Hydrolytic instability of C-F bonds in 2,2,2-trifluoroethyl-phosphinic acid systems: formation of carboxymethylphosphinic acid derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41384054
PubMed Central
PMC12691380
DOI
10.1039/d5ra07303k
PII: d5ra07303k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The trifluoromethyl group in 2,2,2-trifluoroethylphosphonic acid remains stable against hydrolysis. However, in contrast, 2,2,2-trifluoroethylphosphinic acid and its derivatives display unexpectedly low hydrolytic stability of the C-F bond in alkaline solutions. When treated with bases such as alkali metal hydroxides or tetramethylammonium hydroxide, these compounds undergo hydrolysis of the R-CF3 group, producing R-COO- and F- quantitatively. This phenomenon is easily observed using 19F NMR spectroscopy, which provides a clear analytical signature of the transformations. Although the resulting carboxymethylphosphinic acid derivatives somewhat resemble malonic or phosphonoacetic acid derivatives, they demonstrate remarkable stability in both strong acidic and alkaline solutions, where decarboxylation analogous to the malonic ester synthesis or dephosphorylation similar to the Horner-Wadsworth-Emmons reaction would be expected. The observed hydrolytic instability of the 2,2,2-trifluoroethylphosphinic acid fragment brings the possibility to introduce a bifunctional carboxymethylphosphinic acid chelating group(s) in, e.g., chelators used in radiomedicine.
Zobrazit více v PubMed
Chan K. K. J. O'Hagan D. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology. Methods Enzymol. 2012;516:219–235. doi: 10.1016/B978-0-12-394291-3.00003-4. PubMed DOI
Reid K. A. Hamilton J. T. G. Bowden R. D. O'Hagan D. Dasaradhi L. Amin M. R. Harper D. B. Biosynthesis of fluorinated secondary metabolites by Streptomyces cattleya. Microbiology. 1995;141:1385–1393. doi: 10.1099/13500872-141-6-1385. PubMed DOI
Farajollahi S. Lombardo N. V. Crenshaw M. D. Guo H.-B. Doherty M. E. Davison T. R. Steel J. J. Almand E. A. Varaljay V. A. Suei-Hung C. Mirau P. A. Berry R. J. Kelley-Loughnane N. Dennis P. B. Defluorination of organofluorine compounds using dehalogenase enzymes from Delftia acidovorans (D4B) ACS Omega. 2024;9:28546–28555. doi: 10.1021/acsomega.4c02517. PubMed DOI PMC
Marais J. C. S. Du Toit P. J. Monofluoroacetic acid, the toxic principle of “gifblaar” Dichapetalum cymosum. Onderstepoort J. Vet. Sci. Anim. Ind. 1944;20:67.
Harper D. Hamilton J. T. G. O'Hagan D. Identification of threo-18-fluoro-9,10-dihydroxystearic acid: a novel ω-fluorinated fatty acid from Dichapetalum toxicarium seeds. Tetrahedron Lett. 1990;31:7661–7662. doi: 10.1016/S0040-4039(00)97325-8. DOI
O'Hagan D. Perry R. Lock J. M. Meyer J. J. M. Dasaradhi L. Hamilton J. T. G. Harper D. B. High levels of monofluoroacetate in Dichapetalum braunii. Phytochemistry. 1993;33:1043–1046. doi: 10.1016/0031-9422(93)85020-R. DOI
Christie W. W. Hamilton J. T. G. Harper D. B. Mass spectrometry of fluorinated fatty acids in the seed oil of Dichapetalum toxicarium. Chem. Phys. Lipids. 1998;97:41–47. doi: 10.1016/S0009-3084(98)00090-5. DOI
Pacák J. Točík Z. Černý M. Synthesis of 2-deoxy-2-fluoro-D-glucose. J. Chem. Soc. D: Chem. Commun. 1969:77. doi: 10.1039/C29690000077. DOI
Campbell E. Jordan C. Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET) Chem. Soc. Rev. 2023;52:3599–3626. doi: 10.1039/D3CS00037K. PubMed DOI PMC
https://www.efsa.europa.eu/en/topics/per-and-polyfluoroalkyl-substances-pfas#published-on-this-topic. https://www.efsa.europa.eu/en/topics/per-and-polyfluoroalkyl-substances-pfas#published-on-this-topic
