Epidemiological dynamics of Leishmania (Sauroleishmania) tarentolae and Trypanosoma platydactyli in reptile hosts and sand flies: from isolation to genome assembly

. 2025 Dec ; 11 (12) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41364491

Leishmania (Sauroleishmania) tarentolae and Trypanosoma platydactyli are reptile-associated trypanosomatids transmitted by Sergentomyia minuta sand flies, posing challenges for accurate diagnosis due to the fact that they often occur in sympatry. This study aimed to isolate and characterize new strains of these parasites from reptiles and sand flies using morphological, molecular and genomic approaches. Fifty-five reptiles were captured in Apulia, Italy, and sand flies were collected and dissected under a surveillance framework. Blood samples and gut contents were cultured in Schneider's Drosophila (SC) and Tobie-Evans (TEv) media. Two positive cultures underwent whole-genome sequencing, and a new conventional PCR (cPCR) protocol targeting the β-tubulin gene was developed. T. platydactyli was isolated from 27% of Tarentola mauritanica geckos using SC medium and 12.5% with TE, while L. (S.) tarentolae was isolated from 4.15% of geckos exclusively with SC. Cytology confirmed T. platydactyli in 25% of gecko blood smears. cPCR revealed T. platydactyli in 18.75%, L. (S.) tarentolae in 12.5% and co-infections in 14.6%. No infections were found in Podarcis siculus or Hemidactylus turcicus. Out of 208 S. minuta sand flies tested, 19 (9.1%) were positive for T. platydactyli, 30 (14.4%) for L. (S.) tarentolae, and 15 (7.2%) were co-infected with both. The newly developed cPCR assay robustly differentiated these parasites in both reptile and sand fly samples. Monitoring of natural infections in geckos revealed persistent, low-level L. (S.) tarentolae infections, detectable only by molecular methods, in contrast to the intermittent parasitaemia of T. platydactyli, which was detectable by cytology and culture. Kimura 2-parameter (K2P) divergence profiles indicate no evidence of a recent mobilome in T. platydactyli, whereas L. (S.) tarentolae retains a small but detectable fraction of low-divergence transposable-element copies (≤5-10% K2P; <0.05% of the genome). These findings confirm the sympatric circulation of L. (S.) tarentolae and T. platydactyli in geckos and sand flies in southern Italy, highlighting T. mauritanica as the most common reptilian host. The successful isolation and genome assembly of these trypanosomatids, along with the newly developed molecular tool, lay a solid foundation for future epidemiological and comparative genomic investigations, emphasizing the role of reptilian hosts in maintaining trypanosomatid diversity.

Zobrazit více v PubMed

Kostygov AY, Albanaz AT, Butenko A, Gerasimov ES, Lukeš J, et al PubMed DOI

Martín-Sánchez J, Rodríguez-Granger J, Morillas-Márquez F, Pineda JA, Ocaña-Macías M, et al. Leishmaniasis due to Leishmania infantum: integration of human, animal and environmental data through a one health approach. Transbound Emerg Dis. 2020;67:2423–2434. doi: 10.1111/tbed.13580. PubMed DOI

Magalhães LMD, Gollob KJ, Zingales B, Dutra WO. Pathogen diversity, immunity, and the fate of infections: lessons learned from Trypanosoma cruzi human-host interactions. Lancet Microbe . 2022;3:e711–e722. doi: 10.1016/S2666-5247(21)00265-2. PubMed DOI

Bandi C, Mendoza-Roldan JA, Otranto D, Alvaro A, Louzada-Flores VN, et al. Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasit Vectors. 2023;16:35. doi: 10.1186/s13071-023-05651-1. PubMed DOI PMC

Novo SP, Leles D, Bianucci R, Araujo A. Leishmania tarentolae molecular signatures in a 300 hundred-years-old human Brazilian mummy. Parasit Vectors. 2015;8:1–8. doi: 10.1186/s13071-015-0666-z. PubMed DOI PMC

Pombi M, Giacomi A, Barlozzari G, Macrì G, Mendoza‐Roldan J, et al. Molecular detection of Leishmania (Sauroleishmania) tarentolae in human blood and Leishmania (Leishmania) infantum in Sergentomyia minuta: unexpected host‐parasite contacts. Med Vet Entomol. 2020;34:470–475. doi: 10.1111/mve.12464. PubMed DOI

Iatta R, Mendoza-Roldan JA, Latrofa MS, Cascio A, Brianti E, et al. Leishmania tarentolae and Leishmania infantum in humans, dogs and cats in the Pelagie archipelago, southern Italy. PLoS Negl Trop Dis. 2021;15:e0009817. doi: 10.1371/journal.pntd.0009817. PubMed DOI PMC

Mendoza-Roldan JA, Latrofa MS, Iatta R, R S Manoj R, Panarese R, et al. Detection of Leishmania tarentolae in lizards, sand flies and dogs in southern Italy, where Leishmania infantum is endemic: hindrances and opportunities. Parasit Vectors. 2021;14:461. doi: 10.1186/s13071-021-04973-2. PubMed DOI PMC

