Epidemiological dynamics of Leishmania (Sauroleishmania) tarentolae and Trypanosoma platydactyli in reptile hosts and sand flies: from isolation to genome assembly
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
41364491
PubMed Central
PMC12688035
DOI
10.1099/mgen.0.001567
Knihovny.cz E-zdroje
- Klíčová slova
- phlebotomine sand flies, epidemiology, reptile trypanosomatids, whole-genome sequencing,
- MeSH
- fylogeneze MeSH
- ještěři parazitologie MeSH
- Leishmania * genetika izolace a purifikace klasifikace MeSH
- leishmanióza * epidemiologie veterinární parazitologie MeSH
- plazi * parazitologie MeSH
- Psychodidae * parazitologie MeSH
- sekvenování celého genomu MeSH
- Trypanosoma * genetika izolace a purifikace klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie epidemiologie MeSH
Leishmania (Sauroleishmania) tarentolae and Trypanosoma platydactyli are reptile-associated trypanosomatids transmitted by Sergentomyia minuta sand flies, posing challenges for accurate diagnosis due to the fact that they often occur in sympatry. This study aimed to isolate and characterize new strains of these parasites from reptiles and sand flies using morphological, molecular and genomic approaches. Fifty-five reptiles were captured in Apulia, Italy, and sand flies were collected and dissected under a surveillance framework. Blood samples and gut contents were cultured in Schneider's Drosophila (SC) and Tobie-Evans (TEv) media. Two positive cultures underwent whole-genome sequencing, and a new conventional PCR (cPCR) protocol targeting the β-tubulin gene was developed. T. platydactyli was isolated from 27% of Tarentola mauritanica geckos using SC medium and 12.5% with TE, while L. (S.) tarentolae was isolated from 4.15% of geckos exclusively with SC. Cytology confirmed T. platydactyli in 25% of gecko blood smears. cPCR revealed T. platydactyli in 18.75%, L. (S.) tarentolae in 12.5% and co-infections in 14.6%. No infections were found in Podarcis siculus or Hemidactylus turcicus. Out of 208 S. minuta sand flies tested, 19 (9.1%) were positive for T. platydactyli, 30 (14.4%) for L. (S.) tarentolae, and 15 (7.2%) were co-infected with both. The newly developed cPCR assay robustly differentiated these parasites in both reptile and sand fly samples. Monitoring of natural infections in geckos revealed persistent, low-level L. (S.) tarentolae infections, detectable only by molecular methods, in contrast to the intermittent parasitaemia of T. platydactyli, which was detectable by cytology and culture. Kimura 2-parameter (K2P) divergence profiles indicate no evidence of a recent mobilome in T. platydactyli, whereas L. (S.) tarentolae retains a small but detectable fraction of low-divergence transposable-element copies (≤5-10% K2P; <0.05% of the genome). These findings confirm the sympatric circulation of L. (S.) tarentolae and T. platydactyli in geckos and sand flies in southern Italy, highlighting T. mauritanica as the most common reptilian host. The successful isolation and genome assembly of these trypanosomatids, along with the newly developed molecular tool, lay a solid foundation for future epidemiological and comparative genomic investigations, emphasizing the role of reptilian hosts in maintaining trypanosomatid diversity.
Department of Parasitology Faculty of Science Charles University 12800 Prague Czechia
Department of Veterinary Clinical Sciences City University of Hong Kong 518057 Hong Kong PR China
Department of Veterinary Medicine Università degli Studi di Bari Aldo Moro 70124 Bari Italy
Zobrazit více v PubMed
Kostygov AY, Albanaz AT, Butenko A, Gerasimov ES, Lukeš J, et al PubMed DOI
Martín-Sánchez J, Rodríguez-Granger J, Morillas-Márquez F, Pineda JA, Ocaña-Macías M, et al. Leishmaniasis due to Leishmania infantum: integration of human, animal and environmental data through a one health approach. Transbound Emerg Dis. 2020;67:2423–2434. doi: 10.1111/tbed.13580. PubMed DOI
Magalhães LMD, Gollob KJ, Zingales B, Dutra WO. Pathogen diversity, immunity, and the fate of infections: lessons learned from Trypanosoma cruzi human-host interactions. Lancet Microbe . 2022;3:e711–e722. doi: 10.1016/S2666-5247(21)00265-2. PubMed DOI
Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, et al. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors. 2023;16:35. doi: 10.1186/s13071-023-05651-1. PubMed DOI PMC
Novo SP, Leles D, Bianucci R, Araujo A. Leishmania tarentolae molecular signatures in a 300 hundred-years-old human Brazilian mummy. Parasit Vectors. 2015;8:1–8. doi: 10.1186/s13071-015-0666-z. PubMed DOI PMC
