Hydrolytic instability of C-F bonds in 2,2,2-trifluoroethyl-phosphinic acid systems: formation of carboxymethylphosphinic acid derivatives

. 2025 Dec 08 ; 15 (57) : 49109-49118. [epub] 20251210

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41384054

The trifluoromethyl group in 2,2,2-trifluoroethylphosphonic acid remains stable against hydrolysis. However, in contrast, 2,2,2-trifluoroethylphosphinic acid and its derivatives display unexpectedly low hydrolytic stability of the C-F bond in alkaline solutions. When treated with bases such as alkali metal hydroxides or tetramethylammonium hydroxide, these compounds undergo hydrolysis of the R-CF3 group, producing R-COO- and F- quantitatively. This phenomenon is easily observed using 19F NMR spectroscopy, which provides a clear analytical signature of the transformations. Although the resulting carboxymethylphosphinic acid derivatives somewhat resemble malonic or phosphonoacetic acid derivatives, they demonstrate remarkable stability in both strong acidic and alkaline solutions, where decarboxylation analogous to the malonic ester synthesis or dephosphorylation similar to the Horner-Wadsworth-Emmons reaction would be expected. The observed hydrolytic instability of the 2,2,2-trifluoroethylphosphinic acid fragment brings the possibility to introduce a bifunctional carboxymethylphosphinic acid chelating group(s) in, e.g., chelators used in radiomedicine.

Zobrazit více v PubMed

Chan K. K. J. O'Hagan D. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology. Methods Enzymol. 2012;516:219–235. doi: 10.1016/B978-0-12-394291-3.00003-4. PubMed DOI

Reid K. A. Hamilton J. T. G. Bowden R. D. O'Hagan D. Dasaradhi L. Amin M. R. Harper D. B. Biosynthesis of fluorinated secondary metabolites by Streptomyces cattleya. Microbiology. 1995;141:1385–1393. doi: 10.1099/13500872-141-6-1385. PubMed DOI

Farajollahi S. Lombardo N. V. Crenshaw M. D. Guo H.-B. Doherty M. E. Davison T. R. Steel J. J. Almand E. A. Varaljay V. A. Suei-Hung C. Mirau P. A. Berry R. J. Kelley-Loughnane N. Dennis P. B. Defluorination of organofluorine compounds using dehalogenase enzymes from Delftia acidovorans (D4B) ACS Omega. 2024;9:28546–28555. doi: 10.1021/acsomega.4c02517. PubMed DOI PMC

Marais J. C. S. Du Toit P. J. Monofluoroacetic acid, the toxic principle of “gifblaar” Dichapetalum cymosum. Onderstepoort J. Vet. Sci. Anim. Ind. 1944;20:67.

Harper D. Hamilton J. T. G. O'Hagan D. Identification of threo-18-fluoro-9,10-dihydroxystearic acid: a novel ω-fluorinated fatty acid from Dichapetalum toxicarium seeds. Tetrahedron Lett. 1990;31:7661–7662. doi: 10.1016/S0040-4039(00)97325-8. DOI

O'Hagan D. Perry R. Lock J. M. Meyer J. J. M. Dasaradhi L. Hamilton J. T. G. Harper D. B. High levels of monofluoroacetate in Dichapetalum braunii. Phytochemistry. 1993;33:1043–1046. doi: 10.1016/0031-9422(93)85020-R. DOI

Christie W. W. Hamilton J. T. G. Harper D. B. Mass spectrometry of fluorinated fatty acids in the seed oil of Dichapetalum toxicarium. Chem. Phys. Lipids. 1998;97:41–47. doi: 10.1016/S0009-3084(98)00090-5. DOI

Pacák J. Točík Z. Černý M. Synthesis of 2-deoxy-2-fluoro-D-glucose. J. Chem. Soc. D: Chem. Commun. 1969:77. doi: 10.1039/C29690000077. DOI

Campbell E. Jordan C. Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET) Chem. Soc. Rev. 2023;52:3599–3626. doi: 10.1039/D3CS00037K. PubMed DOI PMC

https://www.efsa.europa.eu/en/topics/per-and-polyfluoroalkyl-substances-pfas#published-on-this-topic. https://www.efsa.europa.eu/en/topics/per-and-polyfluoroalkyl-substances-pfas#published-on-this-topic

https://www.epa.gov/newsreleases/us-will-dramatically-cut-climate-damaging-greenhouse-gases-new-program-aimed-chemicals. https://www.epa.gov/newsreleases/us-will-dramatically-cut-climate-damaging-greenhouse-gases-new-program-aimed-chemicals

