Tert Deletion Impairs Circadian Regulation of Blood Pressure in Male Spontaneously Hypertensive Rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41368704
PubMed Central
PMC12822765
DOI
10.1161/hypertensionaha.125.25510
Knihovny.cz E-zdroje
- Klíčová slova
- blood pressure, circadian clocks, heart rate, oxidative stress, rats,
- MeSH
- cirkadiánní rytmus * fyziologie genetika MeSH
- delece genu MeSH
- hypertenze * genetika patofyziologie metabolismus MeSH
- krevní tlak * fyziologie genetika MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- oxidační stres fyziologie MeSH
- potkani inbrední SHR MeSH
- telomerasa * genetika MeSH
- zkracování telomer genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- telomerasa * MeSH
BACKGROUND: Deletion of the Tert gene leads to telomere shortening, which is associated with aging and age-related cardiovascular disease, but its effects on circadian regulation of blood pressure have not yet been investigated. To fill this gap, we developed a rat model with genetic deletion of the Tert gene on a spontaneously hypertensive rat-Tert-/- background, in which telomeres were shortened in the F3 generation. METHODS: We analyzed the effects of Tert deletion on locomotor activity, oxidative stress, telemetrically measured parameters of the cardiovascular system, and the expression of clock genes in various tissues. RESULTS: Male spontaneously hypertensive rat-Tert-/- showed a reduced physical fitness, which was reflected in a more fragmented nocturnal activity and a poorer correlation between spontaneous activity and cardiovascular parameters. Day/night blood pressure amplitude was reduced, and the circadian rhythm of systolic blood pressure was completely abolished in constant darkness. In the rostral ventromedial medulla of the brainstem, the number of TH (tyrosine hydroxylase)-immunopositive cells was reduced, indicating a decrease in sympathetic tone. In heart tissue, the level of protein oxidation was increased, and similar to other tissues, the day/night expression of clock genes was significantly changed, suggesting an impairment of the synchrony of their clocks. CONCLUSIONS: Our results suggest that deletion of Tert impairs circadian regulation of blood pressure via a decreased rhythm of sympathetic activity innervating the heart and other tissues, leading to impaired circadian regulation of local peripheral clocks. These findings provide a possible link between age-related telomere shortening and impaired rhythmicity of cardiovascular function.
Laboratory of Biological Rhythms Institute of Physiology Czech Academy of Sciences Prague
Laboratory of Experimental Hypertension Institute of Physiology Czech Academy of Sciences Prague
Laboratory of Genetics of Model Diseases Institute of Physiology Czech Academy of Sciences Prague
Zobrazit více v PubMed
Durgan DJ, Young ME. The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res. 2010;106:647–658. doi: 10.1161/CIRCRESAHA.109.209957 PubMed PMC
O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet. 1988;2:397. doi: 10.1016/s0140-6736(88)92867-x PubMed
Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science. 2002;295:2446–2449. doi: 10.1126/science.1069523 PubMed
Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96:1020–1024. doi: 10.1038/sj.bjc.6603671 PubMed PMC
Chatterjee S, Leach-Mehrwald M, Huang CK, Xiao K, Fuchs M, Otto M, Lu D, Dang V, Winkler T, Dunbar CE, et al. Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes. Cell Mol Life Sci. 2024;81:196. doi: 10.1007/s00018-024-05239-7 PubMed PMC
