Tert Deletion Impairs Circadian Regulation of Blood Pressure in Male Spontaneously Hypertensive Rats

. 2026 Feb ; 83 (2) : e25510. [epub] 20251210

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41368704

BACKGROUND: Deletion of the Tert gene leads to telomere shortening, which is associated with aging and age-related cardiovascular disease, but its effects on circadian regulation of blood pressure have not yet been investigated. To fill this gap, we developed a rat model with genetic deletion of the Tert gene on a spontaneously hypertensive rat-Tert-/- background, in which telomeres were shortened in the F3 generation. METHODS: We analyzed the effects of Tert deletion on locomotor activity, oxidative stress, telemetrically measured parameters of the cardiovascular system, and the expression of clock genes in various tissues. RESULTS: Male spontaneously hypertensive rat-Tert-/- showed a reduced physical fitness, which was reflected in a more fragmented nocturnal activity and a poorer correlation between spontaneous activity and cardiovascular parameters. Day/night blood pressure amplitude was reduced, and the circadian rhythm of systolic blood pressure was completely abolished in constant darkness. In the rostral ventromedial medulla of the brainstem, the number of TH (tyrosine hydroxylase)-immunopositive cells was reduced, indicating a decrease in sympathetic tone. In heart tissue, the level of protein oxidation was increased, and similar to other tissues, the day/night expression of clock genes was significantly changed, suggesting an impairment of the synchrony of their clocks. CONCLUSIONS: Our results suggest that deletion of Tert impairs circadian regulation of blood pressure via a decreased rhythm of sympathetic activity innervating the heart and other tissues, leading to impaired circadian regulation of local peripheral clocks. These findings provide a possible link between age-related telomere shortening and impaired rhythmicity of cardiovascular function.

Zobrazit více v PubMed

Durgan DJ, Young ME. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res. 2010;106:647–658. doi: 10.1161/CIRCRESAHA.109.209957 PubMed PMC

O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet. 1988;2:397. doi: 10.1016/s0140-6736(88)92867-x PubMed

Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science. 2002;295:2446–2449. doi: 10.1126/science.1069523 PubMed

Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96:1020–1024. doi: 10.1038/sj.bjc.6603671 PubMed PMC

Chatterjee S, Leach-Mehrwald M, Huang CK, Xiao K, Fuchs M, Otto M, Lu D, Dang V, Winkler T, Dunbar CE, et al. Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes. Cell Mol Life Sci. 2024;81:196. doi: 10.1007/s00018-024-05239-7 PubMed PMC

Richardson GD, Breault D, Horrocks G, Cormack S, Hole N, Owens WA. Telomerase expression in the mammalian heart. FASEB J. 2012;26:4832–4840. doi: 10.1096/fj.12-208843 PubMed PMC

Saheera S, Nair RR. Accelerated decline in cardiac stem cell efficiency in spontaneously hypertensive rat compared to normotensive Wistar rat. PLoS One. 2017;12:e0189129. doi: 10.1371/journal.pone.0189129 PubMed PMC

Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102:8692–8697. doi: 10.1073/pnas.0500169102 PubMed PMC

Minamino T, Miyauchi H, Yoshida T, Tateno K, Kunieda T, Komuro I. Vascular cell senescence and vascular aging. J Mol Cell Cardiol. 2004;36:175–183. doi: 10.1016/j.yjmcc.2003.11.010 PubMed

Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2010;23(Suppl 15):S29–S36. PubMed

Csanyi G, Miller FJ, Jr. Oxidative stress in cardiovascular disease. Int J Mol Sci. 2014;15:6002–6008. doi: 10.3390/ijms15046002 PubMed PMC

von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220:186–193. doi: 10.1006/excr.1995.1305 PubMed

Brandt M, Dorschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, et al. Telomere shortening in hypertensive heart disease depends on oxidative DNA damage and predicts impaired recovery of cardiac function in heart failure. Hypertension. 2022;79:2173–2184. doi: 10.1161/HYPERTENSIONAHA.121.18935 PubMed

Adiga IK, Nair RR. A positive association between cardiomyocyte volume and serum malondialdehyde levels. Int J Cardiol. 2007;115:246–248. doi: 10.1016/j.ijcard.2006.01.049 PubMed

Date MO, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y, Hirotani S, Matsumura Y, Hori M, Tada M, et al. The antioxidant n-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol. 2002;39:907–912. doi: 10.1016/s0735-1097(01)01826-5 PubMed

Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–549. doi: 10.1146/annurev-physiol-021909-135821 PubMed

Buijs RM, Hermes MH, Kalsbeek A. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res. 1998;119:365–382. doi: 10.1016/s0079-6123(08)61581-2 PubMed