Domenech J. Annangi B. Marco R. Hernandez A. Catalan J. Insights into the potential carcinogenicity of micro- and nano-plastics. Mutat. Res., Rev. Mutat. Res. 2023;791:108453. doi: 10.1016/j.mrrev.2023.108453. PubMed DOI

Ziani K. Ionită-Mîndrican C.-B. Mititelu M. Neacşu S. M. Negrei C. Morosăn E. Drăgănescu D. Preda O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients. 2023;15:617. doi: 10.3390/nu15030617. PubMed DOI PMC

Deng X. Gui Y. Zhao L. The micro(nano)plastics perspective: exploring cancer development and therapy. Mol. Cancer. 2025;24:30. doi: 10.1186/s12943-025-02230-z. PubMed DOI PMC

Llorca M. Farré M. Karapanagioti H. K. Barceló D. Levels and fate of perfluoroalkyl substances in beached plastic pellets and sediments collected from Greece. Mar. Pollut. Bull. 2014;87:286–291. doi: 10.1016/j.marpolbul.2014.07.036. PubMed DOI

Chu S. Wang J. Leong G. Woodward L. A. Letcher R. J. Li Q. X. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean. Chemosphere. 2015;138:60–66. doi: 10.1016/j.chemosphere.2015.05.043. PubMed DOI PMC

Uneyama K. Katagiri T. Amii H. α-Trifluoromethylated carbanion synthons. Acc. Chem. Res. 2008;41:817–829. doi: 10.1021/ar7002573. PubMed DOI

Yang J. Mao A. Yue Z. Zhu W. Luo X. Zhu C. Xiao Y. Zhang J. A simple base-mediated synthesis of diverse functionalized ring-fluorinated 4H-pyrans via double direct C–F substitutions. Chem. Commun. 2015;51:8326–8329. doi: 10.1039/C5CC02073E. PubMed DOI

Yang J. Zhou X. Zeng Y. Huang C. Xiao Y. Zhang J. Synthesis of 2-fluoro-2-pyrrolines via tandem reaction of α-trifluoromethyl-α,β-unsaturated carbonyl compounds with N-tosylated 2-aminomalonates. Chem. Commun. 2016;52:4922–4925. doi: 10.1039/C6CC00831C. PubMed DOI

Ishikawa N. Yokozawa T. Convenient preparation of dimethyl (trifluoromethyl)malonate and related compounds. Bull. Chem. Soc. Jpn. 1983;56:724–726. doi: 10.1246/bcsj.56.724. DOI

Ishikawa N. Takaoka A. Ibrahim M. K. Preparation of 2-fluoromalonic esters and related compounds from hexafluoropropene. J. Fluorine Chem. 1984;25:203–212. doi: 10.1016/S0022-1139(00)80949-5. DOI

Ishikawa N. Takaoka A. Facile synthesis of dialkyl fluoromalonates and their derivatives. Chem. Lett. 1981;10:107–110. doi: 10.1246/cl.1981.107. DOI

Morgenroth A. Urusova E. A. Dinger C. Al-Momani E. Kull T. Glatting G. Frauendorf H. Jahn O. Mottaghy F. M. Reske S. N. Zlatopolskiy B. D. New molecular markers for prostate tumor imaging: a study on 2-methylene substituted fatty acids as new AMACR inhibitors. Chem.–Eur. J. 2011;17:10144–10150. doi: 10.1002/chem.201003176. PubMed DOI

Fuchigami T. Nakagawa Y. Electrolytic transformation of fluoroorganic compounds 2. Generation and alkylation of a stable (trifluoromethyl)malonic ester enolate using an electrogenerated base. J. Org. Chem. 1987;52:5276–5277. doi: 10.1021/jo00232a041. DOI

Guo Y. Zhao X. Zhang D. Murahashi S.-I. Iridium-catalyzed reactions of trifluoromethylated compounds with alkenes: a Csp3–H bond activation α to the trifluoromethyl group. Angew. Chem., Int. Ed. 2008;47:3237–3239. doi: 10.1002/anie.200805852. PubMed DOI

Li L. Chen Q.-Y. Guo Y. Allylic C–H alkylation with a CF3-containing nucleophile. Chem. Commun. 2013;49:5723–5725. doi: 10.1039/C3CC43120G. PubMed DOI

