast Cancer Cells. Asian Pac J Cancer Prev. 2017;18:2135–2140. doi: 10.22034/APJCP.2017.18.8.2135. PubMed DOI PMC
Charles V, Charles SX. The use efficacy of Azadirachta indica ADR (‘Neem’) Curcuma longa (‘Turmeric’) in scabies A pilot study. Trop Geogr Med. 1992;44:178–181. PubMed
Bandyopadhyay U, Biswas K, Sengupta A, Moitra P, Dutta P, Sarkar D, Debnath P, Ganguly CK, Banerjee RK. Clinical studies on the effect of Neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer. Life Sci. 2004;75:2867–2878. doi: 10.1016/j.lfs.2004.04.050. PubMed DOI
Bose A, Haque E, Baral R. Neem leaf preparation induces apoptosis of tumor cells by releasing cytotoxic cytokines from human peripheral blood mononuclear cells. Phytother Res. 2007;21:914–920. doi: 10.1002/ptr.2185. PubMed DOI
Kochhar A, Sharma N, Sachdeva R. Effect of supplementation of Tulsi (Ocimum sanctum) and Neem (Azadirachta indica) leaf powder on diabetic symptoms, anthropometric parameters and blood pressure of non-insulin dependent male diabetics. Studies Ethno Medicine. 2009;3:5–9. doi: 10.1080/09735070.2009.11886330. DOI
Paul R, Prasad M, Sah NK. Anticancer biology of Azadirachta indica L (neem): a mini review. Cancer Biol Ther. 2011;12:467–476. doi: 10.4161/cbt.12.6.16850. PubMed DOI
Nivetha R, Arvindh S, Baba AB, Gade DR, Gopal G, KC, Reddy KP, et al. Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signalling. Anticancer Agents Med Chem. 2022;22:2619–2636. doi: 10.2174/1871520622666220204115151. PubMed DOI
Mittal R, Chaudhry N, Mukherjee TK. Targeting breast cancer cell signaling molecules PI3K and Akt by phytochemicals Cannabidiol, Nimbin and Acetogenin: An in silico approach. J Biomed. 2018;3:60–63. doi: 10.7150/jbm.25815. DOI
Sharma V, Vijay J, Ganesh MR, Sundaramurthy A. Multilayer capsules encapsulating nimbin and doxorubicin for cancer chemo-photothermal therapy. Int J Pharm. 2020;582:119350. doi: 10.1016/j.ijpharm.2020.119350. PubMed DOI
Sudhakaran G, Rajesh R, Guru A, Arasu MV, Gopinath P, Arockiaraj J. Nimbin analogs N5 and N7 regulate the expression of lipid metabolic genes and inhibit lipid accumulation in high-fat diet-induced zebrafish larvae: An antihyperlipidemic study. Tissue Cell. 2023;80:102000. doi: 10.1016/j.tice.2022.102000. PubMed DOI
Sudhakaran G, Velayutham M, Aljarba NH, Al-Hazani TM, Arokiyaraj S, Guru A, Arockiaraj J. Nimbin (N1) and analog N3 from the neem seeds suppress the migration of osteosarcoma MG-63 cells and arrest the cells in a quiescent state mediated via activation of the caspase-modulated apoptotic pathway. Mol Biol Rep. 2023;50:7357–7369. doi: 10.1007/s11033-023-08627-7. PubMed DOI
Bell JL, Baron DN. A colorimetric method for determination of isocitrate dehydrogenase. Clinica Chimica Acta. 1960;5:740–747. doi: 10.1016/0009-8981(60)90017-6. DOI
Slater EC, Borner WD., Jr The effect of fluoride on the succinic oxidase system. Biochem J. 1952;52:185–196. doi: 10.1042/bj0520185. PubMed DOI PMC
Mehler AH, Kornberg A, Grisolia S, Ochoa S. The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem. 1948;74:961–977. doi: 10.1016/S0021-9258(18)57306-3. PubMed DOI
Steginsky CA, Gruys KJ, Frey PA. alpha-Ketoglutarate dehydrogenase complex of Escherichia coli. A hybrid complex containing pyruvate dehydrogenase subunits from pyruvate dehydrogenase complex. J Biol Chem. 1985;260:13690–31369. doi: 10.1016/S0021-9258(17)38780-X. PubMed DOI
Pearl W, Cascarano J, Zweifach BW. Microdetermination of cytochrome oxidase in rat tissues by the oxidation on N-phenyl-p-phenylene diamine or ascorbic acid. J Histochem Cytochem. 1963;11:102–104. doi: 10.1177/11.1.102. DOI
Minakami S, Ringler RL, Singer TP. Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase I. Assay of the enzyme in particulate and in soluble preparation. J Biol Chem. 1962;237:569–576. doi: 10.1016/S0021-9258(18)93963-3. PubMed DOI
DePierre JW, Karnovsky ML. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973;56:275–303. doi: 10.1083/jcb.56.2.275. PubMed DOI PMC
Van Hoof F, Hers HG. The abnormalities of lysosomal enzymes in mucopolysaccharidoses. Eur J Biochem. 1968;7:34–44. doi: 10.1111/j.1432-1033.1968.tb19570.x. PubMed DOI
