Unraveling genome- and immunome-wide genetic diversity in modern and historical Jaguars
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I5081-B
Austrian Science Fund
I5081-B
Austrian Science Fund
I5081-B
Austrian Science Fund
I5081-B
Austrian Science Fund
21-28637
Grantová Agentura České Republiky
21-28637
Grantová Agentura České Republiky
21-28637
Grantová Agentura České Republiky
21-28637
Grantová Agentura České Republiky
Profi6 336449
Research Council of Finland
PubMed
41361788
PubMed Central
PMC12683877
DOI
10.1186/s13059-025-03868-0
PII: 10.1186/s13059-025-03868-0
Knihovny.cz E-zdroje
- Klíčová slova
- Evolutionarily significant units, Genetic diversity, Immune response genes, Jaguar conservation, MHC, NKC, Population structure, TLR,
- MeSH
- genetická variace * MeSH
- genom MeSH
- haplotypy MeSH
- Panthera * genetika imunologie MeSH
- populační genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Jižní Amerika MeSH
- Střední Amerika MeSH
BACKGROUND: The jaguar (Panthera onca) is a keystone species within diverse ecosystems ranging from dense rainforests to open grasslands across Central and South America. However, its populations are declining rapidly due to anthropogenic actions, such as deforestation and poaching. Here we investigate the effects of this decline on genetic diversity and genetic health. Utilizing both modern and historical museum samples, we infer population structure and immunome variability in 25 jaguars to identify unique genetic diversity that can inform targeted conservation efforts. RESULTS: Our genome-wide analyses identifies three distinct geographic populations: Central America, South American lowlands, and South American highlands. Modern samples that exhibit lower levels of heterozygosity also show higher levels of inbreeding. The South American lowland population shows the lowest levels of inbreeding, while the highland population exhibits the lowest overall immunome-wide variability. However, the innate (Natural Killer Cell Complex, Toll-Like Receptor) and adaptive (Major Histocompatibility Complex Class II) immune genes, which are crucial for adaptive responses and disease resilience, show high diversity in terms of heterozygosity and haplotype diversity in individuals of all three populations. CONCLUSIONS: South American highland and Central American jaguars face significant threats from habitat loss and fragmentation. The observed genome- and immunome-wide diversity in historical and modern jaguars reflect their recent demographic decline and challenges of local adaptation. We recommend re-evaluating evolutionarily significant units to prioritize conservation strategies, ensuring the preservation of unique genetic and adaptive diversity crucial for the species' resilience and long-term survival.
Centre for Palaeogenetics Stockholm Sweden
Department of Animal Genetics University of Veterinary Sciences Brno Czechia Czechia
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Ecology and Genetics Research Unit University of Oulu Oulu Finland
Faculty of Science and Technology University of the Faroe Islands Tórshavn Faroe Islands
Human Evolution and Archaeological Sciences University of Vienna Vienna Austria
Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
Natural History Museum Vienna Central Research Laboratories Vienna Austria
Research Group Animal Immunogenomics CEITEC Vetuni Brno Czechia Czechia
Research Institute of Wildlife Ecology University of Veterinary Medicine Vienna Vienna Austria
South African National Biodiversity Institute National Zoological Garden Pretoria South Africa
Zobrazit více v PubMed
Torre J, Rivero M. A morphological comparison of Jaguars and pumas in southern Mexico. Therya. 2017;8(2):117–22. DOI
Sims ME. Cranial morphology of five felids: DOI
Azevedo FCCde, Verdade LM. Predator–prey interactions: jaguar predation on caiman in a floodplain forest. J Zool. 2012;286(3):200–7. DOI
Weckel M, Giuliano W, Silver S. Jaguar ( DOI
Jędrzejewski W, Robinson HS, Abarca M, Zeller KA, Velasquez G, Paemelaere EAD, et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – application to the Jaguar ( PubMed DOI PMC
Menezes JF, Tortato FR, Oliveira-Santos LG, Roque FO, Morato RG. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv Sci Pract. 2021;3(8):e477. DOI
Wolf C, Ripple WJ. Prey depletion as a threat to the world’s large carnivores. R Soc Open Sci. 2016;3(8):160252. PubMed DOI PMC
Romero-Muñoz A, Jansen M, Nuñez AM, Toledo M, Almonacid RV, Kuemmerle T. Fires scorching Bolivia’s Chiquitano forest. Science. 2019;366(6469):1082–1082. PubMed DOI
Meißner R, Blumer M, Weiß M, Beukes M, Ledezma GA, Callisaya YC, et al. Habitat destruction threatens jaguars in a mixed land-use region of Eastern Bolivia. Oryx. 2024;58(1):110–20. DOI
Haag T, Santos AS, Sana DA, Morato RG, Cullen L Jr, Crawshaw PG Jr, et al. The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic forest Jaguars (Panthera onca). Mol Ecol. 2010;19(22):4906–21. PubMed DOI
Morcatty TQ, Bausch Macedo JC, Nekaris KA, Ni Q, Durigan CC, Svensson MS, et al. <article-title update="added">Illegal trade in wild cats and its link to Chinese‐led development in Central and South America. Conserv Biol. 2020;34(6):1525–35. PubMed DOI
Arias M, Hinsley A, Nogales-Ascarrunz P, Negroes N, Glikman JA, Milner‐Gulland E. Prevalence and characteristics of illegal Jaguar trade in north‐western Bolivia. Conserv Sci Pract. 2021;3(7):e444. DOI
Quigley H, Foster R, Petracca L, Payan E, Salom R, Harmsen B. Panthera Onca. IUCN Red List Threatened Species. 2017;2017:e-T15953A123791436.