Li L. Huang D. Chen Q.-Y. Guo Y. Pd-catalyzed allylic alkylation of CF3-containing esters with three electron-withdrawing groups. Synlett. 2013;24:613–616. doi: 10.1055/s-0032-1318313. DOI

Wang Q. Huan F. Shen H. Xiao J.-C. Gao M. Yang X. Murahashi S.-I. Chen Q.-Y. Guo Y. Organocatalytic reactions of α-trifluoromethylated esters with terminal alkenes at room temperature. J. Org. Chem. 2013;78:12525–12531. doi: 10.1021/jo402212j. PubMed DOI

Gladow D. Reissig H.-U. Alkylation and ring opening of perfluoroalkyl- and perfluoroaryl-substituted 2-siloxycyclopropanecarboxylates yielding fluorinated γ-oxo esters or β,γ-unsaturated ketones. Synthesis. 2013;45:2179–2187. doi: 10.1055/s-0033-1338892. DOI

Zhang F. Wang X.-J. Cai C.-X. Liu J.-T. Organic base catalyzed carbonyl allylation of methyl trifluoropyruvate with activated alkenes. Tetrahedron. 2009;65:83–86. doi: 10.1016/j.tet.2008.11.002. DOI

Herynek V. Martinisková M. Bobrova Y. Gálisová A. Kotek J. Hermann P. Koucký F. Jirák D. Hájek M. Low-molecular-weight paramagnetic 19F contrast agents for fluorine magnetic resonance imaging. Magn. Reson. Mater. Phys., Biol. Med. 2019;32:115–122. doi: 10.1007/s10334-018-0721-9. PubMed DOI PMC

Koucký F. Kotek J. Císařová I. Havlíčková J. Kubíček V. Hermann P. Transition metal complexes of cyclam with two 2,2,2-trifluoroethylphosphinate pendant arms as probes for 19F magnetic resonance imaging. Dalton Trans. 2023;52:12208–12223. doi: 10.1039/D3DT01420G. PubMed DOI

Koucký F. Dobrovolná T. Kotek J. Císařová I. Havlíčková J. Liška A. Kubíček V. Hermann P. Transition metal complexes of the (2,2,2-trifluoroethyl)phosphinate NOTA analogue as potential contrast agents for 19F magnetic resonance imaging. Dalton Trans. 2024;53:9267–9285. doi: 10.1039/D4DT00507D. PubMed DOI

Cristau H.-J. Hervé A. Virieux D. Synthesis of new α or γ-functionalized hydroxymethylphosphinic acid derivatives. Tetrahedron. 2004;60:877–884. doi: 10.1016/j.tet.2003.11.045. DOI

Kotková Z. Pereira G. A. Djanashvili K. Kotek J. Rudovský J. Hermann P. Vander Elst L. Muller R. N. Geraldes C. F. G. C. Lukeš I. Peters J. A. Lanthanide(iii) complexes of phosphorus acid analogues of H4DOTA as model compounds for the evaluation of the second-sphere hydration. Eur. J. Inorg. Chem. 2009:119–136. doi: 10.1002/ejic.200800859. DOI

David T. Kubíček V. Gutten O. Lubal P. Kotek J. Pietzsch H.-J. Rulíšek L. Hermann P. Cyclam derivatives with a bis(phosphinate) or a phosphinato–phosphonate pendant arm: ligands for fast and efficient copper(ii) complexation for nuclear medical applications. Inorg. Chem. 2015;54:11751–11766. doi: 10.1021/acs.inorgchem.5b01791. PubMed DOI

Procházková S. Kubíček V. Kotek J. Vágner A. Notni J. Hermann P. Lanthanide(iii) complexes of monophosphinate/monophosphonate DOTA-analogues: effects of the substituents on the formation rate and radiolabelling yield. Dalton Trans. 2018;47:13006–13015. doi: 10.1039/c8dt02608d. PubMed DOI

Urbanovský P. Kotek J. Císařová I. Hermann P. Selective and clean synthesis of aminoalkyl-H-phosphinic acids from hypophosphorous acid by phospha-Mannich reaction. RSC Adv. 2020;10:21329–21349. doi: 10.1039/d0ra03075a. PubMed DOI PMC

Řezanka P. Kubíček V. Hermann P. Lukeš I. Synthesis of a bifunctional monophosphinate DOTA derivative having a free carboxylate group in the phosphorus side chain. Synthesis. 2008;9:1431–1435. doi: 10.1055/s-2008-1072571. DOI

