The Ear in Subterranean Rodents Revisited: Cochlear Hair-Cell Populations in African Mole-Rats (Bathyergidae)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
41405179
PubMed Central
PMC12710458
DOI
10.1002/jmor.70106
Knihovny.cz E-zdroje
- Klíčová slova
- bathyergidae, cochlea, ear morphology, hearing, subterranean mammals,
- MeSH
- kochlea * anatomie a histologie cytologie fyziologie MeSH
- mikroftalmičtí podzemní hlodavci * anatomie a histologie fyziologie MeSH
- sluch fyziologie MeSH
- vláskové buňky * cytologie MeSH
- vnější vláskové buňky cytologie MeSH
- vnitřní vláskové buňky cytologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Based on von Békésy's premise that "The physical laws served as guidelines for the evolution of the structures and functions of the middle and inner ear," we aimed to understand how the unique subterranean acoustic environment, which promotes the propagation of low-frequency sounds and thereby selects for enhanced low-frequency hearing, influences functional adaptations reflected in the morphological convergence of the cochlea in subterranean African mole-rats (Bathyergidae). We conducted a morphometric analysis of the cochlea in 12 species representing all six genera of African mole-rats, spanning a body mass range of 30-2000 g. Cochlear partitions were examined using light microscopy following the standard surface specimen technique. The mole-rat cochleae has 3-4.3 coils. The length of the basilar membrane (BM) varies from 6.5 to 15.6 mm. Mean densities of inner hair cells (IHC) range from 104 to 122, whereas outer hair cells (OHC) range from 390 to 480 per 1 mm. Hair cell density increased slightly from the base towards the apex in all species studied. The radial width of the cuticular plates of the three rows (triad) of OHC, shown in previous studies to mirror BM width, increased continuously from, on average, 22 ± 3 µm at the base to 35 ± 6 μm at the apex. Length of BM, width of the OHC triad and total number of hair cells (and thus hearing resolution capabilities) are related to body size. When compared to other mammals, the cochleae of bathyergids exhibit quantitative characteristics that closely resemble the apical regions of the cochleae in other species-specifically, those segments tuned to low frequencies. Moreover, the width of OHC triads was strongly correlated with the tonotopic organization of frequencies along the organ of Corti, confirming its value as a structural predictor of auditory capability.
Department of General Zoology Faculty of Biology University Duisburg Essen Essen Germany
Department of Zoology Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Barker, A. J. , Veviurko G., Bennett N. C., Hart D. W., Mograby L., and Lewin G. R.. 2021. “Cultural Transmission of Vocal Dialect in the Naked Mole‐Rat.” Science 371, no. 6528: 503–507. PubMed
Barone, C. M. , Douma S., Reijntjes D. O. J., et al. 2019. “Altered Cochlear Innervation in Developing and Mature Naked and Damaraland Mole Rats.” Journal of Comparative Neurology 527: 2302–2316. PubMed PMC
Begall, S. , and Burda H.. 2006. “Acoustic Communication and Burrow Acoustics are Reflected in the Ear Morphology of the Coruro ( PubMed
Begall, S. , Burda H., and Schleich C. E.. 2007. “Subterranean Rodents: News From Underground (Introduction).” In Subterranean Rodents: News From Underground, Edited by Begall S., Burda H., and Schleich C. E., 3–9. Springer Verlag.
Begall, S. , Burda H., and Schneider B.. 2004. “Hearing in Coruros ( PubMed
Begall, S. , Lange S., Schleich C. E., and Burda H.. 2007. “Acoustics, Audition and Auditory System.” In Subterranean Rodents: News From Underground, Edited by Begall S., Burda H., and Schleich C. E., 97–111. Springer Verlag.
Békésy, G. von . 1960. Experiments in Hearing. McGray‐Hill.
Békésy, G. von . Introduction. In: Keidel, W. D., Neff, W. D. (Eds.), Handbook of Sensory Physiology. Vol. V/1, Auditory System, Anatomy Physiology (Ear).: Springer, Berlin, pp. 1‐8. 1974.
Bennett, N. C. , and Faulkes C. G.. 2000. African Mole‐Rats: Ecology and Eusociality. Cambridge University Press.
Bennett, N. C. , Faulkes C. G., Hart L., and Jarvis J. U. M.. 2009. “
Bradbury, J. W. , and Vehrencamp S. L.. 1998. Principles of Animal Communication. Sinauer Asociates Inc.