Mendoza-Roldan JA, Zatelli A, Latrofa MS, Iatta R, Bezerra-Santos MA, et al. Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Negl Trop Dis. 2022;16:e0010650. doi: 10.1371/journal.pntd.0010650. PubMed DOI PMC

Mendoza-Roldan JA, Votýpka J, Bandi C, Epis S, Modrý D, et al. Leishmania tarentolae: a new frontier in the epidemiology and control of the leishmaniases. Transbound Emerg Dis. 2022;69:e1326–e1337. doi: 10.1111/tbed.14660. PubMed DOI PMC

Mendoza-Roldan JA, Varotto-Boccazzi I, Louzada-Flores VN, Evans A, Cheikhi IB, et al. Saurian-associated Leishmania tarentolae in dogs: Infectivity and immunogenicity evaluation in the canine model. PLoS Pathog. 2024;20:e1012598. doi: 10.1371/journal.ppat.1012598. PubMed DOI PMC

Cattaneo GM, Varotto-Boccazzi I, Molteni R, Ronchetti F, Gabrieli P, et al. A novel chemically defined medium for the biotechnological and biomedical exploitation of the cell factory Leishmania tarentolae. Sci Rep. 2024;14:9562. doi: 10.1038/s41598-024-60383-1. PubMed DOI PMC

Raymond F, Boisvert S, Roy G, Ouellette M, Plourde M, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40:1131–1147. doi: 10.1093/nar/gkr834. PubMed DOI PMC

Goto Y, Kuroki A, Suzuki K, Yamagishi J. Draft genome sequence of Leishmania tarentolae parrot Tar II, obtained by single-molecule real-time sequencing. Microbiol Resour Announc . 2020;9:e00112–20. doi: 10.1128/MRA.00050-20. PubMed DOI PMC

Wallbanks KR, Maazoun R, Canning EU, Rioux JA. The identity of Leishmania tarentolae Wenyon 1921. Parasitology. 1985;90 (Pt 1):67–78. doi: 10.1017/s0031182000049027. PubMed DOI

Simpson L, Holz G., Jr The status of Leishmania tarentolae/Trypanosoma platydactyli. Parasitol Today. 1988;4:115–118. doi: 10.1016/0169-4758(88)90043-9. PubMed DOI

Adler S, Theodor O. Investigation on mediterranean kala azar x—a note on Trypanosoma platydactyli and Leishmania tarentolae. Proc R Soc Lond B Biol Sci. 1935;118:55–65.

Bezerra-Santos MA, Ricci A, Carbonara M, Mendoza-Roldan JA, Gusatoaia O, et al. Detection and isolation of Leishmania infantum and Leishmania tarentolae in sand flies from a canine leishmaniasis endemic area. Acta Tropica. 2025;268:107704. doi: 10.1016/j.actatropica.2025.107704. PubMed DOI

Ticha L, Kykalova B, Sadlova J, Gramiccia M, Gradoni L, et al. Development of various Leishmania (Sauroleishmania) tarentolae strains in three Phlebotomus species. Microorganisms. 2021;9:2256. doi: 10.3390/microorganisms9112256. PubMed DOI PMC

Louzada-Flores VN, Latrofa MS, Mendoza-Roldan JA, Lucente MS, Epis S, et al. Expression of key cytokines in dog macrophages infected by Leishmania tarentolae opening new avenues for the protection against Leishmania infantum. Sci Rep. 2024;14:27565. doi: 10.1038/s41598-024-78451-x. PubMed DOI PMC

Grekov I, Svobodová M, Nohýnková E, Lipoldová M. Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods. 2011;87:273–277. doi: 10.1016/j.mimet.2011.08.012. PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, et al. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet. 2014;10:e1004092. doi: 10.1371/journal.pgen.1004092. PubMed DOI PMC

Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife. 2020 PubMed PMC

Oldrieve GR, Malacart B, López-Vidal J, Matthews KR. The genomic basis of host and vector specificity in non-pathogenic trypanosomatids. Biol Open. 2022;11:bio059237. doi: 10.1242/bio.059237. PubMed DOI PMC

Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J, et al. Meiotic sex in chagas disease parasite Trypanosoma cruzi. Nat Commun. 2019;10:3972. doi: 10.1038/s41467-019-11771-z. PubMed DOI PMC

Hakim JMC, Guarnizo SAG, Machaca EM, Gilman RH, Mugnier MR, et al. Whole-genome assembly of a hybrid Trypanosoma cruzi strain assembled with Nanopore sequencing alone. G3: Genes|Genomes|Genetics. 2024;14:jkae076. doi: 10.1093/g3journal/jkae076. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC

Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol. 2019;1962:227–245. doi: 10.1007/978-1-4939-9173-0_14. PubMed DOI