Pombi M, Giacomi A, Barlozzari G, Macrì G, Mendoza‐Roldan J, et al. Molecular detection of Leishmania (Sauroleishmania) tarentolae in human blood and Leishmania (Leishmania) infantum in Sergentomyia minuta: unexpected host‐parasite contacts. Med Vet Entomol. 2020;34:470–475. doi: 10.1111/mve.12464. PubMed DOI
Iatta R, Mendoza-Roldan JA, Latrofa MS, Cascio A, Brianti E, et al. Leishmania tarentolae and Leishmania infantum in humans, dogs and cats in the Pelagie archipelago, southern Italy. PLoS Negl Trop Dis. 2021;15:e0009817. doi: 10.1371/journal.pntd.0009817. PubMed DOI PMC
Mendoza-Roldan JA, Latrofa MS, Iatta R, R S Manoj R, Panarese R, et al. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: hindrances and opportunities. Parasit Vectors. 2021;14:461. doi: 10.1186/s13071-021-04973-2. PubMed DOI PMC
Mendoza-Roldan JA, Zatelli A, Latrofa MS, Iatta R, Bezerra-Santos MA, et al. Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Negl Trop Dis. 2022;16:e0010650. doi: 10.1371/journal.pntd.0010650. PubMed DOI PMC
Mendoza-Roldan JA, Votýpka J, Bandi C, Epis S, Modrý D, et al. Leishmania tarentolae: a new frontier in the epidemiology and control of the leishmaniases. Transbound Emerg Dis. 2022;69:e1326–e1337. doi: 10.1111/tbed.14660. PubMed DOI PMC
Mendoza-Roldan JA, Varotto-Boccazzi I, Louzada-Flores VN, Evans A, Cheikhi IB, et al. Saurian-associated Leishmania tarentolae in dogs: Infectivity and immunogenicity evaluation in the canine model. PLoS Pathog. 2024;20:e1012598. doi: 10.1371/journal.ppat.1012598. PubMed DOI PMC
Cattaneo GM, Varotto-Boccazzi I, Molteni R, Ronchetti F, Gabrieli P, et al. A novel chemically defined medium for the biotechnological and biomedical exploitation of the cell factory Leishmania tarentolae. Sci Rep. 2024;14:9562. doi: 10.1038/s41598-024-60383-1. PubMed DOI PMC
Raymond F, Boisvert S, Roy G, Ouellette M, Plourde M, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147. doi: 10.1093/nar/gkr834. PubMed DOI PMC
Goto Y, Kuroki A, Suzuki K, Yamagishi J. Draft genome sequence of Leishmania tarentolae parrot Tar II, obtained by single-molecule real-time sequencing. Microbiol Resour Announc . 2020;9:e00112–20. doi: 10.1128/MRA.00050-20. PubMed DOI PMC
Wallbanks KR, Maazoun R, Canning EU, Rioux JA. The identity of Leishmania tarentolae Wenyon 1921. Parasitology. 1985;90 (Pt 1):67–78. doi: 10.1017/s0031182000049027. PubMed DOI
Simpson L, Holz G., Jr The status of Leishmania tarentolae/Trypanosoma platydactyli. Parasitol Today. 1988;4:115–118. doi: 10.1016/0169-4758(88)90043-9. PubMed DOI
Adler S, Theodor O. Investigation on mediterranean kala azar x—a note on Trypanosoma platydactyli and Leishmania tarentolae. Proc R Soc Lond B Biol Sci. 1935;118:55–65.
Bezerra-Santos MA, Ricci A, Carbonara M, Mendoza-Roldan JA, Gusatoaia O, et al. Detection and isolation of Leishmania infantum and Leishmania tarentolae in sand flies from a canine leishmaniasis endemic area. Acta Tropica. 2025;268:107704. doi: 10.1016/j.actatropica.2025.107704. PubMed DOI
Ticha L, Kykalova B, Sadlova J, Gramiccia M, Gradoni L, et al. Development of various Leishmania (Sauroleishmania) tarentolae strains in three Phlebotomus species. Microorganisms. 2021;9:2256. doi: 10.3390/microorganisms9112256. PubMed DOI PMC
Louzada-Flores VN, Latrofa MS, Mendoza-Roldan JA, Lucente MS, Epis S, et al. Expression of key cytokines in dog macrophages infected by Leishmania tarentolae opening new avenues for the protection against Leishmania infantum. Sci Rep. 2024;14:27565. doi: 10.1038/s41598-024-78451-x. PubMed DOI PMC
Grekov I, Svobodová M, Nohýnková E, Lipoldová M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods. 2011;87:273–277. doi: 10.1016/j.mimet.2011.08.012. PubMed DOI
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, et al. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet. 2014;10:e1004092. doi: 10.1371/journal.pgen.1004092. PubMed DOI PMC
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife. 2020 PubMed PMC
Oldrieve GR, Malacart B, López-Vidal J, Matthews KR. The genomic basis of host and vector specificity in non-pathogenic trypanosomatids. Biol Open. 2022;11:bio059237. doi: 10.1242/bio.059237. PubMed DOI PMC
Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J, et al. Meiotic sex in chagas disease parasite Trypanosoma cruzi. Nat Commun. 2019;10:3972. doi: 10.1038/s41467-019-11771-z. PubMed DOI PMC