Dampney RA, Horiuchi J, Tagawa T, Fontes MA, Potts PD, Polson JW. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand. 2003;177:209–218. doi: 10.1046/j.1365-201X.2003.01070.x PubMed

Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–346. doi: 10.1038/nrn1902 PubMed

Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci. 2001;2:521–526. doi: 10.1038/35081582 PubMed

Guyton AC, Coleman TG, Cowley AV, Jr, Scheel KW, Manning RD, Jr, Norman RA, Jr. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–594. doi: 10.1016/0002-9343(72)90050-2 PubMed

Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164–179. doi: 10.1038/nrg.2016.150 PubMed PMC

Polidarova L, Sladek M, Novosadova Z, Sumova A. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Chronobiol Int. 2017;34:105–117. doi: 10.1080/07420528.2016.1242491 PubMed

Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem. 2021;157:73–94. doi: 10.1111/jnc.15286 PubMed PMC

Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, Lall GS, Biello SM. Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr). 2013;35:2137–2152. doi: 10.1007/s11357-012-9502-y PubMed PMC

Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16:R914–R916. doi: 10.1016/j.cub.2006.09.058 PubMed PMC

Osum M, Serakinci N. Impact of circadian disruption on health; sirt1 and telomeres. DNA Repair (Amst). 2020;96:102993. doi: 10.1016/j.dnarep.2020.102993 PubMed

Chen WD, Wen MS, Shie SS, Lo YL, Wo HT, Wang CC, Hsieh I-C, Lee T-H, Wang C-Y. The circadian rhythm controls telomeres and telomerase activity. Biochem Biophys Res Commun. 2014;451:408–414. doi: 10.1016/j.bbrc.2014.07.138 PubMed

Kunieda T, Minamino T, Katsuno T, Tateno K, Nishi J, Miyauchi H, Orimo M, Okada S, Komuro I. Cellular senescence impairs circadian expression of clock genes in vitro and in vivo. Circ Res. 2006;98:532–539. doi: 10.1161/01.RES.0000204504.25798.a8 PubMed

Qu Y, Mao M, Li X, Liu Y, Ding J, Jiang Z, Wan C, Zhang L, Wang Z, Mu D. Telomerase reconstitution contributes to resetting of circadian rhythm in fibroblasts. Mol Cell Biochem. 2008;313:11–18. doi: 10.1007/s11010-008-9736-2 PubMed

Obeidova L, Urbanova M, Stekrova J, Elisakova V, Hirschfeldova K. Improvement of diagnostic yield by an additional amplicon module to hybridization-based next-generation sequencing panels. J Mol Diagn. 2022;24:844–855. doi: 10.1016/j.jmoldx.2022.05.002 PubMed

Sander H, Wallace S, Plouse R, Tiwari S, Gomes AV. Ponceau s waste: Ponceau s staining for total protein normalization. Anal Biochem. 2019;575:44–53. doi: 10.1016/j.ab.2019.03.010 PubMed PMC

Vaneckova I, Vokurkova M, Rauchova H, Dobesova Z, Pechanova O, Kunes J, Vorlíček J, Zicha J. Chronic antioxidant therapy lowers blood pressure in adult but not in young Dahl salt hypertensive rats: the role of sympathetic nervous system. Acta Physiol (Oxf). 2013;208:340–349. doi: 10.1111/apha.12092 PubMed

Zielinski T, Hay J, Millar AJ. Period estimation and rhythm detection in timeseries data using biodare2, the free, online, community resource. Methods Mol Biol. 2022;2398:15–32. doi: 10.1007/978-1-0716-1912-4_2 PubMed

Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and limitations of period estimation methods for circadian data. PLoS One. 2014;9:e96462. doi: 10.1371/journal.pone.0096462 PubMed PMC

Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens. 2009;23:645–653. doi: 10.1038/jhh.2009.9 PubMed

Sumova A, Sladek M, Jac M, Illnerova H. The circadian rhythm of per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Res. 2002;947:260–270. doi: 10.1016/s0006-8993(02)02933-5 PubMed

Kalia M, Fuxe K, Goldstein M. Rat medulla oblongata. III. adrenergic (c1 and c2) neurons, nerve fibers and presumptive terminal processes. J Comp Neurol. 1985;233:333–349. doi: 10.1002/cne.902330304 PubMed

Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–2917. doi: 10.1016/s0021-9258(18)93832-9 PubMed DOI

Phillips JK, Goodchild AK, Dubey R, Sesiashvili E, Takeda M, Chalmers J, Pilowsky PM, Lipski J. Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol. 2001;432:20–34. doi: 10.1002/cne.1086 PubMed

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262 PubMed

Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293. doi: 10.1253/jcj.27.282 PubMed