Larson SE. Taxonomic re-evaluation of the jaguar. Zoo Biol. 1997;16(2):107–20. DOI
Ruiz-García M, Vásquez C, Murillo A, Pinedo-Castro M, Alvarez D. Population genetics and phylogeography of the largest wild Cat in the americas: an analysis of the Jaguar by means of microsatellites and mitochondrial gene sequences. Molecular population genetics, evolutionary biology and biological conservation of the Neotropical carnivores. New York: Nova Science Publishers Inc; 2013. pp. 413–64.
De La Torre JA, González-Maya JF, Zarza H, Ceballos G, Medellín RA. The jaguar’s spots are darker than they appear: assessing the global conservation status of the jaguar DOI
Waples RS. Pacific Salmon,
Taylor RS, Manseau M, Wilson PJ. Delineating conservation units should be independent of effective population size. Trends Ecol Evol. 2024;39(2):121–2. PubMed DOI
Palsbøll PJ, Berube M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol Evol. 2007;22(1):11–6. PubMed DOI
Roques S, Sollman R, Jácomo A, Tôrres N, Silveira L, Chávez C, et al. Effects of habitat deterioration on the population genetics and conservation of the Jaguar. Conserv Genet. 2016;17(1):125–39. DOI
Lorenzana GP, Figueiró HV, Kaelin CB, Barsh GS, Johnson J, Karlsson E, et al. Whole-genome sequences shed light on the demographic history and contemporary genetic erosion of free-ranging jaguar ( PubMed DOI
Stewart AJ, Parsons TL, Plotkin JB. Environmental robustness and the adaptability of populations. Evolution. 2012;66(5):1598–612. PubMed DOI
Booy G, Hendriks RJJ, Smulders MJM, Groenendael JMV, Vosman B. Genetic diversity and the survival of populations. Plant Biol (Stuttg). 2000;2(4):379–95. DOI
Medzhitov R, Janeway CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997;91(3):295–8. PubMed DOI
Abrantes J, Areal H, Esteves PJ. Insights into the European rabbit ( PubMed DOI PMC
Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291. PubMed DOI PMC
Kumar V, McNerney ME. A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol. 2005;5(5):363–74. PubMed DOI
Takeda K, Akira S. Toll-Like, receptors. Curr Protoc Immunol. 2015;109(1):14121–141210. PubMed
Morris KM, Wright B, Grueber CE, Hogg C, Belov K. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (S Arcophilus harrisii). Mol Ecol. 2015;24(15):3860–72. PubMed DOI
Zeller KA, Rabinowitz A. Using geographic information systems for range-wide species conservation planning. In: Geographic Information Systems. Nova Publishers; 2011.
Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One. 2012;7(3):e34131. PubMed DOI PMC
Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prüfer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A. 2007;104(37):14616–21. PubMed DOI PMC
Molinari J. A bare-bones scheme to choose between the species, subspecies, and ‘evolutionarily significant unit’ categories in taxonomy and conservation. J Nat Conserv. 2023;1(72):126335. DOI
Menchaca A, Rossi NA, Froidevaux J, Dias-Freedman I, Caragiulo A, Wultsch C, et al. Population genetic structure and habitat connectivity for Jaguar ( PubMed DOI PMC
Lorenzana G, Heidtmann L, Haag T, Ramalho E, Dias G, Hrbek T, et al. Large-scale assessment of genetic diversity and population connectivity of Amazonian Jaguars (Panthera onca) provides a baseline for their conservation and monitoring in fragmented landscapes. Biol Conserv. 2020;242:108417. DOI
Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics. 2020;21(1):382. PubMed DOI PMC
Fola AA, Kattenberg E, Razook Z, Lautu-Gumal D, Lee S, Mehra S, et al. SNP barcodes provide higher resolution than microsatellite markers to measure plasmodium Vivax population genetics. Malar J. 2020;19:1–15. PubMed DOI PMC
Wultsch C, Caragiulo A, Dias-Freedman I, Quigley H, Rabinowitz S, Amato G. Genetic diversity and population structure of Mesoamerican Jaguars ( PubMed DOI PMC
Vinkler M, Fiddaman SR, Těšický M, O’Connor EA, Savage AE, Lenz TL, et al. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol. 2023;36(6):847–73. PubMed DOI PMC
Liu YC, Sun X, Driscoll C, Miquelle DG, Xu X, Martelli P, et al. Genome-Wide evolutionary analysis of natural history and adaptation in the world’s Tigers. Curr Biol. 2018;28(23):3840–e38496. PubMed DOI
Prost S, Machado AP, Zumbroich J, Preier L, Mahtani-Williams S, Meissner R, et al. <article-title update="added">Genomic analyses show extremely perilous conservation status of African and Asiatic cheetahs ( PubMed DOI PMC
Frankham R, Briscoe DA, Ballou JD. Introduction to conservation genetics. Cambridge University Press; 2002.
Barbosa C, Trevisan R, Estevinho TF, Castellani TT, Silva-Pereira V. Multiple introductions and efficient propagule dispersion can lead to high genetic variability in an invasive clonal species. Biol Invasions. 2019;21(11):3427–38. DOI
Petracca LS, Hernández-Potosme S, Obando-Sampson L, Salom-Pérez R, Quigley H, Robinson HS. Agricultural encroachment and lack of enforcement threaten connectivity of range-wide Jaguar ( DOI
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107(1):1–15. PubMed DOI PMC
Kamath PL, Getz WM. Unraveling the effects of selection and demography on immune gene variation in Free-Ranging plains zebra ( PubMed DOI PMC
Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4(12):981–94. PubMed DOI
Futas J, Oppelt J, Jelinek A, Elbers JP, Wijacki J, Knoll A et al. Natural Killer Cell Receptor Genes in Camels: Another Mammalian Model. Front Genet [Internet]. 2019 Jul 2 [cited 2024 Apr 27];10. Available from: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2019.00620/full PubMed PMC
Averdam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M, et al. A novel system of polymorphic and diverse NK cell receptors in primates. PLoS Genet. 2009;5(10):e1000688. PubMed DOI PMC
Toneva M, Lepage V, Lafay G, Dulphy N, Busson M, Lester S, et al. Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens. 2001;57(4):358–62. PubMed DOI
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative genomics of the major histocompatibility complex (MHC) of felids. Front Genet. 2022. 10.3389/fgene.2022.829891. PubMed DOI PMC
Schwensow N, Castro-Prieto A, Wachter B, Sommer S. Immunological MHC supertypes and allelic expression: how low is the functional MHC diversity in free-ranging Namibian cheetahs? Conserv Genet. 2019;20:65–80. DOI
Plasil M, Mohandesan E, Fitak RR, Musilova P, Kubickova S, Burger PA, et al. The major histocompatibility complex in old world camelids and low polymorphism of its class II genes. BMC Genomics. 2016;17:1–17. PubMed DOI PMC
Hussen J, Schuberth HJ. Recent Advances in Camel Immunology. Front Immunol [Internet]. 2021 Jan 25 [cited 2024 May 3];11. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2020.614150/full PubMed DOI PMC
Meißner R, Mokgokong P, Pretorius C, Winter S, Labuschagne K, Kotze A, et al. Diversity of selected toll-like receptor genes in cheetahs ( PubMed DOI PMC
Heinrich SK, Hofer H, Courtiol A, Melzheimer J, Dehnhard M, Czirják GÁ, et al. Cheetahs have a stronger constitutive innate immunity than leopards. Sci Rep. 2017;7(1):44837. PubMed DOI PMC
Stronen AV, Norman AJ, Vander Wal E, Paquet PC. The relevance of genetic structure in ecotype designation and conservation management. Evol Appl. 2022;15(2):185–202. PubMed DOI PMC
Maguire LA, Lacy RC. Allocating scarce resources for conservation of endangered subspecies: partitioning zoo space for Tigers. Conserv Biol. 1990;4(2):157–66. DOI
Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol. 2021;30(1):62–82. PubMed DOI PMC
Griffith GE, Omernik JM, Azevedo SH. Ecological classification of the Western hemisphere. Unpublished Rep. US Environmental Protection Agency. 1998;49.