Tullume-Vergara PO, Ludwig A, Yurchenko V, Coelho AC, Coser EM, et al. Comparative analysis of the mobilome yields new insights into its diversity, dynamics and evolution in parasites of the Trypanosomatidae family. Parasitology. 2025;152:602–617. doi: 10.1017/S0031182025100231. PubMed DOI PMC

Sangioni LA, Horta MC, Vianna MCB, Gennari SM, Soares RM, et al. Rickettsial infection in animals and Brazilian spotted fever endemicity. Emerg Infect Dis . 2005;11:265–270. doi: 10.3201/eid1102.040656. PubMed DOI PMC

Latrofa MS, Mendoza-Roldan J, Manoj R, Dantas-Torres F, Otranto D, et al. A duplex real-time PCR assay for the detection and differentiation of Leishmania infantum and Leishmania tarentolae in vectors and potential reservoir hosts. Entomol Gen. 2021;41:543–551. doi: 10.1127/entomologia/2021/1178. DOI

Santarém N, Silvestre R, Cordeiro-da-Silva A. The impact of distinct culture media in Leishmania infantum biology and infectivity. Parasitology. 2014;141:192–205. doi: 10.1017/S0031182013001388. PubMed DOI

de Oliveira Filho VA, Garcia MSA, Rosa LB, Giorgio S, Miguel DC. An Overview of Leishmania in vitro cultivation and implications for antileishmanial screenings against promastigotes. Parasitologia . 2024;4:305–318. doi: 10.3390/parasitologia4040027. DOI

Engwerda CR, Ato M, Kaye PM. Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Immunol Cell Biol. 2004;20:524–530. doi: 10.1016/j.pt.2004.08.009. PubMed DOI

Dirkx L, Hendrickx S, Merlot M, Van Bocxlaer K, Vanhollebeke B, et al. Long-term hematopoietic stem cells as a parasite niche during treatment failure in visceral leishmaniasis. Commun Biol. 2022;5:626. doi: 10.1038/s42003-022-03591-7. PubMed DOI PMC

Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, et al. Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci USA. 2014;111:16808–16813. doi: 10.1073/pnas.1415109111. PubMed DOI PMC

Louzada-Flores VN, Pescher P, Cokelaer T, Rodrigues Ferreira TR, Latrofa MS, et al. Cross-subgenus hybridization between Leishmania and Sauroleishmania informs on parasite genomic compatibility and transcriptomic adaptation. bioRxiv. 2025:2025.03.25.645178. doi: 10.1101/2025.03.25.645178. DOI

Albanaz ATS, Carrington M, Frolov AO, Ganyukova AI, Gerasimov ES, et al. Shining the spotlight on the neglected: new high-quality genome assemblies as a gateway to understanding the evolution of Trypanosomatidae. BMC Genomics. 2023;24:471. doi: 10.1186/s12864-023-09591-z. PubMed DOI PMC

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, et al. GenomeScope: fast reference-free genome profiling from short reads. Genome Biol. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC

Bhat SS, Kannan M, Ramachandran S, Dhar R. Transposable elements and genome instability: new insights from a model organism. Front Genet. 2022;13:921090. doi: 10.3389/fgene.2022.921090. DOI

Bringaud F, Müller M, Cerqueira GC, Smith M, Rochette A, et al PubMed DOI PMC

Smith M, Bringaud F, Papadopoulou B. Organization and evolution of SIDER retroposon elements in Leishmania genomes. BMC Genomics. 2009;10:240. doi: 10.1186/1471-2164-10-240. PubMed DOI PMC

Ward PS, Heger A, Ponting CP. More extensive than previously realized: the diversity of transposable element control mechanisms across eukaryotes. eLife. 2018;7:e33084. doi: 10.7554/eLife.33084. PubMed DOI PMC

Pita S, Díaz-Viraqué F, Iraola G, Robello C. The tritryps comparative repeatome: insights on repetitive element evolution in trypanosomatid pathogens. Genome Biol Evol. 2019;11:546–551. doi: 10.1093/gbe/evz017. PubMed DOI PMC

Franssen SU, Durrant C, Stark O, Moser B, Downing T, et al. Global genome diversity of the Leishmania donovani complex. Elife. 2020;9:e51243. doi: 10.7554/eLife.51243. PubMed DOI PMC

Pomares C, Marty P, Bañuls AL, Lemichez E, Pratlong F, et al. Genetic diversity and population structure of Leishmania infantum from Southeastern France: evaluation using multi-locus microsatellite typing. PLoS Negl Trop Dis. 2016;10:e0004303. doi: 10.1371/journal.pntd.0004303. PubMed DOI PMC

Van den Broeck F, Savill NJ, Imamura H, Sanders M, Maes I, et al. Ecological divergence and hybridization of neotropical Leishmania parasites. Proc Natl Acad Sci USA. 2020;117:25159–25168. doi: 10.1073/pnas.1920136117. PubMed DOI PMC

Bussotti G, Gouzelou E, Côrtes Boité M, Kherachi I, Harrat Z, et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio. 2018;9:10–1128. doi: 10.1128/mBio.01399-18. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...