https://www.epa.gov/newsreleases/us-will-dramatically-cut-climate-damaging-greenhouse-gases-new-program-aimed-chemicals. https://www.epa.gov/newsreleases/us-will-dramatically-cut-climate-damaging-greenhouse-gases-new-program-aimed-chemicals
Domenech J. Annangi B. Marco R. Hernandez A. Catalan J. Insights into the potential carcinogenicity of micro- and nano-plastics. Mutat. Res., Rev. Mutat. Res. 2023;791:108453. doi: 10.1016/j.mrrev.2023.108453. PubMed DOI
Ziani K. Ionită-Mîndrican C.-B. Mititelu M. Neacşu S. M. Negrei C. Morosăn E. Drăgănescu D. Preda O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients. 2023;15:617. doi: 10.3390/nu15030617. PubMed DOI PMC
Deng X. Gui Y. Zhao L. The micro(nano)plastics perspective: exploring cancer development and therapy. Mol. Cancer. 2025;24:30. doi: 10.1186/s12943-025-02230-z. PubMed DOI PMC
Llorca M. Farré M. Karapanagioti H. K. Barceló D. Levels and fate of perfluoroalkyl substances in beached plastic pellets and sediments collected from Greece. Mar. Pollut. Bull. 2014;87:286–291. doi: 10.1016/j.marpolbul.2014.07.036. PubMed DOI
Chu S. Wang J. Leong G. Woodward L. A. Letcher R. J. Li Q. X. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean. Chemosphere. 2015;138:60–66. doi: 10.1016/j.chemosphere.2015.05.043. PubMed DOI PMC
Uneyama K. Katagiri T. Amii H. α-Trifluoromethylated carbanion synthons. Acc. Chem. Res. 2008;41:817–829. doi: 10.1021/ar7002573. PubMed DOI
Yang J. Mao A. Yue Z. Zhu W. Luo X. Zhu C. Xiao Y. Zhang J. A simple base-mediated synthesis of diverse functionalized ring-fluorinated 4H-pyrans via double direct C–F substitutions. Chem. Commun. 2015;51:8326–8329. doi: 10.1039/C5CC02073E. PubMed DOI
Yang J. Zhou X. Zeng Y. Huang C. Xiao Y. Zhang J. Synthesis of 2-fluoro-2-pyrrolines via tandem reaction of α-trifluoromethyl-α,β-unsaturated carbonyl compounds with N-tosylated 2-aminomalonates. Chem. Commun. 2016;52:4922–4925. doi: 10.1039/C6CC00831C. PubMed DOI
Ishikawa N. Yokozawa T. Convenient preparation of dimethyl (trifluoromethyl)malonate and related compounds. Bull. Chem. Soc. Jpn. 1983;56:724–726. doi: 10.1246/bcsj.56.724. DOI
Ishikawa N. Takaoka A. Ibrahim M. K. Preparation of 2-fluoromalonic esters and related compounds from hexafluoropropene. J. Fluorine Chem. 1984;25:203–212. doi: 10.1016/S0022-1139(00)80949-5. DOI
Ishikawa N. Takaoka A. Facile synthesis of dialkyl fluoromalonates and their derivatives. Chem. Lett. 1981;10:107–110. doi: 10.1246/cl.1981.107. DOI
Morgenroth A. Urusova E. A. Dinger C. Al-Momani E. Kull T. Glatting G. Frauendorf H. Jahn O. Mottaghy F. M. Reske S. N. Zlatopolskiy B. D. New molecular markers for prostate tumor imaging: a study on 2-methylene substituted fatty acids as new AMACR inhibitors. Chem.–Eur. J. 2011;17:10144–10150. doi: 10.1002/chem.201003176. PubMed DOI
Fuchigami T. Nakagawa Y. Electrolytic transformation of fluoroorganic compounds 2. Generation and alkylation of a stable (trifluoromethyl)malonic ester enolate using an electrogenerated base. J. Org. Chem. 1987;52:5276–5277. doi: 10.1021/jo00232a041. DOI
Guo Y. Zhao X. Zhang D. Murahashi S.-I. Iridium-catalyzed reactions of trifluoromethylated compounds with alkenes: a Csp3–H bond activation α to the trifluoromethyl group. Angew. Chem., Int. Ed. 2008;47:3237–3239. doi: 10.1002/anie.200805852. PubMed DOI
Li L. Chen Q.-Y. Guo Y. Allylic C–H alkylation with a CF3-containing nucleophile. Chem. Commun. 2013;49:5723–5725. doi: 10.1039/C3CC43120G. PubMed DOI