Braniš, M. , and Burda H.. 1994. “Cochlear Hair Cell Population in Two Primate Species (
Bray, T. C. , Bloomer P., O'Riain M. J., and Bennett N. C.. 2012. “How Attractive Is the Girl Next Door? An Assessment of Spatial Mate Acquisition and Paternity in the Solitary Cape Dune Mole‐Rat, PubMed PMC
Brückmann, G. , and Burda H.. 1997. “Hearing in Blind Subterranean Zambian Mole‐Rats ( PubMed
Bruns, V. , Müller M., Hofer W., Heth G., and Nevo E.. 1988. “Inner Ear Structure Electrophysiological Audiograms of the Subterranean Mole Rat, PubMed
Bruns, V. , and Schmieszek E.. 1980. “Cochlear Innervation in the Greater Horseshoe Bat: Demonstration of an Acoustic Fovea.” Hearing Research 3, no. 1: 27–43. PubMed
Burda, H. 1978. “[Population of Hair Cells in the Corti's Organ of Shrews].” Zeitschrift fur Mikroskopisch‐Anatomische Forschung 92: 514–528. PubMed
Burda, H. 1979. “Morphology of the Middle and Inner Ear in Some Species of Shrews (Insectivora, Soricidae).” Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae Brno 13, no. 4: 1–48.
Burda, H. 1984. “Guinea Pig Cochlear Hair Cell Density; Its Relation to Frequency Discrimination.” Hearing Research 14: 315–317. PubMed
Burda, H. 1985. “Qualitative Assessment of Postnatal Maturation of the Organ of Corti in Two Rat Strains.” Hearing Research 17: 201–208. PubMed
Burda, H. 2006. “Ear and Eye in Subterranean Mole‐Rats,
Burda, H. , Ballast L., and Bruns V.. 1988. “Cochlea in Old World Mice and Rats (Muridae).” Journal of Morphology 198: 269–285. PubMed
Burda, H. , Begall S., and Šumbera R.. 2018. “Graumulle—
Burda, H. , and Branis M.. 1988. “Postnatal Development of the Organ of Corti in the Wild House Mouse, Laboratory Mouse, and Their Hybrid.” Hearing Research 36: 97–105. PubMed
Burda, H. , Bruns V., and Hickman G. C.. 1992. “The Ear in Subterranean Insectivora and Rodentia in Comparison With Ground‐Dwelling Representatives. I. Sound Conducting System of the Middle Ear.” Journal of Morphology 214, no. 1: 49–61. PubMed
Burda, H. , Bruns V., and Nevo E.. 1989. “Middle Ear and Cochlear Receptors in the Subterranean Mole‐Rat, PubMed
Burda, H. , Nevo E., and Bruns V.. 1990. “Adaptive Differentiation of Ear Structures in Subterranean Mole‐Rats of the
Burda, H. , and Voldřich L.. 1980. “Correlation Between the Hair Cell Density and the Auditory Threshold in the White Rat.” Hearing Research 3: 91–93. PubMed
Burda, H. , Šumbera R., Chitaukali W. N., and Dryden G. L.. 2005. “Taxonomic Status and Remarks on Ecology of the Malawian Mole‐Ratcryptomys Whytei (Rodentia, Bathyergidae).” Acta Theriologica 50, no. 4: 529–536.
Caspar, K. R. , Heinrich A., Mellinghaus L., Gerhardt P., and Begall S.. 2021. “Evoked Auditory Potentials From African Mole‐Rats and Coruros Reveal Disparity in Subterranean Rodent Hearing.” Journal of Experimental Biology 224, no. 22: jeb243371. PubMed
Chen, G.‐D. , Tanaka C., and Henderson D.. 2008. “Relation Between Outer Hair Cell Loss and Hearing Loss in Rats Exposed to Styrene.” Hearing Research 243: 28–34. PubMed PMC
Credner, S. , Burda H., and Ludescher F.. 1997. “Acoustic Communication Underground: Vocalization Characteristics in Subterranean Social Mole‐Rats ( PubMed
Ding, D. , McFadden S. L., and Salvi R. J.. 2001. “Cochlear Hair Cell Densities and Inner‐ear Staining Techniques.” In Handbook of Mouse Auditory Research, Edited by Willott J. F., 203–218. CRC Press.
Dusenbery, D. B. 1992. Sensory Ecology, 558. W.H. Freeman and Comp.