Rudovský J. Kotek J. Hermann P. Lukeš I. Mainero V. Aime S. Synthesis of a bifunctional monophosphinic acid DOTA analogue ligand and its lanthanide(iii) complexes. A gadolinium(iii) complex endowed with an optimal water exchange rate for MRI applications. Org. Biomol. Chem. 2005;3:112–117. doi: 10.1039/b410103k. PubMed DOI

Maier L. Organische Phosphorverbindungen 74: Zur Kenntnis der Umsetzung von Cyanomethyldichlorphosphin und 2-Chloräthyldichlorphosphin mit Benzylglycin und Formaldehyd in Saurer Lösung. Phosphorus Sulfur. 1981;11:149–156. doi: 10.1080/03086648108077413. DOI

Notni J. Hermann P. Havlíčková J. Kotek J. Kubíček V. Plutnar J. Loktionova N. Riss P. J. Rösch F. Lukeš I. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chem.–Eur. J. 2010;24:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI

Šimeček J. Hermann P. Havlíčková J. Herdtweck E. Kapp T. G. Engelbogen N. Kessler H. Wester H. J. Notni J. A cyclen-based tetraphosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chem.–Eur. J. 2013;19:7748–7757. doi: 10.1002/chem.201300338. PubMed DOI

Notni J. Šimeček J. Wester H.-J. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications. ChemMedChem. 2014;9:1107–1115. doi: 10.1002/cmdc.201400055. PubMed DOI

Hewawasam P., Dextraze P., Gribkoff V. K., Kinney G. G. and Dworetzky S. I., Fluoro oxindole derivatives as modulators of kcnq potassium channels, WO Patent, 2002066426A2, 2002

Kotková Z. Koucký F. Kotek J. Císařová I. Parker D. Hermann P. Copper(II) complexes of cyclams with N-(2,2,2-trifluoroethyl)-aminoalkyl pendant arms as potential probes for 19F magnetic resonance imaging. Dalton Trans. 2023;52:1861–1875. doi: 10.1039/D2DT03360G. PubMed DOI

Connolly T. J., Chan A. W.-Y., Ding Z., Ghosh M. R., Shi X., Ren J., Hansen E., Farr R., Macewan M., Alimardanov A., Nikitenko A. and Potoski J., Process for the preparation of trifluoroalkyl-phenyl and heterocyclic sulfoamides, WO Patent, 2009012201, 2009

Blahut J. Hermann P. Gálisová A. Herynek V. Císařová I. Tošner Z. Kotek J. Nickel(ii) complexes of N–CH2CF3 cyclam derivatives as contrast agents for 19F magnetic resonance imaging. Dalton Trans. 2016;45:474–478. doi: 10.1039/C5DT04138D. PubMed DOI

Karschin N. Krenek S. Heyer D. Griesinger C. Extension and improvement of the methanol-d4 NMR thermometer calibration. Magn. Reson. Chem. 2022;60:185–270. doi: 10.1002/mrc.5216. PubMed DOI

NMR Thermometer (Version 4.0), Hebrew University NMR Lab, NMR Thermometer, https://chem.ch.huji.ac.il/nmr/software/thermometer.html, accessed August 26, 2025

Goldman P. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J. Biol. Chem. 1965;240:3434–3438. doi: 10.1016/S0021-9258(18)97236-4. PubMed DOI

Andrews K. G. Faizova R. Denton R. M. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nat. Commun. 2017;8:15913. doi: 10.1038/ncomms15913. PubMed DOI PMC

Epifanov M. Foth P. J. Gu F. Barrillon C. Kanani S. S. Higman C. S. Hein J. E. Sammis G. M. One-pot 1,1-dihydrofluoroalkylation of amines using sulfuryl fluoride. J. Am. Chem. Soc. 2018;140:16464–16468. doi: 10.1021/jacs.8b11309. PubMed DOI

Abedelnour E. Ognier S. Venier O. Schio L. Tatouliana M. Cossy J. Synthesis of trifluoromethyl N,N-aminals from nitrogen containing heterocycles by using a plasma flow microreactor. Chem. Commun. 2023;59:4213–4216. doi: 10.1039/d3cc00942d. PubMed DOI

CCDC 2489251: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8fz DOI

CCDC 2489252: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8g0 DOI

CCDC 2489253: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8h1 DOI

CCDC 2489254: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8j2 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...