Richardson GD, Breault D, Horrocks G, Cormack S, Hole N, Owens WA. Telomerase expression in the mammalian heart. FASEB J. 2012;26:4832–4840. doi: 10.1096/fj.12-208843 PubMed PMC
Saheera S, Nair RR. Accelerated decline in cardiac stem cell efficiency in spontaneously hypertensive rat compared to normotensive Wistar rat. PLoS One. 2017;12:e0189129. doi: 10.1371/journal.pone.0189129 PubMed PMC
Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102:8692–8697. doi: 10.1073/pnas.0500169102 PubMed PMC
Minamino T, Miyauchi H, Yoshida T, Tateno K, Kunieda T, Komuro I. Vascular cell senescence and vascular aging. J Mol Cell Cardiol. 2004;36:175–183. doi: 10.1016/j.yjmcc.2003.11.010 PubMed
Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. J Nephrol. 2010;23(Suppl 15):S29–S36. PubMed
Csanyi G, Miller FJ, Jr. Oxidative stress in cardiovascular disease. Int J Mol Sci. 2014;15:6002–6008. doi: 10.3390/ijms15046002 PubMed PMC
von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220:186–193. doi: 10.1006/excr.1995.1305 PubMed
Brandt M, Dorschmann H, Khraisat S, Knopp T, Ringen J, Kalinovic S, Garlapati V, Siemer S, Molitor M, Göbel S, et al. Telomere shortening in hypertensive heart disease depends on oxidative DNA damage and predicts impaired recovery of cardiac function in heart failure. Hypertension. 2022;79:2173–2184. doi: 10.1161/HYPERTENSIONAHA.121.18935 PubMed
Adiga IK, Nair RR. A positive association between cardiomyocyte volume and serum malondialdehyde levels. Int J Cardiol. 2007;115:246–248. doi: 10.1016/j.ijcard.2006.01.049 PubMed
Date MO, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y, Hirotani S, Matsumura Y, Hori M, Tada M, et al. The antioxidant n-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol. 2002;39:907–912. doi: 10.1016/s0735-1097(01)01826-5 PubMed
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–549. doi: 10.1146/annurev-physiol-021909-135821 PubMed
Buijs RM, Hermes MH, Kalsbeek A. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. Prog Brain Res. 1998;119:365–382. doi: 10.1016/s0079-6123(08)61581-2 PubMed
Dampney RA, Horiuchi J, Tagawa T, Fontes MA, Potts PD, Polson JW. Medullary and supramedullary mechanisms regulating sympathetic vasomotor tone. Acta Physiol Scand. 2003;177:209–218. doi: 10.1046/j.1365-201X.2003.01070.x PubMed
Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–346. doi: 10.1038/nrn1902 PubMed
Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci. 2001;2:521–526. doi: 10.1038/35081582 PubMed
Guyton AC, Coleman TG, Cowley AV, Jr, Scheel KW, Manning RD, Jr, Norman RA, Jr. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–594. doi: 10.1016/0002-9343(72)90050-2 PubMed
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18:164–179. doi: 10.1038/nrg.2016.150 PubMed PMC
Polidarova L, Sladek M, Novosadova Z, Sumova A. Aging does not compromise in vitro oscillation of the suprachiasmatic nuclei but makes it more vulnerable to constant light. Chronobiol Int. 2017;34:105–117. doi: 10.1080/07420528.2016.1242491 PubMed
Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem. 2021;157:73–94. doi: 10.1111/jnc.15286 PubMed PMC
Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, Lall GS, Biello SM. Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr). 2013;35:2137–2152. doi: 10.1007/s11357-012-9502-y PubMed PMC
Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16:R914–R916. doi: 10.1016/j.cub.2006.09.058 PubMed PMC
Osum M, Serakinci N. Impact of circadian disruption on health; sirt1 and telomeres. DNA Repair (Amst). 2020;96:102993. doi: 10.1016/j.dnarep.2020.102993 PubMed