Eliott, K.‐L. , Fritzsch B., and Duncan J. S.. 2018. “Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Corti Har Cells.” Frontiers in Cellular Neuroscience 12: 252. PubMed PMC
Fleischer, G. 1973. “Studien am Skelett Des Gehörorgans Der Säugetiere, Einschließlich Des Menschen.” Säugetierk. Mitt. 21: 131–239.
Fleischer, G. 1978. “Evolutionary Principles of the Mammalian Middle Ear.” Advances in Anatomy, Embryology and Cell Biology 55: 1–65. PubMed
Fletcher, N. H. 2004. “A Simple Frequency‐Scaling Rule for Animal Communication.” Journal of the Acoustical Society of America 115, no. 5: 2334–2338. PubMed
Gerhardt, P. , Henning Y., Begall S., and Malkemper E. P.. 2017. “Audiograms of Three Subterranean Rodent Species (Genus PubMed
Glueckert, R. , Pfaller K., Kinnefors A., Rask‐Andersen H., and Schrott‐Fischer A.. 2005. “Ultrastructure of the Normal Human Organ of Corti. New Anatomical Findings in Surgical Specimens.” Acta Oto‐laryngologica 125, no. 5: 534–539. PubMed
Gomes Rodrigues, H. , Šumbera R., Hautier L., and Herrel A., 2023. Digging up Convergence in Fossorial Rodents: Insights Into Burrowing Activity and Morpho‐Functional Specializations of the Masticatory Apparatus, in: Bels, V., Legreneur, P. (Eds.): Convergent Evolution, Fascinating Life Sciences. Springer Nature Switzerland AG, Pp. 37–63.
Greenwood, D. D. 1990. “A Cochlear Frequency‐Position Function for Several Species—29 Years Later.” Journal of the Acoustical Society of America 87, no. 6: 2592–2605. PubMed
Happold, D. C. D. 2013. Mammals of Africa. Volume 3 Rodents, Hares and Rabbits. London Bloomsbury Publishing.
Heffner, H. , and Masterton B.. 1980. “Hearing in Glires: Domestic Rabbit, Cotton Rat, Feral House Mouse and Kangaroo Rat.” Journal of the Acoustical Society of America 68: 1584–1599.
Heffner, H. E. 1983. “Hearing in Large and Small Dogs: Absolute Thresholds and Size of the Tympanic Membrane.” Behavioral Neuroscience 97: 310–318.
Heffner, H. E. , and Heffner R. S.. 2016. “The Evolution of Mammalian Sound Localization.” Acoustics Today 12, no. 1: 20–35.
Heffner, H. E. , Heffner R. S., Contos C., and Ott T.. 1994. “Audiogram of the Hooded Norway Rat.” Hearing Research 73: 244–247. PubMed
Heffner, R. S. , and Heffner H. E.. 1985. “Hearing Range of the Domestic Cat.” Hearing Research 19: 85–88. PubMed
Heffner, R. S. , and Heffner H. E.. 1990. “Vestigial Hearing in a Fossorial Mammal, the Pocket Gopher ( PubMed
Heffner, R. S. , and Heffner H. E.. 1992. “Hearing and Sound Localization in Blind Mole Rats ( PubMed
Heffner, R. S. , and Heffner H. E.. 1993. “Degenerate Hearing and Sound Localization in Naked Mole Rats ( PubMed
Hemilä, S. , Nummela S., and Reuter T.. 1995. “What Middle Ear Parameters Tell about Impedance Matching and High Frequency Hearing.” Hearing Research 85, no. 1–2: 31–44. PubMed
Heth, G. , Frankenberg E., and Nevo E.. 1986. “Adaptive Optimal Sound for Vocal Communication in Tunnels of a Subterranean Mammal (Spalax Ehrenbergi).” Experientia 42: 1287–1289. PubMed
Hothorn, T. , Bretz F., and Westfall P.. 2008. “Simultaneous Inference in General Parametric Models.” Biometrical Journal 50, no. 3: 346–363. PubMed
Hrouzková, E. , and Schleich C. E.. 2023. “Habitat Influence on the Evolution of Male Mating Vocalizations in Subterranean and Surface‐Dwelling Rodents (Rodentia).” Lynx New Series 53: 175–184.