Conchie J, Gelman AL, Levvy GA. Inhibition of glycosidases by aldonolactones of corresponding configuration. The C-4- and C-6-specificity of beta-glucosidase and beta-galactosidase. Biochem J. 1967;103:609–615. doi: 10.1042/bj1030609. PubMed DOI PMC
Kawai Y, Anno K. Mucopolysaccharide-degrading enzymes from the liver of the squid, Ommastrephes sloani pacificus I. Hyaluronidase. Biochim Biophys Acta. 1971;242:428–436. doi: 10.1016/0005-2744(71)90234-8. PubMed DOI
Moore JC, Morris JE. A simple automated colorimetric method for determination of N-acetyl-beta-D-glucosaminidase. Ann Clin Biochem. 1982;19:157–159. doi: 10.1177/000456328201900305. PubMed DOI
Barrett AJ. A new assay for cathepsin B1 and other thiol proteinases. Anal Biochem. 1972;47:280–293. doi: 10.1016/0003-2697(72)90302-8. PubMed DOI
Sapolsky AI, Altman RD, Howell DS. Cathepsin D activity in normal and osteoarthritic human cartilage. Fed Proc. 1973;32:1489–1493. PubMed
Lobo Filho HG, Ferreira NL, Sousa RB, Carvalho ER, Lobo PL, Lobo Filho JG. Experimental model of myocardial infarction induced by isoproterenol in rats. (Article in English, Portuguese) Rev Bras Cir Cardiovasc. 2011;26:469–476. doi: 10.5935/1678-9741.20110024. PubMed DOI
Houston M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol. 2014;6:38–66. doi: 10.4330/wjc.v6.i2.38. PubMed DOI PMC
Wang SB, Tian S, Yang F, Yang HG, Yang XY, Du GH. Cardioprotective effect of salvianolic acid A on isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol. 2009;615:125–132. doi: 10.1016/j.ejphar.2009.04.061. PubMed DOI
Gan ZH, Cheong HC, Tu YK, Kuo PH. Association between Plant-Based Dietary Patterns and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Nutrients. 2021;13:3952. doi: 10.3390/nu13113952. PubMed DOI PMC
Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine. 2017;34:14–20. doi: 10.1016/j.phymed.2017.07.001. PubMed DOI
Chen W, Liang J, Fu Y, Jin Y, Yan R, Chi J, Liu W, Liu Y, Yin X. Cardioprotection of cortistatin against isoproterenol-induced myocardial injury in rats. Ann Transl Med. 2020;8:309. doi: 10.21037/atm.2020.02.93. PubMed DOI PMC
Ouyang B, Li Z, Ji X, Huang J, Zhang H, Jiang C. The protective role of lutein on isoproterenol-induced cardiac failure rat model through improving cardiac morphology, antioxidant status via positively regulating Nrf2/HO-1 signalling pathway. Pharm Biol. 2019;57:529–535. doi: 10.1080/13880209.2019.1649436. PubMed DOI PMC
Radhiga T, Rajamanickam C, Senthil S, Pugalendi KV. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats. Food Chem Toxicol. 2012;50:3971–3977. doi: 10.1016/j.fct.2012.07.067. PubMed DOI
Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113:1708–1718. doi: 10.1093/cvr/cvx183. PubMed DOI PMC
Kumar M, Kasala ER, Bodduluru LN, Dahiya V, Lahkar M. Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm Res. 2016;65:613–622. doi: 10.1007/s00011-016-0944-z. PubMed DOI
Finsterer J, Ohnsorge P. Influence of mitochondrion-toxic agents on the cardiovascular system. Regul Toxicol Pharmacol. 2013;67:434–445. doi: 10.1016/j.yrtph.2013.09.002. PubMed DOI
Matsuzaki S, Szweda PA, Szweda LI, Humphries KM. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning. Adv Drug Deliv Rev. 2009;61:1324–1331. doi: 10.1016/j.addr.2009.05.008. PubMed DOI PMC
Radhiga T, Senthil S, Sundaresan A, Pugalendi KV. Ursolic acid modulates MMPs, collagen-I, α-SMA, and TGF-β expression in isoproterenol-induced myocardial infarction in rats. Hum Exp Toxicol. 2019;38:785–793. doi: 10.1177/0960327119842620. PubMed DOI
Bhat OM, Li PL. Lysosome Function in Cardiovascular Diseases. Cell Physiol Biochem. 202;55:277–300. doi: 10.33594/000000373. PubMed DOI PMC
Chi C, Riching AS, Song K. Lysosomal Abnormalities in Cardiovascular Disease. Int J Mol Sci. 2020;21:811. doi: 10.3390/ijms21030811. PubMed DOI PMC
Kurian GA, Rajagopal R, Vedantham S, Rajesh M. The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxid Med Cell Longev. 2016;2016:1656450. doi: 10.1155/2016/1656450. PubMed DOI PMC
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80. doi: 10.1038/cdd.2017.186. PubMed DOI PMC
Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of Myocardial Cell Apoptosis Is Important Mechanism for Ginsenoside in the Limitation of Myocardial Ischemia/Reperfusion Injury. Front Pharmacol. 2022;13:806216. doi: 10.3389/fphar.2022.806216. PubMed DOI PMC