Chen WD, Wen MS, Shie SS, Lo YL, Wo HT, Wang CC, Hsieh I-C, Lee T-H, Wang C-Y. The circadian rhythm controls telomeres and telomerase activity. Biochem Biophys Res Commun. 2014;451:408–414. doi: 10.1016/j.bbrc.2014.07.138 PubMed
Kunieda T, Minamino T, Katsuno T, Tateno K, Nishi J, Miyauchi H, Orimo M, Okada S, Komuro I. Cellular senescence impairs circadian expression of clock genes in vitro and in vivo. Circ Res. 2006;98:532–539. doi: 10.1161/01.RES.0000204504.25798.a8 PubMed
Qu Y, Mao M, Li X, Liu Y, Ding J, Jiang Z, Wan C, Zhang L, Wang Z, Mu D. Telomerase reconstitution contributes to resetting of circadian rhythm in fibroblasts. Mol Cell Biochem. 2008;313:11–18. doi: 10.1007/s11010-008-9736-2 PubMed
Obeidova L, Urbanova M, Stekrova J, Elisakova V, Hirschfeldova K. Improvement of diagnostic yield by an additional amplicon module to hybridization-based next-generation sequencing panels. J Mol Diagn. 2022;24:844–855. doi: 10.1016/j.jmoldx.2022.05.002 PubMed
Sander H, Wallace S, Plouse R, Tiwari S, Gomes AV. Ponceau s waste: Ponceau s staining for total protein normalization. Anal Biochem. 2019;575:44–53. doi: 10.1016/j.ab.2019.03.010 PubMed PMC
Vaneckova I, Vokurkova M, Rauchova H, Dobesova Z, Pechanova O, Kunes J, Vorlíček J, Zicha J. Chronic antioxidant therapy lowers blood pressure in adult but not in young Dahl salt hypertensive rats: the role of sympathetic nervous system. Acta Physiol (Oxf). 2013;208:340–349. doi: 10.1111/apha.12092 PubMed
Zielinski T, Hay J, Millar AJ. Period estimation and rhythm detection in timeseries data using biodare2, the free, online, community resource. Methods Mol Biol. 2022;2398:15–32. doi: 10.1007/978-1-0716-1912-4_2 PubMed
Zielinski T, Moore AM, Troup E, Halliday KJ, Millar AJ. Strengths and limitations of period estimation methods for circadian data. PLoS One. 2014;9:e96462. doi: 10.1371/journal.pone.0096462 PubMed PMC
Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens. 2009;23:645–653. doi: 10.1038/jhh.2009.9 PubMed
Sumova A, Sladek M, Jac M, Illnerova H. The circadian rhythm of per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Res. 2002;947:260–270. doi: 10.1016/s0006-8993(02)02933-5 PubMed
Kalia M, Fuxe K, Goldstein M. Rat medulla oblongata. III. adrenergic (c1 and c2) neurons, nerve fibers and presumptive terminal processes. J Comp Neurol. 1985;233:333–349. doi: 10.1002/cne.902330304 PubMed
Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–2917. doi: 10.1016/s0021-9258(18)93832-9 PubMed DOI
Phillips JK, Goodchild AK, Dubey R, Sesiashvili E, Takeda M, Chalmers J, Pilowsky PM, Lipski J. Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol. 2001;432:20–34. doi: 10.1002/cne.1086 PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262 PubMed
Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963;27:282–293. doi: 10.1253/jcj.27.282 PubMed
Pravenec M, Kren V, Landa V, Mlejnek P, Musilova A, Silhavy J, Šimáková M, Zídek V. Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res. 2014;63:S1–S8. doi: 10.33549/physiolres.932622 PubMed
Swislocki A, Tsuzuki A. Insulin resistance and hypertension: glucose intolerance, hyperinsulinemia, and elevated free fatty acids in the lean spontaneously hypertensive rat. Am J Med Sci. 1993;306:282–286. doi: 10.1097/00000441-199311000-00002 PubMed
Sladek M, Polidarova L, Novakova M, Parkanova D, Sumova A. Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. PLoS One. 2012;7:e46951. doi: 10.1371/journal.pone.0046951 PubMed PMC