Kössl, M. , Frank G., Burda H., and Müller M.. 1996. “Acoustic Distortion Products From the Cochlea of the Blind African Mole Rat, PubMed
Kverková, K. , Bělíková T., Olkowicz S., et al. 2018. “Sociality Does Not Drive the Evolution of Large Brains in Eusocial African Mole‐Rats.” Scientific Reports 8, no. 1: 9203. PubMed PMC
Lacey, E. A. 2000. Life Underground: The Biology of Subterranean Rodents, 457. Univ. Chicago Press.
Lange, S. Sinnesökologie Afrikanischer Sandgräber (Bathyergidae) am Beispiel von Hör‐ und Geruchssinn. Dissertation (PhD thesis), Universität Duisburg‐Essen, pp. 177. 2005.
Lange, S. , Burda H., Wegner R. E., Dammann P., Begall S., and Kawalika M.. 2007. “Living in a “Stethoscope”: Burrow‐Acoustics Promote Auditory Specializations in Subterranean Rodents.” Naturwissenschaften 94: 134–138. PubMed
Lange, S. , Stalleicken J., and Burda H.. 2004. “Functional Morphology of the Ear in Fossorial Rodents, PubMed
Lenth, R. V. , Buerkner P., Herve M., Love J., Riebl H., and Singmann H.. 2020. Emmeans: Estimated Marginal Means, Aka Least‐Squares Means . R Package Version 1.5. 3. 2020.
Liberman, M. C. 1982. “The Cochlear Frequency Map for the Cat: Labeling Auditory‐Nerve Fibers of Known Characteristic Frequency.” Journal of the Acoustical Society of America 72, no. 5: 1441–1449. PubMed
Lovell, J. M. , and Harper G. M.. 2007. “The Morphology of the Inner Ear From the Domestic Pig ( PubMed
Manoussaki, D. , Dimitriadis E. K., and Chadwick R. S.. 2006. “Cochlea's Graded Curvature Effect on Low Frequency Waves.” Physical Review Letters 96, no. 8: 088701. PubMed
Mason, M. J. 2001. “Middle Ear Structures in Fossorial Mammals: A Comparison With Non‐Fossorial Species.” Journal of Zoology 255, no. 4: 467–486.
Mason, M. J. 2013. “Of Mice, Moles and Guinea Pigs: Functional Morphology of the Middle Ear in Living Mammals.” Hearing Research 301: 4–18. PubMed
Mason, M. J. , Cornwall H. L., and Smith E. S. J.. 2016. “Ear Structures of the Naked Mole‐Rat, PubMed PMC
Müller, M. 1991. “Frequency Representation in the Rat Cochlea.” Hearing Research 51, no. 2: 247–254. PubMed
Müller, M. 1996. “The Cochlear Place‐Frequency Map of the Adult and Developing Mongolian Gerbil.” Hearing Research 94, no. 1–2: 148–156. PubMed
Müller, M. , and Burda H.. 1989. “Restricted Hearing Range in a Subterranean Rodent, PubMed
Müller, M. , Burda H., and Bruns V.. 1989. “Structure and Function of the Inner Ear in Subterranean Mammals.” Annales De La Société Royale Zoologique De Belgique 119/1: 60.
Müller, M. , Hünerbein K., Hoidis S., and Smolders J. W. T.. 2005. “A Physiological Place–Frequency Map of the Cochlea in the CBA/J Mouse.” Hearing Research 202, no. 1–2: 63–73. PubMed
Müller, M. , Laube B., Burda H., and Bruns V.. 1992. “Structure and Function of the Cochlea in the African Mole Rat ( PubMed
Nevo, E. 1999. Mosaic Evolution of Subterranean Mammals (Regression, Progression and Convergence), 413. Oxford University Press.
Okanoya, K. , Yosida S., Barone C. M., et al. 2018. “Auditory‐Vocal Coupling in the Naked Mole‐Rat, a Mammal With Poor Auditory Thresholds.” Journal of Comparative Physiology A 204: 905–914. PubMed PMC
Olson, E. S. , Duifhuis H., and Steele C. R.. 2012. “Von Békésy and Cochlear Mechanics.” Hearing Research 293: 31–43. PubMed PMC
Patzenhauerová, H. , Bryja J., and Šumbera R.. 2010. “Kinship Structure and Mating System in a Solitary Subterranean Rodent, the Silvery Mole‐Rat.” Behavioral Ecology and Sociobiology 64: 757–767.