Li L. Huang D. Chen Q.-Y. Guo Y. Pd-catalyzed allylic alkylation of CF3-containing esters with three electron-withdrawing groups. Synlett. 2013;24:613–616. doi: 10.1055/s-0032-1318313. DOI
Wang Q. Huan F. Shen H. Xiao J.-C. Gao M. Yang X. Murahashi S.-I. Chen Q.-Y. Guo Y. Organocatalytic reactions of α-trifluoromethylated esters with terminal alkenes at room temperature. J. Org. Chem. 2013;78:12525–12531. doi: 10.1021/jo402212j. PubMed DOI
Gladow D. Reissig H.-U. Alkylation and ring opening of perfluoroalkyl- and perfluoroaryl-substituted 2-siloxycyclopropanecarboxylates yielding fluorinated γ-oxo esters or β,γ-unsaturated ketones. Synthesis. 2013;45:2179–2187. doi: 10.1055/s-0033-1338892. DOI
Zhang F. Wang X.-J. Cai C.-X. Liu J.-T. Organic base catalyzed carbonyl allylation of methyl trifluoropyruvate with activated alkenes. Tetrahedron. 2009;65:83–86. doi: 10.1016/j.tet.2008.11.002. DOI
Herynek V. Martinisková M. Bobrova Y. Gálisová A. Kotek J. Hermann P. Koucký F. Jirák D. Hájek M. Low-molecular-weight paramagnetic 19F contrast agents for fluorine magnetic resonance imaging. Magn. Reson. Mater. Phys., Biol. Med. 2019;32:115–122. doi: 10.1007/s10334-018-0721-9. PubMed DOI PMC
Koucký F. Kotek J. Císařová I. Havlíčková J. Kubíček V. Hermann P. Transition metal complexes of cyclam with two 2,2,2-trifluoroethylphosphinate pendant arms as probes for 19F magnetic resonance imaging. Dalton Trans. 2023;52:12208–12223. doi: 10.1039/D3DT01420G. PubMed DOI
Koucký F. Dobrovolná T. Kotek J. Císařová I. Havlíčková J. Liška A. Kubíček V. Hermann P. Transition metal complexes of the (2,2,2-trifluoroethyl)phosphinate NOTA analogue as potential contrast agents for 19F magnetic resonance imaging. Dalton Trans. 2024;53:9267–9285. doi: 10.1039/D4DT00507D. PubMed DOI
Cristau H.-J. Hervé A. Virieux D. Synthesis of new α or γ-functionalized hydroxymethylphosphinic acid derivatives. Tetrahedron. 2004;60:877–884. doi: 10.1016/j.tet.2003.11.045. DOI
Kotková Z. Pereira G. A. Djanashvili K. Kotek J. Rudovský J. Hermann P. Vander Elst L. Muller R. N. Geraldes C. F. G. C. Lukeš I. Peters J. A. Lanthanide(iii) complexes of phosphorus acid analogues of H4DOTA as model compounds for the evaluation of the second-sphere hydration. Eur. J. Inorg. Chem. 2009:119–136. doi: 10.1002/ejic.200800859. DOI
David T. Kubíček V. Gutten O. Lubal P. Kotek J. Pietzsch H.-J. Rulíšek L. Hermann P. Cyclam derivatives with a bis(phosphinate) or a phosphinato–phosphonate pendant arm: ligands for fast and efficient copper(ii) complexation for nuclear medical applications. Inorg. Chem. 2015;54:11751–11766. doi: 10.1021/acs.inorgchem.5b01791. PubMed DOI
Procházková S. Kubíček V. Kotek J. Vágner A. Notni J. Hermann P. Lanthanide(iii) complexes of monophosphinate/monophosphonate DOTA-analogues: effects of the substituents on the formation rate and radiolabelling yield. Dalton Trans. 2018;47:13006–13015. doi: 10.1039/c8dt02608d. PubMed DOI
Urbanovský P. Kotek J. Císařová I. Hermann P. Selective and clean synthesis of aminoalkyl-H-phosphinic acids from hypophosphorous acid by phospha-Mannich reaction. RSC Adv. 2020;10:21329–21349. doi: 10.1039/d0ra03075a. PubMed DOI PMC
Řezanka P. Kubíček V. Hermann P. Lukeš I. Synthesis of a bifunctional monophosphinate DOTA derivative having a free carboxylate group in the phosphorus side chain. Synthesis. 2008;9:1431–1435. doi: 10.1055/s-2008-1072571. DOI