Naito Y, Tsujino T, Kawasaki D, Okumura T, Morimoto S, Masai M, Sakoda T, Fujioka Y, Ohyanagi M, Iwasaki T. Circadian gene expression of clock genes and plasminogen activator inhibitor-1 in heart and aorta of spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens. 2003;21:1107–1115. doi: 10.1097/00004872-200306000-00010 PubMed
Polidarova L, Sladek M, Novakova M, Parkanova D, Sumova A. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for bmal2 in the liver. PLoS One. 2013;8:e75690. doi: 10.1371/journal.pone.0075690 PubMed PMC
Cui H, Kohsaka A, Waki H, Bhuiyan ME, Gouraud SS, Maeda M. Metabolic cycles are linked to the cardiovascular diurnal rhythm in rats with essential hypertension. PLoS One. 2011;6:e17339. doi: 10.1371/journal.pone.0017339 PubMed PMC
Xu L, Wu T, Li H, Ni Y, Fu Z. An individual 12-h shift of the light-dark cycle alters the pancreatic and duodenal circadian rhythm and digestive function. Acta Biochim Biophys Sin (Shanghai). 2017;49:954–961. doi: 10.1093/abbs/gmx084 PubMed
Tanaka S, Ueno T, Tsunemi A, Nagura C, Tahira K, Fukuda N, Soma M, Abe M. The adrenal gland circadian clock exhibits a distinct phase advance in spontaneously hypertensive rats. Hypertens Res. 2019;42:165–173. doi: 10.1038/s41440-018-0148-8 PubMed
Olejnikova L, Polidarova L, Behuliak M, Sladek M, Sumova A. Circadian alignment in a foster mother improves the offspring’s pathological phenotype. J Physiol. 2018;596:5757–5775. doi: 10.1113/JP275585 PubMed PMC
Yilmaz A, Li P, Kalsbeek A, Buijs RM, Hu K. Differential fractal and circadian patterns in motor activity in spontaneously hypertensive rats at the stage of prehypertension. Adv Biol (Weinh). 2023;7:e2200324. doi: 10.1002/adbi.202200324 PubMed
Lemmer B, Mattes A, Bohm M, Ganten D. Circadian blood pressure variation in transgenic hypertensive rats. Hypertension. 1993;22:97–101. doi: 10.1161/01.hyp.22.1.97 PubMed
Masuda K, Sakurai T, Hirano A. A coupled model between circadian, cell-cycle, and redox rhythms reveals their regulation of oxidative stress. Sci Rep. 2024;14:15479. doi: 10.1038/s41598-024-66347-9 PubMed PMC
Zeng Y, Guo Z, Wu M, Chen F, Chen L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov. 2024;10:199. doi: 10.1038/s41420-024-01960-1 PubMed PMC
Fuster JJ, Diez J, Andres V. Telomere dysfunction in hypertension. J Hypertens. 2007;25:2185–2192. doi: 10.1097/HJH.0b013e3282ef6196 PubMed
Perez-Rivero G, Ruiz-Torres MP, Rivas-Elena JV, Jerkic M, Diez-Marques ML, Lopez-Novoa JM, Blasco MA, Rodríguez-Puyol D. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation. 2006;114:309–317. doi: 10.1161/CIRCULATIONAHA.105.611111 PubMed
Martynowicz H, Gac P, Kornafel-Flak O, Filipow S, Laczmanski L, Sobieszczanska M, Mazur G, Porȩba R. The relationship between the effectiveness of blood pressure control and telomerase reverse transcriptase concentration, adipose tissue hormone concentration and endothelium function in hypertensives. Heart Lung Circ. 2020;29:e200–e209. doi: 10.1016/j.hlc.2019.12.012 PubMed
Thompson CAH, Wong JMY. Non-canonical functions of telomerase reverse transcriptase: emerging roles and biological relevance. Curr Top Med Chem. 2020;20:498–507. doi: 10.2174/1568026620666200131125110 PubMed
Zhou J, Ding D, Wang M, Cong YS. Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep. 2014;47:8–14. doi: 10.5483/bmbrep.2014.47.1.284 PubMed PMC
Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, et al. Tert extra-telomeric roles: antioxidant activity and mitochondrial protection. Int J Mol Sci. 2023;24:4450. doi: 10.3390/ijms24054450 PubMed PMC