Pravenec M, Kren V, Landa V, Mlejnek P, Musilova A, Silhavy J, Šimáková M, Zídek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res. 2014;63:S1–S8. doi: 10.33549/physiolres.932622 PubMed

Swislocki A, Tsuzuki A. Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci. 1993;306:282–286. doi: 10.1097/00000441-199311000-00002 PubMed

Sladek M, Polidarova L, Novakova M, Parkanova D, Sumova A. Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One. 2012;7:e46951. doi: 10.1371/journal.pone.0046951 PubMed PMC

Naito Y, Tsujino T, Kawasaki D, Okumura T, Morimoto S, Masai M, Sakoda T, Fujioka Y, Ohyanagi M, Iwasaki T. Circadian gene expression of clock genes and plasminogen activator inhibitor-1 in heart and aorta of spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens. 2003;21:1107–1115. doi: 10.1097/00004872-200306000-00010 PubMed

Polidarova L, Sladek M, Novakova M, Parkanova D, Sumova A. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for bmal2 in the liver. PLoS One. 2013;8:e75690. doi: 10.1371/journal.pone.0075690 PubMed PMC

Cui H, Kohsaka A, Waki H, Bhuiyan ME, Gouraud SS, Maeda M. Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLoS One. 2011;6:e17339. doi: 10.1371/journal.pone.0017339 PubMed PMC

Xu L, Wu T, Li H, Ni Y, Fu Z. An individual 12-h shift of the light-dark cycle alters the pancreatic and duodenal circadian rhythm and digestive function. Acta Biochim Biophys Sin (Shanghai). 2017;49:954–961. doi: 10.1093/abbs/gmx084 PubMed

Tanaka S, Ueno T, Tsunemi A, Nagura C, Tahira K, Fukuda N, Soma M, Abe M. The adrenal gland circadian clock exhibits a distinct phase advance in spontaneously hypertensive rats. Hypertens Res. 2019;42:165–173. doi: 10.1038/s41440-018-0148-8 PubMed

Olejnikova L, Polidarova L, Behuliak M, Sladek M, Sumova A. Circadian alignment in a foster mother improves the offspring’s pathological phenotype. J Physiol. 2018;596:5757–5775. doi: 10.1113/JP275585 PubMed PMC

Yilmaz A, Li P, Kalsbeek A, Buijs RM, Hu K. Differential fractal and circadian patterns in motor activity in spontaneously hypertensive rats at the stage of prehypertension. Adv Biol (Weinh). 2023;7:e2200324. doi: 10.1002/adbi.202200324 PubMed

Lemmer B, Mattes A, Bohm M, Ganten D. Circadian blood pressure variation in transgenic hypertensive rats. Hypertension. 1993;22:97–101. doi: 10.1161/01.hyp.22.1.97 PubMed

Masuda K, Sakurai T, Hirano A. A coupled model between circadian, cell-cycle, and redox rhythms reveals their regulation of oxidative stress. Sci Rep. 2024;14:15479. doi: 10.1038/s41598-024-66347-9 PubMed PMC

Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov. 2024;10:199. doi: 10.1038/s41420-024-01960-1 PubMed PMC

Fuster JJ, Diez J, Andres V. Telomere dysfunction in hypertension. J Hypertens. 2007;25:2185–2192. doi: 10.1097/HJH.0b013e3282ef6196 PubMed

Perez-Rivero G, Ruiz-Torres MP, Rivas-Elena JV, Jerkic M, Diez-Marques ML, Lopez-Novoa JM, Blasco MA, Rodríguez-Puyol D. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation. 2006;114:309–317. doi: 10.1161/CIRCULATIONAHA.105.611111 PubMed

Martynowicz H, Gac P, Kornafel-Flak O, Filipow S, Laczmanski L, Sobieszczanska M, Mazur G, Porȩba R. The relationship between the effectiveness of blood pressure control and telomerase reverse transcriptase concentration, adipose tissue hormone concentration and endothelium function in hypertensives. Heart Lung Circ. 2020;29:e200–e209. doi: 10.1016/j.hlc.2019.12.012 PubMed

Thompson CAH, Wong JMY. Non-canonical functions of telomerase reverse transcriptase: emerging roles and biological relevance. Curr Top Med Chem. 2020;20:498–507. doi: 10.2174/1568026620666200131125110 PubMed

Zhou J, Ding D, Wang M, Cong YS. Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep. 2014;47:8–14. doi: 10.5483/bmbrep.2014.47.1.284 PubMed PMC

Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, et al. Tert extra-telomeric roles: antioxidant activity and mitochondrial protection. Int J Mol Sci. 2023;24:4450. doi: 10.3390/ijms24054450 PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...