Rudovský J. Kotek J. Hermann P. Lukeš I. Mainero V. Aime S. Synthesis of a bifunctional monophosphinic acid DOTA analogue ligand and its lanthanide(iii) complexes. A gadolinium(iii) complex endowed with an optimal water exchange rate for MRI applications. Org. Biomol. Chem. 2005;3:112–117. doi: 10.1039/b410103k. PubMed DOI
Maier L. Organische Phosphorverbindungen 74: Zur Kenntnis der Umsetzung von Cyanomethyldichlorphosphin und 2-Chloräthyldichlorphosphin mit Benzylglycin und Formaldehyd in Saurer Lösung. Phosphorus Sulfur. 1981;11:149–156. doi: 10.1080/03086648108077413. DOI
Notni J. Hermann P. Havlíčková J. Kotek J. Kubíček V. Plutnar J. Loktionova N. Riss P. J. Rösch F. Lukeš I. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chem.–Eur. J. 2010;24:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI
Šimeček J. Hermann P. Havlíčková J. Herdtweck E. Kapp T. G. Engelbogen N. Kessler H. Wester H. J. Notni J. A cyclen-based tetraphosphinate chelator for the preparation of radiolabeled tetrameric bioconjugates. Chem.–Eur. J. 2013;19:7748–7757. doi: 10.1002/chem.201300338. PubMed DOI
Notni J. Šimeček J. Wester H.-J. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications. ChemMedChem. 2014;9:1107–1115. doi: 10.1002/cmdc.201400055. PubMed DOI
Hewawasam P., Dextraze P., Gribkoff V. K., Kinney G. G. and Dworetzky S. I., Fluoro oxindole derivatives as modulators of kcnq potassium channels, WO Patent, 2002066426A2, 2002
Kotková Z. Koucký F. Kotek J. Císařová I. Parker D. Hermann P. Copper(II) complexes of cyclams with N-(2,2,2-trifluoroethyl)-aminoalkyl pendant arms as potential probes for 19F magnetic resonance imaging. Dalton Trans. 2023;52:1861–1875. doi: 10.1039/D2DT03360G. PubMed DOI
Connolly T. J., Chan A. W.-Y., Ding Z., Ghosh M. R., Shi X., Ren J., Hansen E., Farr R., Macewan M., Alimardanov A., Nikitenko A. and Potoski J., Process for the preparation of trifluoroalkyl-phenyl and heterocyclic sulfoamides, WO Patent, 2009012201, 2009
Blahut J. Hermann P. Gálisová A. Herynek V. Císařová I. Tošner Z. Kotek J. Nickel(ii) complexes of N–CH2CF3 cyclam derivatives as contrast agents for 19F magnetic resonance imaging. Dalton Trans. 2016;45:474–478. doi: 10.1039/C5DT04138D. PubMed DOI
Karschin N. Krenek S. Heyer D. Griesinger C. Extension and improvement of the methanol-d4 NMR thermometer calibration. Magn. Reson. Chem. 2022;60:185–270. doi: 10.1002/mrc.5216. PubMed DOI
NMR Thermometer (Version 4.0), Hebrew University NMR Lab, NMR Thermometer, https://chem.ch.huji.ac.il/nmr/software/thermometer.html, accessed August 26, 2025
Goldman P. The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J. Biol. Chem. 1965;240:3434–3438. doi: 10.1016/S0021-9258(18)97236-4. PubMed DOI
Andrews K. G. Faizova R. Denton R. M. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid. Nat. Commun. 2017;8:15913. doi: 10.1038/ncomms15913. PubMed DOI PMC
Epifanov M. Foth P. J. Gu F. Barrillon C. Kanani S. S. Higman C. S. Hein J. E. Sammis G. M. One-pot 1,1-dihydrofluoroalkylation of amines using sulfuryl fluoride. J. Am. Chem. Soc. 2018;140:16464–16468. doi: 10.1021/jacs.8b11309. PubMed DOI
Abedelnour E. Ognier S. Venier O. Schio L. Tatouliana M. Cossy J. Synthesis of trifluoromethyl N,N-aminals from nitrogen containing heterocycles by using a plasma flow microreactor. Chem. Commun. 2023;59:4213–4216. doi: 10.1039/d3cc00942d. PubMed DOI
CCDC 2489251: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8fz DOI
CCDC 2489252: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8g0 DOI
CCDC 2489253: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8h1 DOI
CCDC 2489254: Experimental Crystal Structure Determination, 2025, 10.5517/ccdc.csd.cc2pk8j2 DOI