Hakim JMC, Guarnizo SAG, Machaca EM, Gilman RH, Mugnier MR, et al. Whole-genome assembly of a hybrid Trypanosoma cruzi strain assembled with Nanopore sequencing alone. G3: Genes|Genomes|Genetics. 2024;14:jkae076. doi: 10.1093/g3journal/jkae076. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 2019;1962:227–245. doi: 10.1007/978-1-4939-9173-0_14. PubMed DOI
Tullume-Vergara PO, Ludwig A, Yurchenko V, Coelho AC, Coser EM, et al. Comparative analysis of the mobilome yields new insights into its diversity, dynamics and evolution in parasites of the Trypanosomatidae family. Parasitology. 2025;152:602–617. doi: 10.1017/S0031182025100231. PubMed DOI PMC
Sangioni LA, Horta MC, Vianna MCB, Gennari SM, Soares RM, et al. Rickettsial infection in animals and Brazilian spotted fever endemicity. Emerg Infect Dis . 2005;11:265–270. doi: 10.3201/eid1102.040656. PubMed DOI PMC
Latrofa MS, Mendoza-Roldan J, Manoj R, Dantas-Torres F, Otranto D, et al. A duplex real-time PCR assay for the detection and differentiation of Leishmania infantum and Leishmania tarentolae in vectors and potential reservoir hosts. Entomol Gen. 2021;41:543–551. doi: 10.1127/entomologia/2021/1178. DOI
Santarém N, Silvestre R, Cordeiro-da-Silva A. The impact of distinct culture media in Leishmania infantum biology and infectivity. Parasitology. 2014;141:192–205. doi: 10.1017/S0031182013001388. PubMed DOI
de Oliveira Filho VA, Garcia MSA, Rosa LB, Giorgio S, Miguel DC. An Overview of Leishmania in vitro cultivation and implications for antileishmanial screenings against promastigotes. Parasitologia . 2024;4:305–318. doi: 10.3390/parasitologia4040027. DOI
Engwerda CR, Ato M, Kaye PM. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Immunol Cell Biol. 2004;20:524–530. doi: 10.1016/j.pt.2004.08.009. PubMed DOI
Dirkx L, Hendrickx S, Merlot M, Van Bocxlaer K, Vanhollebeke B, et al. Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Commun Biol. 2022;5:626. doi: 10.1038/s42003-022-03591-7. PubMed DOI PMC
Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, et al. Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci USA. 2014;111:16808–16813. doi: 10.1073/pnas.1415109111. PubMed DOI PMC
Louzada-Flores VN, Pescher P, Cokelaer T, Rodrigues Ferreira TR, Latrofa MS, et al. Cross-subgenus hybridization between Leishmania and Sauroleishmania informs on parasite genomic compatibility and transcriptomic adaptation. bioRxiv. 2025:2025.03.25.645178. doi: 10.1101/2025.03.25.645178. DOI
Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, et al. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics. 2023;24:471. doi: 10.1186/s12864-023-09591-z. PubMed DOI PMC
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, et al. GenomeScope: fast reference-free genome profiling from short reads. Genome Biol. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC
Bhat SS, Kannan M, Ramachandran S, Dhar R. Transposable elements and genome instability: new insights from a model organism. Front Genet. 2022;13:921090. doi: 10.3389/fgene.2022.921090. DOI
Bringaud F, Müller M, Cerqueira GC, Smith M, Rochette A, et al PubMed DOI PMC
Smith M, Bringaud F, Papadopoulou B. Organization and evolution of SIDER retroposon elements in Leishmania genomes. BMC Genomics. 2009;10:240. doi: 10.1186/1471-2164-10-240. PubMed DOI PMC
Ward PS, Heger A, Ponting CP. More extensive than previously realized: the diversity of transposable element control mechanisms across eukaryotes. eLife. 2018;7:e33084. doi: 10.7554/eLife.33084. PubMed DOI PMC
Pita S, Díaz-Viraqué F, Iraola G, Robello C. The tritryps comparative repeatome: insights on repetitive element evolution in trypanosomatid pathogens. Genome Biol Evol. 2019;11:546–551. doi: 10.1093/gbe/evz017. PubMed DOI PMC
Franssen SU, Durrant C, Stark O, Moser B, Downing T, et al. Global genome diversity of the Leishmania donovani complex. Elife. 2020;9:e51243. doi: 10.7554/eLife.51243. PubMed DOI PMC
Pomares C, Marty P, Bañuls AL, Lemichez E, Pratlong F, et al. Genetic diversity and population structure of Leishmania infantum from Southeastern France: evaluation using multi-locus microsatellite typing. PLoS Negl Trop Dis. 2016;10:e0004303. doi: 10.1371/journal.pntd.0004303. PubMed DOI PMC
Van den Broeck F, Savill NJ, Imamura H, Sanders M, Maes I, et al. Ecological divergence and hybridization of neotropical Leishmania parasites. Proc Natl Acad Sci USA. 2020;117:25159–25168. doi: 10.1073/pnas.1920136117. PubMed DOI PMC
Bussotti G, Gouzelou E, Côrtes Boité M, Kherachi I, Harrat Z, et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio. 2018;9:10–1128. doi: 10.1128/mBio.01399-18. PubMed DOI PMC