De Volo SB, Reynolds RT, Douglas MR, Antolin MF. An improved extraction method to increase DNA yield from molted feathers. The Condor. 2008;110(4):762–6. DOI
Knapp M, Clarke AC, Horsburgh KA, Matisoo-Smith EA. Setting the stage–building and working in an ancient DNA laboratory. Annals Anatomy-Anatomischer Anzeiger. 2012;194(1):3–6. PubMed DOI
Dabney J, Knapp M, Glocke I, Gansauge MT, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci USA. 2013;110(39):15758–63. PubMed DOI PMC
Meyer M, Kircher M. Illumina sequencing library Preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protoc. 2010;2010(6):pdb–prot5448. PubMed DOI
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. PubMed DOI PMC
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and samtools. Bioinformatics. 2009;25(16):2078–9. PubMed DOI PMC
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protocols Bioinf. 2013;43(1):11–10. PubMed PMC
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C et al. RepeatModeler2: automated genomic discovery of transposable element families [Internet]. 2019 [cited 2024 May 2]. Available from: http://biorxiv.org/lookup/doi/10.1101/856591 PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. PubMed DOI
Coudert E, Gehant S, de Castro E, Pozzato M, Baratin D, Neto T, et al. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics. 2023;39(1):btac793. PubMed DOI PMC
Elbers JP, Taylor SS. GO2TR: a gene ontology-based workflow to generate target regions for target enrichment experiments. Conserv Genet Resour. 2015;7:851–7. DOI
Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinform. 2014;47(1):11–2. PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PL, Orlando L. MapDamage2. 0: fast approximate bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29(13):1682–4. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15(1):356. PubMed DOI PMC
Fox EA, Wright AE, Fumagalli M, Vieira FG. NgsLD: evaluating linkage disequilibrium using genotype likelihoods. Bioinformatics. 2019;35(19):3855–6. PubMed DOI
Meisner J, Albrechtsen A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics. 2018;210(2):719–31. PubMed DOI PMC
Tang Y, Horikoshi M, Li W. Ggfortify: unified interface to visualize statistical results of popular R packages. R J. 2016;8(2):474. DOI
Allaire J, Boston. MA. 2012;770(394):165–71.
Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013;195(3):693–702. PubMed DOI PMC
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15(5):1179–91. PubMed DOI PMC
Vieira FG, Fumagalli M, Albrechtsen A, Nielsen R. Estimating inbreeding coefficients from NGS data: impact on genotype calling and allele frequency estimation. Genome Res. 2013;23(11):1852–61. PubMed DOI PMC
Petkova D, Novembre J, Stephens M. Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet. 2016;48(1):94–100. PubMed DOI PMC
Huson D, Kloepper T, Bryant D. SplitsTree 4.0-Computation of phylogenetic trees and networks.
Jombart T, Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27(21):3070–1. PubMed DOI PMC
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22(11):3124–40. PubMed DOI PMC
Gross J, Ligges U, Ligges MU. Package ‘nortest.’ Five omnibus tests for testing the composite hypothesis of normality. 2015.
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47(260):583–621. DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 1995;57(1):289–300. DOI
Wickham H. Getting started with ggplot2. ggplot2: elegant graphics for data analysis. Springer; 2016. pp. 11–31.
Kassambara A. R Graphics essentials for great data visualization: 200 practical examples you want to know for data science. STHDA; 2017.
Winter S, Meißner R, Greve C, Ben Hamadou A, Horin P, Prost S, et al. A chromosome-scale high-contiguity genome assembly of the cheetah (Acinonyx jubatus). J Hered. 2023;114(3):271–8. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9. PubMed DOI PMC
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. ArXiv Preprint arXiv:12073907. 2012. 10.48550/arXiv.1207.3907
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of samtools and BCFtools. Gigascience. 2021;10(2):giab008. PubMed DOI PMC
Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, et al. Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 2013;14(2):193–202. PubMed DOI
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2. PubMed DOI
Meißner R. Jaguar Genomics: Analysis scripts for Unraveling genome- and immunome-wide genetic diversity in modern and historical jaguars [Internet]. Zenodo; 2025 [cited 2025 Nov 3]. Available from: 10.5281/zenodo.17513629
Meißner R. Jaguar Genomics: Analysis scripts for Unraveling genome- and immunome-wide genetic diversity in modern and historical jaguars [Internet]. [cited 2025 Nov 3]. Available from: https://github.com/rmeissner95/jaguar-genomics