Designing a cascaded exponential PID controller via starfish optimizer for DC motor and liquid level systems

. 2025 Dec 08 ; 15 (1) : 44504. [epub] 20251208

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41361227
Odkazy

PubMed 41361227
PubMed Central PMC12738688
DOI 10.1038/s41598-025-28145-9
PII: 10.1038/s41598-025-28145-9
Knihovny.cz E-zdroje

In this study, a novel cascaded exponential proportional-integral-derivative (exp-PID) controller tuned by the starfish optimization algorithm (SFOA) is proposed for enhancing the transient and steady-state performance of nonlinear dynamic systems. The design objective is to achieve improved adaptability, robustness, and precision under varying operating conditions and external disturbances. The exponential PID structure introduces nonlinear modulation in the proportional and derivative components, enabling smoother control action and superior damping characteristics compared to conventional PID and fractional-order PID designs. The proposed SFOA-based exp-PID controller is validated on two benchmark systems: a DC motor speed control system and a three-tank liquid-level process. Across multiple independent trials, the controller achieved outstanding results, with the DC motor system attaining a rise time of 0.0039 s, settling time of 0.0083 s, and zero overshoot, while the three-tank system reached a rise time of 1.72 s, settling time of 2.47 s, overshoot of 1.5%, and steady-state error of 9.22 × 10⁻⁵%. Comparative analyses with recently developed algorithms (including the flood algorithm, greater cane rat algorithm, mantis search algorithm, and dandelion optimizer) as well as previously reported methods demonstrate the superior convergence behavior, stability, and accuracy of the proposed controller. Statistical evaluations further confirm the method's robustness and consistent performance across repeated runs.

Zobrazit více v PubMed

Ekinci, S. et al. Advanced control parameter optimization in DC motors and liquid level systems. PubMed DOI PMC

Jabari, M. et al. Efficient pressure regulation in nonlinear shell-and-tube steam condensers via a novel TDn(1 + PIDn) controller and DCSA algorithm. PubMed DOI PMC

Kong, W. et al. PID control algorithm based on multistrategy enhanced Dung beetle optimizer and back propagation neural network for DC motor control. PubMed DOI PMC

Cong, X. & Guo, L. PID control for a class of nonlinear uncertain stochastic systems.

Zhong, C. et al. Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers. DOI

Ghasemi, M. et al. Flood algorithm (FLA): an efficient inspired meta-heuristic for engineering optimization. DOI

Agushaka, J. O. et al. Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems. PubMed DOI PMC

Abdel-Basset, M., Mohamed, R., Zidan, M., Jameel, M. & Abouhawwash, M. Mantis search algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems. DOI

Zhao, S., Zhang, T., Ma, S., Chen, M. & Optimizer, D. A nature-inspired metaheuristic algorithm for engineering applications. DOI

Izci, D., Ekinci, S., Kayri, M. & Eker, E. A novel improved arithmetic optimization algorithm for optimal design of PID controlled and bode’s ideal transfer function based automobile cruise control system. DOI

Bhookya, J., Vijaya Kumar, M., Ravi Kumar, J. & Seshagiri Rao, A. Implementation of PID controller for liquid level system using mGWO and integration of IoT application. DOI

Çelik, E. Exponential PID controller for effective load frequency regulation of electric power systems. PubMed DOI

Jabari, M., Ekinci, S., Izci, D., Bajaj, M. & Zaitsev, I. Efficient DC motor speed control using a novel multi-stage FOPD(1 + PI) controller optimized by the pelican optimization algorithm. PubMed DOI PMC

Hekimoglu, B. Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm. DOI

Agarwal, J., Parmar, G., Gupta, R. & Sikander, A. Analysis of grey Wolf optimizer based fractional order PID controller in speed control of DC motor. DOI

Zare, R., Mohajery, H. & Shayeghi, P. Optimal FOTID controller design for regulation of DC motor speed.

Izci, D. Design and application of an optimally tuned PID controller for DC motor speed regulation via a novel hybrid Lévy flight distribution and Nelder–Mead algorithm. DOI

Ekinci, S., Hekimoğlu, B. & Izci, D. Opposition based Henry gas solubility optimization as a novel algorithm for PID control of DC motor. DOI

Jabari, M. et al. A novel artificial intelligence based multistage controller for load frequency control in power systems. PubMed DOI PMC

Jabari, M. et al. Efficient parameter extraction in PV solar modules with the diligent crow search algorithm. DOI

Jabari, M. et al. Parameter identification of PV solar cells and modules using bio dynamics grasshopper optimization algorithm. DOI

Rizk-Allah, R. M. et al. Incorporating adaptive local search and experience-based perturbed learning into artificial rabbits optimizer for improved DC motor speed regulation. DOI

Ayinla, S. L. et al. Optimal control of DC motor using leader-based Harris Hawks optimization algorithm. DOI

Munagala, V. K. & Jatoth, R. K. A novel approach for controlling DC motor speed using NARXnet based FOPID controller. DOI

Başçi, A. & Derdiyok, A. Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. DOI

Meng, X., Yu, H., Zhang, J., Xu, T. & Wu, H. Liquid level control of Four-Tank system based on active disturbance rejection technology. DOI

Yu, S. et al. Liquid level tracking control of Three-tank systems. DOI

Rajasekhar, N., Radhakrishnan, T. K. & Samsudeen, N. Decentralized multi-agent control of a three-tank hybrid system based on twin delayed deep deterministic policy gradient reinforcement learning algorithm. DOI

Ekinci, S., Izci, D. & Yilmaz, M. Efficient speed control for DC motors using novel gazelle simplex optimizer. DOI

Ramezani, M., Bahmanyar, D. & Razmjooy, N. A new improved model of marine predator algorithm for optimization problems. DOI

Guo, Y. & Mohamed, M. E. A. Speed control of direct current motor using ANFIS based hybrid P-I-D configuration controller. DOI

Issa, M. Enhanced arithmetic optimization algorithm for parameter Estimation of PID controller. PubMed DOI PMC

Moharam, A., El-Hosseini, M. A. & Ali, H. A. Design of optimal PID controller using hybrid differential evolution and particle swarm optimization with an aging leader and challengers. DOI

Izci, D., Ekinci, S., Eker, E. & Kayri, M. Augmented hunger games search algorithm using logarithmic spiral opposition-based learning for function optimization and controller design. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...