Peacock, J. , Smith E. S. J., Park T. J., and Mason M. J.. 2025. “Ear Morphology in the Damaraland Mole‐Rat, DOI
Pinheiro, J. , Bates D. R., and Team C.. 2023. “Nlme: Linear and Nonlinear Mixed Effects Models.” R package version 3: 1–162.
Pleštilová, L. , Hrouzková E., Burda H., Hua L., and Šumbera R.. 2019. “Additional Row of Outer Hair Cells—The Unique Pattern of the Corti Organ in a Subterranean Rodent, the Gansu Zokor (
Pleštilová, L. , Hrouzková E., Burda H., Meheretu Y., and Šumbera R.. 2021. “Ear Morphology in Two Root‐Rat Species (Genus PubMed
Pleštilová, L. , Hrouzková E., Burda H., and Šumbera R.. 2016. “Does the Morphology of the Ear of the Chinese Bamboo Rat ( PubMed
Pye, A. 1977. “The Structure of the Cochlea in Some Myomorph and Caviomorph Rodents.” Journal of Zoology 182, no. 3: 309–321.
Pyott, S. J. , van Tuinen M., Screven L. A., et al. 2020. “Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole‐Rats.” Current Biology 30, no. 22: 4329‐4341.e4. PubMed PMC
Rask‐Andersen, H. , Li H., Löwenheim H., et al. 2017. “Supernumerary Human Hair Cells—Signs of Regeneration or Impaired Development? A Field Emission Scanning Electron Microscopy Study.” Upsala Journal of Medical Sciences 122, no. 1: 11–19. PubMed PMC
R Core Team . 2024. R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing.
Retzius, G. 1884. Das Gehörorgan der Wirbelthiere. Samson and Wallin.
Russell, I. J. , and Kössl M.. 1999. “Micromechanical Responses to Tones in the Auditory Fovea of the Greater Mustached Bat's Cochlea.” Journal of Neurophysiology 82, no. 2: 676–686. PubMed
Ryan, A. , and Dallos P.. 1975. “Effect of Absence of Cochlear Outer Hair Cells on Behavioural Auditory Threshold.” Nature 253: 44–46. PubMed
Růžek, J. , and Voldřich L.. 1977. “A Study of Cochlear Mechanics by Holographic Interferometry on a Model. (In Czech, English Summary).” Cs. Otolaryngol. 26: 261–264. PubMed
Schleich, C. E. , and Antenucci D. C.. 2009. “Sound Transmission and Burrow Characteristics of the Subterranean Rodent
Schleich, C. E. , Begall S., and Burda H.. 2006. “Morpho‐Functional Parameters of the Inner Ear in
Schleich, C. E. , Veitl S., Knotková E., and Begall S.. 2007. “Acoustic Communication in Subterranean Rodents.” In Subterranean Rodents: News From Underground, Edited by Begall S., Burda H., and Schleich C. E., 113–127. Springer Verlag.
Schuller, G. , and Pollak G.. 1979. “Disproportionate Frequency Representation in the Inferior Colliculus of Doppler—Compensating Greater Horseshoe Bats: Evidence for an Acoustic Fovea.” Journal of Comparative Physiology? A 132: 47–54.
Šumbera, R. , Uhrová M., Begall S., et al. 2023. “The Biology of An Isolated Mashona Mole‐Rat Population From Southern Malawi, With Implications for the Diversity and Biogeography of the Genus
Šumbera, R. , Uhrová M., Montoya‐Sanhueza G., Bryjová A., Bennett N. C., and Mikula O.. 2024. “Genetic Diversity of the Largest African Mole‐Rat Genus, PubMed
Úlehlová, L. 1975. “1975. The Population of Hair Cells in the Organ of Corti in the Guinea Pig.” Folia Morphologica 28: 1–6. PubMed
Vater, M. , Feng A. S., and Betz M.. 1985. “An HRP‐Study of the Frequency‐Place Map of the Horseshoe Bat Cochlea: Morphological Correlates of the Sharp Tuning to a Narrow Frequency Band.” Journal of Comparative Physiology A 157, no. 5: 671–686. PubMed
Wang, Y. , Steele C. R., and Puria S.. 2016. “Cochlear Outer‐Hair‐Cell Power Generation and Viscous Fluid Loss.” Scientific Reports 6: 19475. PubMed PMC
Webster, D. B. , and Webster M.. 1975. “Auditory Systems of Heteromyidae: Functional Morphology and Evolution of the Middle Ear.” Journal of Morphology 146: 343–376. PubMed